VISION-AIDED OBSTACLE AVOIDANCE FOR THE
FORMATION OF MULTI-AGENT VEHICLES

by

Zike Wang

Submitted in partial ful Iment of the requirements
for the degree of Master of Applied Science

at
Dalhousie University

Halifax, Nova Scotia
December 2023

© Copyright by Zike Wang, 2023



Table of Contents

Listof Tables . . . . . . . . . . . . . . ... iv
List of Figures . . . . . . . . e v
List of Abbreviations and Symbols Used . . .. ... ... ... ... X
Abstract . . . . . Xi
Acknowledgements . . . . . ... Xil
Chapter 1 Introduction . . . ... 1
1.1 Research Background . . . . .. ... ... ... .. ........ 1
1.2 Literature Review . . . . . . . . . . ... . 3
1.2.1 Formation Control . . . . .. ... ... ... ....... 3
1.2.2 Obstacle Avoidance . . . . . .. ... .. ... ....... 8
1.2.3 PathPlanning . ... ... ... ... .. ... ...... 9
1.2.4 Sensors and Vision for Robotics . . . . ... ... ..... 13
1.3 Thesis Objectives and Contributions . . . . . ... ........ 17
1.4 ThesisOutline. . . . .. .. .. ... .. .. 18
Chapter 2 Experimental Hardware and Software . .. ... .. 19
2.1 TurtleBot3 Mobile Robots . . . . . ... ... ... ... ... .. 19
2.2 Intel RealSense DepthCamera . . . . . ... .. ... ....... 20
2.3 RobotIntegration . . . . .. ... . .. 21
2.4 Communication and Control System . . . . ... ... ... ... 23
2.5 Simulation Environment . . . . ... .. Lo 25
2.6 Summary ... .. e e e e 26
Chapter 3 Problem Formulation . ... .. ... .......... 27
3.1 Kinematics of a Mobile Robot . . . . .. ... ... ... ..... 27
3.2 Hand Position Model . . . ... ... ... ... ... L. 28
3.3 Obstacle Avoidance . . . . . . . ... ... ... 29



3.4 Control Objective . . . . . . . . .. . . .. . .
3.5 Vision-aided Obstacle Detection . . . . . . .. ... ... .....

3.6 Summary . ...

Chapter 4 Multi-Robot A ne Formation Control . . . .. ..

4.1 Preliminaries . . . . . . . e e
4.1.1 Graph Theoryand AneSpan ... ............
4.1.2 Oriented Incidence Matrix . . . ... ... .........
4.1.3 Kronecker Product . . . ... ... ... .. ... . ...,
4.1.4 StressMatrix . . . . . . ...
415 TargetFormation . .. .. .. .. ..............

4.2 Ane Formation Controller Design . . . . . ... ... ......
4.2.1 CASE I Stationary Leaders . . . .. ... .........
4.2.2 CASE I: Simulation Results . . . .. ... ... ......
4.2.3 CASE II: Leaders with Constant Velocity Motion . . . . .
424 CASE Il: SimulatonResults . . . . ... ... ... ....
4.2.5 CASE lll: Leaders with Time-varying Velocity Motion . .
4.2.6 CASE Ill: Simulation Results . . . .. ... ........

4.3 SumMmMary . . . .. e e e e
Chapter 5 Experimental Results . . . . .. ... ... .......
5.1 TASK I: Goal Point Navigation . . . . ... ... .........
52 TASKIl: Narrow Gap Passing . . . . ... ... ... .......
5.3 TASK lll: Leader Obstacle Avoidance . ... ... ........
5.4 TASK IV: A ne Formation Obstacle Avoidance . . . . . ... ..
55 Summary . ...
Chapter 6 Conclusions and Future Research . . ... ... ...
6.1 Conclusions . . . . . . .. ...

6.2 FRuture Work . . . . . . . . . .

Bibliography . . . . . . ..



List of Tables

1.1 Distinctions of position-, displacement-, and distarcbased

formation control . . . . . ... ... ..

5.1 Diamond shape formation con guration



List of Figures

11
1.2
1.3
1.4

2.1
2.2
2.3

2.4
2.5
2.6

2.7

2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6

4.1

MAS applications . . . . . . ... ... oo 1
Sensing capability vs. interaction topology [8] . . . . . . 7
Raspberry Pi camera module 2 [60] . . . . ... ... ... 15
IMX219-83 stereo camera [63] . . . .. .. ... ...... 16
TurtleBot3 mobile robots [67] . . . .. .. ... ... ... 19
Intel RealSense depth camera D435i[68] . . ... ... .. 20
Intel D435i color stream (left) and depth stream (right)in
RealSense Viewer. . . .. .. .. ... ... ... ... 21
Color stream (left) and depth stream (right) in RvIZ. . . . 21
Jetson Nano developer kit [70] . . . . . . ... ... .... 22

Modi ed TurtleBot Wa e with Jetson Nano and Intel Re-
alSense depthcamera . . . . . .. ... ... ... ..... 22

Three TurtleBot3 Burger robots, one Wa e robot with
Nvidia Jetson Nano and Intel RealSense D435i camera .. 23

Communication graph of ROS through MATLAB and Gazebo 24

Experiment framework diagram . . . .. ... .. ... .. 25
Five TurtleBot mobile robots simulated in Gazebo . . . . . &®
Di erential-drive mobile robot kinematic model . . . . . . 27

Principle of the Arti cial Potential Field (APF) algorithm 3 0O

Normal obstacle detection . . . . ... ... ........ 32
Low-pro le obstacle detection . . . .. ... ... .. ... 32
Overhead obstacle detection (adesk) . .. ... .. .. .. 33
Depth camera eld of view (FOV) diagram . . . . . . . .. 33

A communication topology with three agents as an example37

\Y



4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
411
412

4.13

4.14
4.15
4.16

5.1

5.2
5.3

5.4
5.5

5.6

Nominal formation con guration for simulations with three
leaders (in blue) and three followers (inred) . .. ... .. 41

Case 1-Scenario 1: Stationary leaders in target posit® . 44
Case 1-Scenario 1, norm of the formation error . . . . . 44
Case 1-Scenario 1: Followers' control proles . . . . . . .. 45

Case 1-Scenario 2: Stationary leaders in arbitrary ptiens 46

Case 1-Scenario 25 norm of the formation error . . . . . 46
Case 1-Scenario 2: Followers' control proles . . . . .. .. 47
Case 2-Scenario 1: Leader with constant velocity (foers
in initial desired formation, =10, =1:5) .. ... ... 49
Case 2-Scenario 1; norm of the formation error . . . . . 50
Case 2-Scenario 1: Followers' control proles . . . . . ... 50
Case 2-Scenario 2: Leader with constant velocity (thelf
lowers are not in their initial desired formation, = 10,
=1:5) .. 51
Case 3-Scenario 1: Simulation result of time-varyingdder
velocities . . . . . .. 53
Case 3-Scenario 1; norm of the formation error . . . . . 54

Case 3-Scenario 1: Simulation result of Robot 4 conterror 54

Case 3-Scenario 2: Simulation result of the formatiohange 55

Diamond shape nominal formation con guration with lead

ers (in blue) and followers (inred) . . . . ... .. ... .. 56
Flow chart of the algorithm . . . . . ... ... ...... 58
Experimental task 1: Goal point navigation experimentre

vironment . . ... L 59
Experimental task 1: Goal point navigation . .. ... .. 59

Leader depth camera view during narrow gap passing, RGéft),
depth(right) . . ... .. ... ... ... ... .. ..... 60

Snapshots of experimental task 2: (a) t=20s, (b) t=30s.}
t=35s, (d)t=50s . . ... ... . ... 61



5.7
5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

Experimental task 2. Narrow gap passing experimental tdss 62

Snapshots of experimental task 3-scenario 1: (a) t=20¥)
t=30s, (c) t=35s, (d)t=50s . .. ... ... .. ... ... 63

Experimental task 3-scenario 1. Two obstacles detegtio
and avoidance . . . . . ... 64

Snapshots of experimental task 3-scenario 2: (a) t=2@b)
t=30s, (c) t=35s, (d)t=50s . ... ... ... ... .... 65

Experimental task 3-scenario 2: Low-pro le obstacleetec-
tion and avoidance . . .. .. ... .. ... ... ..... 66

Snapshots of experimental task 3-scenario 3: (a) t=20b)
t=30s, (c) t=35s, (d)t=50s . . .. ... ... ... .... 66

Experimental task 3-scenario 3: Overhead obstacle eet
tion and avoidance . . . ... ... ... ... ... ... 67

Snapshots of experimental task 4: (a) t=20s, (b) t=30<¢)
t=35s, (d)t=50s . . ... .. .. .. .. 68

Experimental task 4: Obstacle avoidance with a ne forra-
tioncontrol . . . .. ... .. 69

vii



List of Abbreviations and Symbols Used

Abbreviations

2D Two-dimensional

3D Three-dimensional

CMOS Complementary Metal Oxide Semiconductor
CNNs Convolutional Neural Networks

CPU Central Processing Unit

DDPG Deep Deterministic Policy Gradients

DOF Degree of Freedom

DQON Deep Q-Network

FOV Field of View

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

IMUs Inertial Measurement Units

LiDAR Light Detection of Laser Imaging And Ranging
LMI Linear Matrix Inequalities

LOS Line of Sight

viii



MAS
PC

Pl
RGB-D
RL
ROS
RRTs
SSH
UAV
VFH
YOLO

Symbols

Rnn

Rn

Multi-agent System

Personal Computer
Proportional-integral

Red Green Blue-Depth
Reinforcement Learning

Robot Operating System
Rapidly-exploring Random Trees
Secure Shell

Unmanned Aerial Vehicles
Vector Field Histogram

You Only Look Once

the di erence between two values
belongs to

in nity

set of real number

set ofn n Real Matrix

set ofn 1 real vector

d d identity matrix



edge set of a graph
graph

Laplacian matrix
neighbor set of a node i
node set of a graph
stress matrix

Kronecker Product
tends to

summation



Abstract

This thesis presents an in-depth study of vision-aided olzstle avoidance for multi-
agent formation control, integrating formation control, path planning, and the use
of vision sensors. The paper thoroughly reviews the litenate on coordination
strategies, obstacle avoidance methods, machine learnmgthods in navigation,
and sensor technologies in robotics. It explores the role diferent sensors in
navigating unknown environments.

The main contributions of the thesis include the design andalidation of for-
mation controllers and obstacle avoidance algorithms, spprted by simulations
and experimental results with mobile robots equipped with raadvanced vision
sensor. Hardware and software frameworks are rstly discies$, such as the use
of the TurtleBot3 mobile robots, Intel RealSense depth cam&, and the inte-
gration in Robotic Operating Systems (ROS). The problem fonulation includes
kinematics, a hand position model for mobile robots, and a risrobot a ne for-
mation control system. Algorithms are validated in both MATLAB and Gazebo
environments for their e cacy in the goal point navigation, narrow gap passing,
and leader-follower obstacle avoidance.

The thesis provides new insights into control laws that prathe e ective for
maintaining desired formation con gurations, demonstrang stability through 1,
norm of formation errors. The research validates the robustss and adaptability
of the proposed control algorithms through experiments, skvcasing the ability
to navigate towards designated goals while achieving preei formation con g-
urations, even when encountering unforeseen challengeséal-world scenarios.
The work concludes with successful experimental applicatis and proposes future
investigations into enriched formation control methods ah advanced image pro-
cessing for autonomous navigation. This study is instrumé&ad in advancing the
eld of autonomous robot formations, o ering practical andtheoretical insights
for the deployment of multi-agent systems in unknown enviroments.
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Chapter 1

Introduction

1.1 Research Background

Multi-agent Systems (MASs) consist of multiple autonomous agents that interact
with each other and their environment to achieve common goals. A MAS control
refers to the design and coordination of these agents’ behaviors and actions to
accomplish desired objectives. The word “agent” can refer to a mobile robot, a
manipulator, or a sensor node. Effective control algorithms are crucial in ensuring
the robustness, adaptability, and efficiency of MASs across various domains, in-
cluding robotics, swarm intelligence, transportation, and rescue missions. During
those tasks, MASs provide higher efficiency, low cost, and operational capability

compared with a single-agent system. MAS application examples such as assem-

bly and payload transportation can be found in Fig. 1.1.

» : ‘:[w:- R
(a) Assembly line [1] (b) Transportation task [2]

Figure 1.1. MAS applications

The coordination between the agents is mandatory for the MAS to perform
tasks as a group. Traditionally, the MAS coordination algorithm is developed
using a centralized structure, with central computers responsible for generating

information and scheduling control tasks for all agents, but the computing and
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communication capabilities required with centralized strctures may rapidly in-
crease as the number of agents increases. Central structisge also susceptible
to unexpected network issues, and the entire system will favhen the central
agent fails. Recently, considerable work has been done orettevelopment of
the MASs' distributed coordination control strategy. In didributed structures,
each agent has a microprocessor, sensor, and actuator tdexildata and perform
control functions.

For MASSs, two basic coordination research problems are consas and for-
mation control. A consensus control problem is one where trmntrollers are
designed for each agent solely using the information that Iscally accessible,
allowing the group of agents to agree on speci c quantitied mterest. Creating
distributed controllers that motivate the entire group to accomplish and sustain
a speci c geometric pattern of interest is the goal of forman control. A dis-
tributed formation control is to keeping the agents in a cedin geometric shape
relative to each other, which could be a time-varying formasn as well.

Another key problem of earlier research is how to let robots &" their envi-
ronment. The most common distance sensor used on mobile rébavorking in
an indoor environment is the Light Detection of Laser Imagig and Ranging (Li-
DAR) sensor and Three-dimensional (3D) vision cameras [3]iDAR sensors are
frequently used to create high-resolution maps and pointalids, but depending
on the mounting location, they can only measure distances at xed elevation
or in a Two-dimensional (2D) plane. According to its operatig principle, the
LiDAR sensor sends a laser pulse to the surface of an object aradcalates the
elapsed time between the emission of the pulse and the reeeive ection [3]. A
robot equipped with a 2D LIiDAR sensor cannot detect objects alve or below the
sensor. One solution is to use more LIDAR sensors to scan at elient altitudes,
which dramatically increases costs. Therefore, detectingpmplex environments
during navigation using an advanced sensor is essential. Asesult, this thesis
focuses on the obstacle detection and navigation using aigis sensor for an MAS
with an a ne formation control for the team overcoming the limitation of existing
obstacle avoidance methods.



1.2 Literature Review

1.2.1 Formation Control

Formation control in MASs is a fundamental concept with apptiations across
various domains, including mobile robots, Unmanned Aerial Wcles (UAV), and

autonomous vehicles [4]. The ability to coordinate a groud agents to achieve and
maintain a desired formation has been a subject of extensikesearch. Formation
strategies have been observed in nature, such as dolphinsgrently swimming
in speci ¢ formations, which can vary from line formations ¢ tight clusters, in

order to aid in communication, hunting, and protection frompredators [5].

Many researchers in control and robotics have recently usédese formation
tactics to apply to robotic systems for a variety of tasks, sth as payload trans-
portation [2], object search [6], and forest re surveillace [7]. A signicant
amount of research has been done on the control of MASs due tceithprac-
tical potential in di erent applications. The theoretical challenges mainly focus
on partial and relative information without the intervention of a central controller.

Formation control generally means driving multiple agentso achieve pre-
scribed constraints on their states [8]. Many complex forntian control tasks
with complex agent dynamics and constraints have been susstilly completed
by early formation control approaches, including behavidbased [9] and virtual-
structure [10]. The characterization of formation controschemes in terms of the
sensing capability and the interaction topology naturallyleads to the question of
what variables are sensed and what variables are activelyntmlled, to achieve
their desired formation [8]. Speci c requirements for eachgent's sensing capac-
ity are stated in the types of sensed variables. The types obmtrolled variables,
however, are fundamentally linked to the topology of interetions. More precisely,
if each agent's position is actively controlled, the agentsan move to the desired
locations apart from one another. A rigid body can be formeddm the agents
if the distances between them are actively controlled. Subguently, the agents
must engage in mutual interactions in order to preserve theton guration as a
sti entity. In other words, the kinds of controlled variables dictate the optimal
con guration that agents can attain, which in turn dictates the speci cations for



the agents' interaction topology.

Classi cations of formation control could be confusing iflie criteria is not

clear. According to Ren and Cao [11], the formation control cabe classi ed by

whether or not desired formations are time-varying:

" Formation producing problems: The objective of agents is tochieve a

prescribed desired formation shape. These problems haveebeddressed
through matrix theory based approach, Lyapunov based appach, graph
rigidity approach, and receding horizon approach.

Formation tracking problems: Reference trajectories forgents are pre-
scribed and the agents are controlled to track the trajectags. These prob-
lems have been studied through potential function based agmach, matrix
theory based approach and other approaches.

The formation control problem could also be classi ed by thédundamental

ideas of control schemes [12] [13]:

" Leader-follower approach: At least one agent plays the leadrole and the

A

rest of the agents are designated as followers. The follosgrack the posi-
tion of the leader with designed o sets while the leader tr&s the desired

trajectory.

Virtual structure approach: The formation of agents is condered as a single
object as a virtual structure. The desired motion for the vitual structure
is given and determines the motions for the agents.

Behavioral approach: Desired behaviors are prescribed fgents including
cohesion, collision avoidance, and obstacle avoidance.igapproach is often
related to an amorphous formation control scheme.

Depending on whether or not desired formation shapes are éxjtly pre-

scribed, the formation control problem may also be classickeas:

" Morphous formation control: Desired formations are explitty speci ed by

desired positions of agents, desired inter-agent displacents, desired inter-
agent distances, etc.
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“ Amorphous formation control: Without explicitly speci ed desired forma-
tions, desired behaviors such as cohesion, and collisiomiaance are given
for agents. Amorphous formation control is often related tohte behavioral
approach.

Based on the observed information, a formation control canebcategorized
into position, displacement, and distance-based accorgjno types of sensed and
controlled variables [8]:

" Position-based control: Agents sense their own positionsttvirespect to
a global coordinate system. They actively control their owrpositions to
achieve the desired formation, which is prescribed by the sleed positions
with respect to the global coordinate system.

Displacement-based control: Agents actively control disptements of their
neighboring agents to achieve the desired formation, whidh speci ed by
the desired displacement with respect to a global coordimatsystem un-
der the assumption that each agent is able to sense the relatiposition of
its neighboring agents with respect to the global coordinatsystem. This
implies that the agents need to know the orientation of the gbal coordi-
nate system. However, the agents require neither knowledgktbe global
coordinate system itself nor their positions with respecta the coordinate

system.

Distance-based control: Inter-agent distances are actlyeontrolled to achieve
the desired formation, which is given by the desired interggent distances.
Individual agents are assumed to be able to sense the relatipositions of
their neighboring agents with respect to their own local cadinate systems.
The orientations of local coordinate systems are not necasty aligned with

each other.

Many complex formation control tasks with complex agent dyamics and con-
straints have been successfully completed by early formati control approaches,
including behavior-based and virtual structures. Under thevirtual structure ap-
proach, human-made control systems impose the geometritateonship between
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robots and treat the robots as particles in a rigid body. Groo motion is made by
applying a virtual force eld to the virtual structure, whic h causes each robot to
move in the force's direction. However, this method requirescentralized formu-
lation, and is di cult to control the robots in a distributed way. In a behavioral
formation control approach, behaviors are prescribed foaeh agent and the nal
control input can be determined as a weighted average of eabkRhavior. This
approach is relatively easy to implement but no guarantee sfystem convergence
and stability analysis.

Table 1.1. Distinctions of position-, displacement-, andigtance-based formation
control

Position-based Displacement-based Distance-based
Sensed Positions of Relative positions of Relative positions of
variables agents neighbors neighbors
Controlled Positions of Relative positions of Inter-agent
variables agents neighbors distances
Coordinate A global Orientation aligned Local coordinate
systems coordinate local coordinate systems

system systems

Interaction Usually not Connectedness or Rigidity or
topology required existence of a persistence

spanning tree

In this thesis, the main categorization is considered in chacterizing forma-
tion control schemes in terms of the requirement on the sengi capability and
the interaction topology. As shown in Table. 1.1, the group fonation maneu-
verability is largely dependent on the constraints imposedn the system. For
example, displacement-based formation controllers canlgrbe applied to track
formations with time-varying translations since the consint displacement con-
straint also imposes constant orientation and scale the cstnaints on the group
formation. As summarized in Table. 1.1, a position-based cwal is particularly
bene cial in terms of the interaction topology though it reqiires more advanced
sensors. A distance-based control is advantageous in teriwisthe sensing ca-
pability but it requires more interactions among agents. A gplacement-based
control is moderate in terms of both sensing capability andhieraction topology
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compared to other approaches. Overall, it is a trade-off between the amount of
interactions among agents and the requirement on the sensing capability of each

agent as shown in Fig. 1.2.

More sensing
capability

Displacement-

based More >

interactions

Distance-based

Figure 1.2. Sensing capability vs. interaction topology [8]

Researchers have proposed many methods motivated by the limitations of
the three approaches, modifying them in order to achieve desired formation ma-
neuvers. For example, adding a formation-scale estimation mechanism on the
displacement-based formation control approach [14], and modifying the distance-
based formation control approach to allow the final formation to have an unspec-
ified scale [15]. Nevertheless, those modifications usually result in complicated
control and estimation problems and may require additional sensing or communi-
cation abilities for each agent. For example, the desired maneuver of each agent
must be prespecified in order to track general time-varying formations [16]

It remains an open research problem to define time-varying group target for-
mation for MASs that can dynamically adapt to changes in the environment,
such as formation control of multiple quadcopters as in [17] and formation shap-

ing control for MASs with obstacle avoidance and dynamic leader selection as in
[18].



1.2.2 Obstacle Avoidance

An obstacle avoidance is a critical aspect of autonomous rdiws, enabling robots
to navigate complex environment safely and e ciently. Thisliterature review
provides an overview of key developments, methodologiesidachallenges in the
eld of obstacle avoidances in robotics.

The obstacle avoidance has been a fundamental challenge obetics for
decades. Early approaches focused on simple reactive bétway where robots
responded directly to sensory input. While e ective in somecgnarios, these
methods lacked the ability to plan and adapt to changing enkdonments.

Sensor-based obstacle avoidance is a prominent method imatcs. In this
approach, robots utilize a range of sensors, including utsonic, LIDAR, and
vision, to detect obstacles and adjust their trajectories.Studies by Borenstein
and Koren [19] on the Vector Field Histogram (VFH) method demonsated the
e cacy of sensor-based approaches in mobile robot navigati.

Path planning algorithms have gained signi cant attentionin recent years.
Dijkstra's algorithm, A* search, and rapidly exploring randm trees (RRT) have
been adapted for obstacle avoidance. Karaman and Frazz@0] introduced an ef-
cient RRT-based approach, the RRT* algorithm, which has ben widely adopted
in the robotics community.

Machine learning and deep learning techniques have revahirized obstacle
avoidance. Researchers have explored Reinforcement Léagr(RL) and Convolu-
tional Neural Networks (CNNSs) for training robots to navigate canplex, dynamic
environments. Notable contributions include Deep Q-NetworkDQN) method in
[21] and Deep Deterministic Policy Gradients (DDPG) methodn [22].

While the obstacle avoidance has made signi cant progresshatlenges re-
main. Adapting to dynamic, real-world environments, handhg sensor noise, and
addressing the issue of local minima in path planning are @ of ongoing re-
search. Combining traditional methods with machine learnig for robust obstacle
avoidance is a promising direction.



1.2.3 Path Planning

Path planning algorithms are applied by mobile robots, unnaned aerial vehicles,
and autonomous underwater vehicles in order to identify safe cient, collision-
free, and least-cost travel paths from the start to a destirteon [23]. The literature
review listed the classes of path planning algorithms usedday and their poten-
tial within automated systems.

Autonomous mobile robots can reduce the contribution of hunmaerror and
negligence as the cause of collisions. The robots must mowent point A to
point B safely and e ciently, and path planning is the key in determining and
evaluating trajectories [23]. During navigation, robots rake use of capabilities
that involve modeling the environment and localizing the psition, which lead to
the four general problems of navigation: perception, logaation, motion control,
and path planning [24] [25] [26].

This literature review is mainly focused on path planning, Wich is the deter-
mination of a collision-free path in a given environment andften be cluttered in
a real-world situation. An appropriate path planning technjue must be identi-
ed and implemented to accomplish the system's design, anti¢ best-performing
technique will vary with the system type and the environmentg7]. The complex-
ity of the problem increases with an increase in degrees odddom (DOF) of the
system, the optimal path will be decided based on constragmtnd conditions [23].
For example, considering the shortest path between points the minimum time
to travel without collisions, minimizes energy consumptio. A path planning can
be used in known and unknown environments where informatias received from
internal and external sensors, updating maps to inform theesired motion of the
mobile robot [23].

The path planning can be either local or global. A global patiplanning looks
for an optimal path given largely complete environmental #ormation, and it
is best performed when the environment is static and known tihe robot. The
path planner algorithm produces a complete path from the stato the end before
the robot tracks the trajectory [28]. A global motion plannirg is the high-level
control for environment traversal [23]. A local path planmg is mostly performed
in unknown or dynamic environments, while the robot is movig and taking data
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from local sensors [23]. The robot has to generate new pathsresponse to the
changes in the environment, as obstacles are static or dyn&nfi28].

Several path planning algorithms that are most frequently sed are discussed.
The rst algorithm is the Dijkstra algorithm which has many variants com-
monly used in applications, such as Google Maps [29] [30]. ®wercome the
computational-intensity doing blind searchesA and its variants are introduced
as the most popular algorithm for static environment [31]. Heever, A is used
for the shortest path evaluation based on the obstacles pesg in the environ-
ment, which comprises a selection of node pairs [32]. This kea the algorithm
ine cient and impractical in dynamic environments [23]. To make path planning
work in dynamic environments,D and its variants are introduced. Other path
planners such as the Rapidly-exploring Random Trees (RRT,sbhe Genetic al-
gorithms, the ant colony algorithm, and the Fire y algorithm are introduced to
represent some of the foundational algorithms. More path ghning algorithms

can be found in [33].

According to [34] and [35], the motion planning problem andstalgorithms can
be classi ed into search-based and sampling-based, wheeargh-based planning
can be seen as two problems: how to turn the problem into a gdfa@nd how
to search the graph to nd the best solution. Example of seanebased planning
is the Dijkasra algorithm and A algorithm. RRT and its variant, however, are
sampling-based [35].

The Dijkstra algorithm works by computing the shortest pathfrom the source
to vertices among the closest vertices to the source [29]. &hlgorithm nds the
next closest vertex by keeping the new vertices in a prioritgnin queue and stores
only one node in order to nd the shortest path [29].

The traditional Dijkstra algorithm nds the shortest path i n an acyclic envi-
ronment which means the path traversed through a sequencewtices without
having the same point as the start and the end vertices, and &ble to nd the
shortest path from the start to every point, relying upon gredy strategy search-
ing on a graph [23]. Many versions of improved Dijkstra haveeen developed
based on speci ¢ applications, yet concerns the path soloti with formal atten-
tion to the pragmatism solution [23]. The modi ed Dijkstra dgorithm aims to
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nd alternate routes where the cost of generating plausiblshortest paths is sig-
ni cant. It introduces another component to the classical iorithm in the form
of probabilities that de ne the status of freedom along the igph edges [36]. This
variant overcomes the computational shortcomings in the [kstra algorithm and
becomes suitable in modern applications. Another improvedijRstra algorithm
reserves all nodes with the same distance from the source aab intermediate
nodes, followed by a re-search within all the intermediateaues until travers-
ing successfully nd the goal point, all possible short path can be found after
iterations [37].

Due to the nature of the Dijkstra algorithm, nodes that have lken previ-
ously searched cannot be stored. A storage scheme is introdd to overcome
this disadvantage with a multi-layer dictionary implemened, which contains two
dictionaries and a list of data structures organized in hiarchical order [38]. One
dictionary maps each node and its neighboring nodes, the ethdictionary stores
the path information of each neighboring pathway [38]. Thisnulti-layer dic-
tionary method allows data structure for the Dijkstra algoithm in an indoor
environment application where the Global Navigation Sataete System (GNSS)
coordinates and the compass orientation are not reliablerquucing the shortest
path and the most navigable path at the same time, which is ie&sible to compute
within the traditional Dijkstra algorithm [38].

Another popular graph searching method for nding the shortst path in a
positive and negative weighted graph [39]. Inspired by theijRstra which works
best for nding the single-source path in a positive weighteégraph [39].

In general, the Dijkstra is a reliable algorithm for path planing, but also
memory-heavy as it has to compute all the possible outcomes order to nd
the shortest path. Due to its limitation, improved variants with a new memory
scheme arose to map with a huge cost factor [23]. The Dijkstedgorithm is best
suited for a static environment and global path planning as ost of the data
required are pre-de ned.

The A algorithm is the most popular graph traversal path planninglgorithm,
which operates similarly to the Dijkstra algorithm except i prioritizes its search
towards the most promising nodes, saving a signi cant amotmf computation
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time [40].

The A algorithm is similar to the Dijkstra but works on the lowest ©st path
tree from the initial point to the nal goal. The base algorithm uses the least
expensive path and expands using the cost function de ned loe

F=G+H; (1.2.1)

where G is the actual cost from the current node to the start, andH is the
heuristic cost of the optimal path from the current node to tle goal [31].

The A algorithm is widely used in the static environment, gamingndustry
[41], graph theory, and automatic control [23]. TheA algorithm is a heuristic
algorithm that uses heuristic information to nd the optimal path. The A al-
gorithm searches for nodes in a map and assigns appropriatuhstic functions
for the guidance, such as Euclidean distance, Manhattan tasice, and Diagonal
distance [42] [43].

p
Euclidean distance: (X1 X2)2+ (Y1 VY2)?; (1.2.2)
Manhattan distance : jX; Xoj + jy1  VY2; (1.2.3)
Octile distance : maxjx; Xz + jy1  Voj: (1.2.4)

While using the A algorithm, there is a trade-o between calculation speed
and path accuracy. Decrease the time complexity in exchanfyg greater memory,
or consume less memory in exchange for slower executiong.[Zhe example of
balancing the trade-o is the application for using theA algorithm to nd the
shortest path in a crowded parking lot [44].

As the A algorithm uses a di erent cost function on top of the Dijksta al-
gorithm, many improvements and variants of theA apply new cost functions,
with respect to step sampling or steering costs [45] [46]. i@ variants were de-
veloped based on the speci ¢ applications and there are: Haechical A , Hybrid
A , Diagonal A and Lifelong PlanningA [47]. In general, theA algorithm is
computationally e cient and it is suitable for applications in a static environ-
ment, the computational speed and e ciency of theA and its variants family
depends mainly on the de nition of the heuristic cost funcbn [23].
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The D algorithm stands for DynamicA and it is used to generate a collision-
free path with moving obstacles [23]. Th® Algorithm processes a state until
it is removed from the open list, and computes the state sequee along with
back pointers to either direct the robot to the goal or updateghe cost due to the
obstacles detected, then place the a ected states on the opkst [48]. The states
in the list are processed until the path cost from the currenstate to the goal is
less than a minimum threshold, changing the cost where thelrot continues to
follow the new sequence [49].

According to [49], theD Algorithm is over 200 times faster than an optimal
re-planner, and the main defect of th® Algorithm is its high memory consump-
tion when compared with otherD variants [50]. ThoseD variants improve the
computational time and overcome problems such that the robencounters com-
plicated obstacles [51]. Those common variants ar®. Lite, EnhancedD Lite
and Field D [52] [53].

Apart from the search-based path planning, there are other dgamic and on-
line algorithms. The RRT algorithm does not require a path tobe specied
upfront and it expands in all regions, assigns weight to eaatode then creates
a path from start to goal [23]. Its variants are able to cope wh non-holonomic
constraints and almost any wheeled system, depending on thetual applica-
tions [54] [55]. Genetic algorithms help to overcome the litations that discrete
path planning, such as grid-based and potential elds reque substantial Central
Processing Unit (CPU) performance and signi cant memory [23B6]. The ant
colony optimization algorithm is inspired by nature, and isbased on a heuristic
approach by the collective behavior of ants to nd the short&t and collision-free
path [23] [57]. The Fire y algorithm is an algorithm based on re y mating be-
havior, which is a promising swarm-intelligence-based algthm in order to solve
complex continuous and discrete optimization problems ipged by insects [23].

1.2.4 Sensors and Vision for Robotics

This section brie y covers the various sensors available mobotics applications.
An odometry is used in calculating position using the motionfoan object
such as a wheel encoder and is integrated over time and congzhto the initial
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position to determine the nal position of the robot [58]. The problem with this
method of determining the position of the robot is that erros can build up over
time, leading to a large error between the actual and measuargosition. Thus,
odometries are commonly used combined with other sensor8][5

Gyroscopic systems are inertial sensors that can be used @oulate orienta-
tion. Gyroscopes maintain their orientation based on the gyular momentum. As
the robot moves, the orientation of the gyroscope can be coargd to its original
orientation to determine the nal orientation [58].

Accelerometers are another form of inertial sensors that dsit acceleration
and can be used to calculate forces acting on a robot. Mecheadiaccelerometers
contain a spring-mass-damper system that measures the pimsi of the mass in
the system to calculate the experienced acceleration. Othaccelerometers such
as piezoelectric accelerometers generate a voltage whiéenlg applied a force on
a crystal [58].

The system that combines both sensors is called Inertial Meaement Units
(IMUs), which provide position and orientation data [58].

There are also other sensors that are commonly applied to iis to provide
position data. The Global Positioning System (GPS) uses rau signals from a
constellation of orbiting satellites to determine the posion of an object. The time
delay of radio communication among satellites can be used ¢alculate position.
GPS requires an unobstructed line of sight (LOS) of the orhitg satellites and
the accuracy depends on atmospheric conditions and overbematerials. GPS
signals can pass through plastic and glass but have troublagsing water and
many other materials. GPS is accurate within 1-2m which noraily dissatisfy
many applications [58].

In order to increase the sensing capability of the robots, sdnced sensors
are applied. One of the fundamental tasks for robotics nawagjon control is
range nding and identi cation [58]. Range sensors can be drentiated based
on whether they are passive or active. In general, an activersor emits energy
into the environment and measures the environment based ohe response [58]
[59].

Ultrasonic sensors or sonar sensors emit pulses of sound wames$ measure
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the time taken for the return. Since the speed of sound is known, the distance can
be calculated. In this way, multiple readings can be used to construct a map of
the environment surrounding the sensor [58]. The advantages of sonar sensors are
that they are low-cost, lightweight, low-power, computationally efficient, and can
be used in low-visibility environments. Disadvantages include poor directional
resolution, slow refresh rates, false readings on angled surfaces, and being less
robust than other vision sensors.

Laser range sensors allow robots to generate a 2D map of their surroundings.
The system measures the distance to a large number of points within the line of
sight and combines them into a map. There are mainly three types of laser range
sensors: triangulation, phase-modulation, and time-of-flight [58]. Time-of-flight
sensors are also called LiDAR sensors and measure the time it takes for a pulse
of light to be reflected.

Vision sensors rely on capturing images of the environment and objects to
extract information [59]. The optical image is captured through a lens project
on a Complementary Metal Oxide Semiconductor (CMOS) optoelectronic sensor,
which converts it into a digital signal. Vision sensors usually include monocular,

binocular, and Red Green Blue-Depth (RGB-D) cameras.

Figure 1.3. Raspberry Pi camera module 2 [60]
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Monocular cameras perceive and judge the surrounding eraiment through
at images taken by one camera, can only obtain 2D informatio and cannot
determine the depth. It relies on complex or computationaheavy algorithms for
ranging, requires a large amount of data and highly in uenakby the environment
and is less accurate [61]. The advantages of monocular caaseare low cost,
simple system structure and easy calibration and identi d@gon. Fig. 1.3 shows a
picture of a monocular camera.

The binocular camera mimics the human eye to achieve the peption of
obstacles' distance and size, which can directly obtain théepth information of
the scene without distinguishing the obstacle type by penfming parallax and
stereo matching calculations on two images [62]. The corpemding pixel can be
found based on the known camera parameters to calculate thepdh of the cor-
responding point. However, the con guration and calibratia are more complex
and computationally intensive. Fig. 1.4 shows a picture of aitoocular camera.

Figure 1.4. IMX219-83 stereo camera [63]

The RGB-D camera is di erent from the binocular camera that alculates
depth by using the parallax method, which measures the depihformation of each
pixel directly according to the structure light or time of y. Using this approach
can solve the problems of sensitivity to ambient light and geendence on image
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texture and improve matching robustness. RGB-D cameras calirectly perform

physical ranging but with a high power consumption. Becauséis sensitive to

light, translucent objects and re ecting interference, R®-D cameras are mainly
used in indoor applications [64].

1.3 Thesis Objectives and Contributions

This thesis applies a vision sensor on the multi-agent forrian control to achieve
the navigation in an unknown environment with obstacle avoiance. The pro-
posed approach is novel with few results available in the ditature. Although
the formation control problem has been studied in [65] and§§ the vision-aided
formation control problem has not been addressed extendivén the literature.

The objectives of this thesis are mainly focused on achiegiunknown envi-
ronment obstacle avoidance with a vision sensor on a MAS forthéy wheeled
mobile robots, using a ne formation control navigation. This is an extension of
previous work on using a monocular camera combined with CNNe tontrol a
MAS with a low cost [61]. In addition, this thesis also condustsome potential
applications on vision sensors.

The main contributions of this thesis are summarized as follvs

1. The thesis designed formation controllers based on a MAStlimobile
robots and tested the controller using simulations and expenents to verify
the e ectiveness of the formation.

2. The thesis applied the a ne formation controller with obgacle avoidance
using an advanced vision sensor to overcome the limitatiow$ regular Li-
DAR sensor, which provides a practical solution for the MAS nagation

and formation control.

3. Experimental results are demonstrated on a team of mobilebots in the

lab environment.
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1.4 Thesis Outline

This thesis outline is as follows. This chapter provided a geral research back-
ground and literature review of the research topics in thishesis, as well as the
thesis objectives. Chapter 2 introduces the hardware andfsgare used for simula-
tions and experiments in this thesis. Chapter 3 presents tfiandamental theories
required for this thesis and problem formulation. Chapter 4tudies a ne for-
mation controllers designed for MASs under di erent cases asisimulations and
results. Chapter 5 extended the simulations to real-worldxperiments with the
vision sensor applied to conducting various tasks. Chaptérsummarizes the main
results of this thesis and suggests areas for future reséarc



Chapter 2

Experimental Hardware and Software

This chapter introduces the general integration of a MAS, haware, and software
used for conducting the simulations and experiments in thithesis. To verify
the feasibility of the proposed algorithm, a vision-based e formation control
method is applied to four TurtleBot mobile robots to completenavigation and
obstacle avoidance tasks.

2.1 TurtleBot3 Mobile Robots

Three TurtleBot3 Burger robots and one TurtleBot3 Wa e robot from the Ad-
vanced Control and Mechatronics Lab at Dalhousie Universitgre used in exper-
iments described in Chapters 4 and 5.

(a) Burger

Figure 2.1. TurtleBot3 mobile robots [67]

The Burger robot shown in Fig. 2.1(a), is a two-wheel di erenal drive robot
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Figure 2.5. Jetson Nano developer kit [70]

In order to mount the Intel RealSense depth camera and the Jets Nano
board to the leader robot, the TurtleBot Wa e shown in Fig. 2.1(b) is modi ed
from a 2-layer to a 3-layer structure. The original LIDAR senar is kept on the top
although it is not being used for the experiments conductech iChapter 5. The
depth camera is rmly mounted via a 3D printed connector on te second level
pointing forward, and the Jetson Nano unit is mounted in-betwen the second
level and the top level on the back of the robot, as shown in Fig2.6. A new
power supply adaptor, an extra battery, and a solid-state dve are integrated to
improve the performance of the Jetson Nano.

Figure 2.6. Modied TurtleBot Wa e with Jetson Nano and Intel Re alSense
depth camera
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wherex, andy, represent the position inX and Y directions, denotes the robot
orientation, v and ! are the linear and angular velocities of the robot in the
global frame respectively. The positive direction o¥ is pointing to the front of
the robot and the positive direction of! is in counterclockwise based on the right
hand rule of yaw control. Assume the mobile robot only moves ithe 2D plane
and the wheels do not slip, the dynamic constraints can be igred. However,
the kinematic model in (3.1.1) is an under-actuated non-hoehomic system, the
kinematic constraints are not integrable over the center pat and there exist no
smooth static stabilizing controllers [75]. Thus, a low-lel control method is
needed to linearize (3.1.1).

3.2 Hand Position Model

Since the di erential-drive robot is a non-holonomic syst&, the formation control
on the mobile robots over the center point cannot be stabikl with continuous
static state feedback as suggested in [76]. To simplify thergroller design, Eq.
(3.1.1) has been linearized around a hand positiodm = [xy; yh] that lies at a
distance L away from the robot center pointr = [X,;y,] as shown in Fig. 3.1.
The experiment considers the problem of coordinating the hd positions of the
robots instead of their center positions, as this simpli eshe control problem
when the kinematics of the hand position are holonomic fdr 6 0. For non-
holonomic vehicles: all poses can be achieved in the con gtion space, but the
paths to reach them can be complex. Leti;y.i, ; andv;;w; denote the position,
orientation, linear and angular speeds of th&h robot respectively.

The hand position model can be expressed as

# " # " #
Xhi Xri COS

Li ; (3.2.1)
Yhi Yri sin

di erentiating (3.2.1) with time,

n # n ] # " #
Xni _ c?si Lisin i v : (3.2.2)
Yhi sin j Ljcos; Wi
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De ne the global control input velocity vector as

" # n #
Xhi Uyi
oo (3.2.3)
Yhi Uyi
then the relation of actual velocity and the control input beomes
" # n . #ll #
Vi _ COS.i SN Uyi : (3.2.4)
W, ﬁsm i ﬁcosi Uyi

which can be generalized in the frame of a linear state-spampiation x= Ax+Bu
with
n # n # n # n #

The kinematic model of the hand position is holonomic, meansonstraint
limits the motion of the system to a manifold of the con guraton space, depending
on the initial conditions. The formation controller in Chaper 4 will be developed
based on the hand position model.

3.3 Obstacle Avoidance

While a mobile robot performs navigation, the path is desigeto be e cient.
However, path planners need to know or detect the obstaclestime environment
so the generated path does not lead the robot to collide witthé obstacle. Many
methods and algorithms have been developed in past yearsliuaing the Arti cial
Potential Field (APF) algorithm which is applied in this thesis
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Also suppose the detected obstacle is akdys; Yobs), the repulsive forces can be

found as: 8
BF= (o
— obs r
Frep = 5 _ Yobs <. (3.3.4)
>Fy= (—)=
Yobs  Yr

The repulsive force increases inversely proportional to ¢hdistance between
the robot and the obstacle. Thus, the closer the robot is to # obstacle, the

greater the repulsive force generated by the obstacle.

The addition of the repulsive and attractive forces allowshdaining an angle
noted ¢ = atan(Fy;Fy). By a simple comparison of ¢ with the actual orienta-

tion of the robot, the angular velocity! is as

= ke(m ); <(wm )<: (3.3.5)

The values of , , andk, are chosen following various tests and simulations [79].

3.4 Control Objective

The control objective is to autonomously navigate a group ofmobile robots
through an unknown environment based on the vision sensor d¢fet leaders while
avoiding collisions with di erent sizes of obstacles maiaining a desired forma-
tion, adapting its formation according to the environmentand nally reaching a

designated goal point e ciently.

In this control objective, the MAS's primary goal is to navigée through an
unknown environment while maintaining a consensus formatn shape. If there
are obstacles in the unknown environment, the MAS should be lebto detect
them by using a vision sensor and avoid collision for all thegants. The control
algorithm should be designed to make real-time decisiongjjasting the robots'
formation shape or performing local avoidance to safely amdciently navigate to
the goal. The detailed formation control algorithm will be pesented in Chapter
4,









34

of pixels. For example, from Figs. 3.3-3.5, the bottom pixeland the margin
pixels on the side are not showing accurate readings and areigy. The noise
shows the distance information on the speci c pixel is missy so that it appears
to be blacked out on the depth image. Thus, ignoring those datpoints will

not in uence the performance of the camera. Each line of pileis analyzed
separately in order to measure obstacles at the same heigfthresholds are set
to avoid over-detecting the same obstacle.

In order to transfer the detected obstacle's coordinates tine MAS' frame of
reference, the pixel angle of the image was matched with thamera's Field of
View (FOV) angle to calculate the obstacle's pose. Consideras the number of
pixels on the width of the image, andm as the number of pixels on the height
of the image. FO\j; corresponds to the value of the angle of the horizontal FOV
of the camera and FOV, corresponds to the vertical FOV. The horizontal angle
corresponding to each pixel of value can be obtained:

2 01 FOV
S 02 H. (3.5.1)
2
where the vertical angle can be obtained:
_d .
=( m)FOV\,. (3.5.2)

The obtained angle is the detected obstacle in the local frame of the camera.
With the information on the direct read pixel distanced as shown in Fig. 3.6,
the 2D distanceD can be calculated as

D = dcos; (3.5.3)

then with the position of the leader, and the orientation , the obstacle position

in the global frame can be estimated by the following formula

8

< Xopbs = X; + Dcos( + )

. obs r S( ) (3.5.4)
" Yobs= Yr + Dsin( + ):
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3.6 Summary

In this chapter, key aspects that are critical to the algorihm have been compre-
hensively addressed. The discussion began with an explooatof the kinematics
of mobile robots, providing a foundational understanding aothe robot's motion
dynamics. In addition, the hand position model outlines itsigni cance in ma-
nipulating the mobile robot e ectively.

The section on the obstacle avoidance clari ed the challeag and strategies
associated with navigating the MAS in an unknown environmenias the desired
results from the control objectives and evaluating the prapsed control algorithm
at the same time.

Finally, the chapter concluded with an exploration of visioraided obstacle
detection, showing the visual data in enhancing the robot'perception capabil-
ities. This overview not only formulates the problem but als establishes the
groundwork for the proposed solution and conducts experimis to address these

challenges.



Chapter 4

Multi-Robot A ne Formation Control

In this Chapter, theories of the applied a ne formation control and simulation
studies are introduced. In [66], the proposed a ne formationcontrollers are
model-based with limited simulations and tests conductedn [17], the a ne for-
mation control has been studied on multiple quadcopters arsbme work has been
studied on multiple unicycle-modeled mobile robots as inQ8 In order to verify
the robustness of the a ne formation controllers proposedni [66], simulations
are essential to conduct before applying to experiments \wimodi ed controllers,
further modi cations are made to adapt speci c tasks.

4.1 Preliminaries

4.1.1 Graph Theory and A ne Span

Consider a team ofn robots in RY, whered 2 andn d+1. Let pj 2 R¢
be the ith agent's position andp = [py; po; psii:pn] 2 R be the corresponding
con guration, d can be considered as the dimension or the degree of freedom. |
this thesis, the MAS control problem is focused on mobile robthat can only
move in thex vy plane, therefored = 2. If the MAS control problem is applied
to aerial vehicles, thend = 3 [17].

A xed graph G=(V, E) describes the information ow inside the MAS, where
V=1;2;3:::n means the vertex set andE V V means the edge set. If the
ith agent accesses thgth agent's information, then it can be regarded as Edge
(i;j) 2 E. Inthe graph G, the neighbors of theth vertex are denoted byN;=fj 2
V : (i;j) 2 Eg. In this thesis, the underlying graphs are assumed as undited,
which means the edges are bidirectional, i.ei;{) 2 E implies (;i) 2 E. Thus
the undirected graph can be treated as a graph with a sequenafeordered edges
from Nodei; to ix. A graph has a directed spanning tree if it contains at least

36






The orientated incidence matrix is given as

Nodel Node2 Node3

2 3
E 1 1 0

H= g8 1 0 1 &
E 0 1 1

and the Laplacian matrix can be obtained as

2 3

. 2 1 1

L=§HTH=§ 1 2 12
1 1 2

4.1.3 Kronecker Product
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(4.1.2)

(4.1.3)

For two matrices, A 2 R™ ", B 2 RP 9, the kronecker product ofA and B is

denoted byA B with a result of amp nqg matrix, de ned as

2 3
a;nB  a;pB ainB
A _ aB  axB an B
am1 B am?2 B Amn B

The Kronecker product satis es the following calculation wles [82]:

(A B)!=At! B!
(A B)'=AT BT
(kA) B=A (kB)= k(A B)
(A+B) C=A C+B C
A (B C)=(A B) C
(A B)C D)=(AC) (BD);

(4.1.4)

wherek is a constant. The rst rule holds if and only if both matricesA and B

are invertible. The above properties will be frequently uskin this thesis.
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4.1.4 Stress Matrix

Consider a de ned formation as G; p), where G(V; E) is the associated graph and
the vertex i has the positionp,. De ne a constant vectorr=[rq;r,;rs:::ir,J2 R?"
as the nominal con guration. Then, the associated®;r) can be de ned as the
nominal formation. In the formation (G, p), all the edges ofG are assigned to a
set of scalarfw; 2 R :wj; = w;g;j)2e, can be positive, negative, or zero in a
stress matrix. A stress matrix satis es an equilibrium:

X

wi (g p)=0;i2V; (4.1.5)

2N
where the vectorw; (g pi) represents the force applied on Agerntby Agent |
through Edge (;j ). An attracting force is w; > 0 along Edge {j ), otherwise
a repelling force whenw;; < 0. Thus, Eqg. (4.1.5) means that the forces applied
on Agenti by neighboring agentsj 2 N; are balanced. Note the equilibrium
stresses can only be determined up to a scalar factor. The &baquation can be

expressed in a matrix form as:
(  la)p=0; (4.1.6)

where 2 R" " is the stress matrix, which satisfying

8
%O; i 6 j; (i) 2E;

T X!ij; i 6 J; () 2E; (4.1.7)
_E Wik; 1= ]

k2N ;
The stress matrix and graph Laplacian matrices have similatructures. The
di erence is that the stress matrix edge weights can be posie, negative, or zero,
while the graph Laplacian matrix edge weights are usually gaive [66]. The
stress matrix needs to be found ahead using the Linear Matrirequalities (LMI)
toolbox solver in MATLAB.
According to Eq. (4.1.6), denote = l4 for simplicity. Then the stress

matrix could be partitioned according to the partition of leaders and followers as
n #

= " (4.1.8)

fl ff
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Lemma 1: (Generic universal rigidity): Given an undirected graphG and a
generic con gurationp, formation G; pis universally rigid if and only if there exists
a stress matrix such that is positive semi-de nite andrank()= n d 1.

4.1.5 Target Formation

The time-varying con guration of the target formation has the form of
p()=[ln AM®Ir+1y bt); (4.1.9)

wherer is the constant con guration, and A(t) 2 RY ¢ and k(t) 2 RY are con-
tinuous of t [66]. The desired position of Agent 2 V in the target formation is
pi (1) = A(t)ri + b(t). With the notion of the target formation, the control prob-
lem to be solved in this thesis becomes controlling the growd agents to track
the time-varying target con guration so that p(t) ! p(t)ast!1 . A trivial
control strategy to solve this problem is to let each agent kaw A(t); b(t), and r;
so that each agent can track its individual reference trajéary. The disadvantage
of the strategy is that it requiresA(t); b(t) for all t to be speci ed in advance and
stored on each agent, which is impractical because the infioation is not able to
dynamically respond to unexpected situations such as unexqted obstacles [66].

In order to achieve the target formation in a distributed mamer, the leader-
follower strategy is adopted. The desired formation maneaxs are merely known
by a limited number of agents as leaders, and other agents afidwers which only
need to follow the motion of the leaders. The a ne transform#on of the entire
formation is achieved by controlling the positions of the kders. Because the num-
ber of leaders is small while testing the formation controhiv, no speci c design
coordination for the leaders and simply assume that leadease being controlled
properly. In experiments, the leaders will be controlled byigh-level navigation
and obstacle detection algorithms and other intelligent dgsion-making programs.
Suppose the position of each leader is equal to the desiredueain the target for-
mation, i.e. p(t) = p, (t) for all t. Then, the control objective becomes steering
the followers such thatps (t) ! p;(t)ast!1 . The tracking error can be de ned
as [66]:

p (=0 pO=pO+  ap () (4.1.10)
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for Fig. 4.2 is designed as

" # " #
0 1 2cosk
e 2(sin% + sinz) 2T 2sin 2 ;
" > # ° "H# " gﬁ
1+ 2cosk 1 1
rs = ) Mg = s =
2sin%- 0

Thus, according to the oriented incidence matrix introducgin Section. 4.1.2, the

incidence matrix for this formation is

2Nodel Node2 Node3 Node4 Node53

E. 1 1 0 0 0
E§ 1 0 1 0 0
E§ 1 0 0 1 0
H= Bg 1 0 0 0 1 (4.2.1)
E& O 1 1 0 0
E& O 0 1 0
E4 0 0 1 0 1
E O 0 0 1 1

The normalized equilibrium stress vector for edges;:::; g can be computed
in MATLAB as

I =[0:5283 05283 0:2018 0:2018 0:3265 03265 03265 02018]

and the corresponding stress matrix is
2 3
0:6530 0:5283 0:5283 02018 02018

0:5283 05283 03265  0:3265 0

= 0:5283 03265 05283 0 0:326%5 ; (4.2.2)
0:2018  0:3265 0 @265 0:201
0:2018 0 0:3265 0:2018 03265

which is the same as the results from [80] that uses the sameminal con guration

design.
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4.2.1 CASE |: Stationary Leaders

The rst case is the simplest case where the leaders are statary which means
the target formation is also stationary, i.e.p_= 0 for i 2 V,. The a ne formation
problem can be solved by the following control law[66]:

X
pL = Wij (p| B ); i 2 Vs (423)
j2N

The matrix-vector form of (4.2.3) for followers is:

B = ff P P = ff pr - (4.2.4)

If leader velocities are constantly zerap, (t) = 0, the tracking error , (t) under
the control law in Eqg. (4.2.3) converges to zero globally anelxponentially fast.
Substituting Eq. (4.2.4) into -, from Eq. (4.1.10):

» =M+ ap = ffopp ton P (4.2.5)

Sincep,_= 0, the tracking error |, is globally and exponentially stable when
¢ 1S non-singular[66]. If the leaders' velocities are not idacally zero, the
velocities can be viewed as disturbances of the system and @ause non-zero
tracking errors. However, since the control law is linear, thtracking error would
also be small. Because Eq. (4.2.4) can be rewritten ps=_ ¢ ,, it can be

viewed as a gradient-decent control law for the Lyapunov fation:

1
V = E ;:)rf ff  pf - (426)

By conducting the time derivative ofV and using Eq. (4.2.5),
L= Jf -

= Sf( #opf B

= gf( ff pf) 0} (4.2.7)

4.2.2 CASE I: Simulation Results

Two scenarios are conducted under Case |. First, assume alktheaders are in
the desired position and check whether the followers can aete the consensus.
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As shown in Fig. 4.3, three leaders stay stationary in the desil formation
as de ned in the nominal con guration, and the two followersstart outside of
the target formation. The simulation results demonstrate hat followers can nd
their consensus from the initial position to the nal positon and form the desired
target formation. To evaluate the performance of the contiter, since there are
two follower robots in this simulation, thel, norm of formation errors is de ned

as q

L= e+ e (4.2.8)

wheree, and es is the absolute distance error between the actual positiomw the
desired position of Robot 4 and Robot 5. Thé, norm will be used to evaluate
all other controllers in this chapter. Thel, norm error reduces to zero within 50s
as shown in Fig. 4.4. The control pro le for both followers in his case is shown
in Fig. 4.5.

0.8

Profile(m/s)

Control

04 Follower R4 x velocity

== ollower R4 y velocity
-0.6 s F0llOWer R5 X VeloCity
=== Follower R5 y velocity

_08 1 1 1 1
0 10 20 30 40 50

Figure 4.5. Case 1-Scenario 1: Followers' control pro les

For the second scenario, the leaders stay in an arbitrary gsn which forms
an imperfect pentagon shape from the nominal con guration; = [4;2];r, =
[2;2],r3 = [4;0], as shown in Fig. 4.6. The simulation shows the followersear
able to join the leaders under the control law in Eq. (4.2.3)a form the real-time

formation.
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Profile(m/s)

Control

Follower R4 x velocity .
= [0llower R4 y velocity
= [-0llower R5 X velocity g
= [-0llower R5 y velocity

-1 I I I I
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Figure 4.8. Case 1-Scenario 2: Followers' control pro les

Because the leaders' position is not symmetrical comparedthvthe rst sce-
nario, the I, norm starts at a larger value as both followers' initial posions are
further from the desired position compared with Scenario However, the control
law in Eq. (4.2.3) still be able to track the error to zero witlin 50s and result in

stable control e orts, as shown in Figs. 4.7-4.8.

4.2.3 CASE IllI: Leaders with Constant Velocity Motion

The second case allows leaders to move with constant nonzeelocities, the
control law in Eq. (4.2.3) is not able to guarantee zero tradkg errors. Therefore,
an additional integral term is added, as proposed in the falving proportional-
integral (PI) control law [66]:
X Z1x
u=p = wi (P B) wi(p( ) p()d;i 2Ve; (429)

j2N | 0 jon;

where and are positive constant control gains. The control law in Eq.4.2.9)
does not require additional measurements compared to Eq..Z4). By de ning
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a new state for the integral term, the control law Eq. (4.2.9tan be rewritten as:

X
L= wi (B B) i
i 2N
X _ (4.2.10)
+= Wij (p| pj); | 2Vf:

J2N
The matrix-vector form of (4.2.10) is :
Pt = ff Pr fl P ;

— # Pt ab:
In this case, the leaders' velocitieg, (t) are constant, then the tracking er-

(4.2.11)

ror , (t) under the action of control law (4.2.9) converges to zeroajlally and
exponentially.
Substituting the control law (4.2.10) into the error dynames (4.1.10) gives

D VY o}
= P fl By ool
= ff pf + ffl f1 B (4.2.12)
which can be vy,ritte# as, T 1 #
‘Pi - ) ff 'Od”f L ffo " (4.2.13)

Suppose is the eigenvalue of the state matrix in (4.2.10), according [83],
it can be gbtained as

det( " )= det %I + i+ g
ff

2

= det((  + ) + ) =0: (4.2.14)

+
Suppose is the eigenvalue of ¢ . Since ¢ is symmetric positive de nite,
> 0. According to Eg. (4.2.14), the results shows that

2

= _ < O’ or - = . (4215)
As a result, the error dynamics is stable and the steady statatss es [66],
" #" # " #
| 1 !
ff dn pf( ) + f fl F_)L - 0; (4.2.16)
ft 0 (1) 0

which follows that , (1 ) =0.
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4.2.4 CASE Il: Simulation Results

When all agents start at the desired target formation, a conant leader velocity

is applied as 8
<x, =01
_ (4.2.17)
"y, =01
4r ~ = /V\Final
\
3 L -
2 L 4
1 1
=
0 L 4
1t J
[0 LeaderR1
2L Leader R2 |
# Leader R3
O Follower R4
3t %  Follower R5 |
0 1 2 4 5 6

z(m)

Figure 4.9. Case 2-Scenario 1: Leader with constant velocitipllowers in initial
desired formation, =10, =1:5)

As shown in Fig. 4.9, when all robots are in the desired formatp and the
leaders are moving with constant velocities, the followersan maintain target
formation under the control law in Eq. (4.2.9).
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Figure 4.10. Case 2-Scenario 1; norm of the formation error

The |, norm can be tracked to zero within 10s as shown in Fig. 4.10.
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Figure 4.11. Case 2-Scenario 1: Followers' control pro les

Since the leaders' velocities are de ned as Eq. (4.2.17)etleontrol law in Eq.
(4.2.9) is able to track followers' velocities to Am=s, as shown in Fig. 4.9. Two
followers track leaders' velocities while maintaining théormation successfully.
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y(m)

Leader R1
Leader R2
Leader R3
Follower R4
Follower R5
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t o] o u]

Figure 4.12. Case 2-Scenario 2: Leader with constant velgc(the followers are
not in their initial desired formation, =10, =1:5)

Another scenario to verify the control law would be to let fobbwers starts
outside of the target formation, starting atr, =[ 1;1],;rs =[ 1; 1] shown in
Fig. 4.12.

Although, from the simulation results, the followers are algl to join with the
moving leaders in an approaching style and stay in the targdbrmation, the
path or the velocity control is not feasible. As shown in Fig. 42, the followers'
movement become wiggling while moving along with the teamhews that the
initial velocity input for followers while joining the formation makes the control
law in Eq. (4.2.9) not stable. As in Eq. (4.2.9), the two constats = 10 and

= 1:5 are applied to Scenario 1, which is not optimized for Scemar2 to lower
the disturbances caused by the followers' initial velociis when joined the target
formation. However, nding the best control gain or optimizng the PI controller
is not in the scope of the simulations. Thus, an extra contrgain term or another
control gain could be applied to improve the performance. A$is scenario would
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not be applicable in this thesis, further optimization is nbdiscussed.

4.2.5 CASE llI: Leaders with Time-varying Velocity Motion

As in real-life applications, the leader velocities cannotébconstant all the time.
When the leader velocities are time-varying, the Pl control l& in Eq. (4.2.9) is
not able to ensure zero tracking errors. In order to solve thitime-varying case,
the following control law that requires the velocity feedbek is proposed based on
[66] with a gain term Q introduced as the formation control novelty to improve
the performance as the previous case did poorly on the velyatontrol:
QX _
= —  wil(p p) B2V, (4.2.18)
jaN;

where ;| = P i2n; Wi - The non-singularity of ; is guaranteed by the ane
localizability. Based on the previous de nition on the fornation stress matrices,

i =[] i, and all ¢ is positive de nite because all the diagonal entries are
positive, ; > 0 for alli 2 V5.

Thus, if the leader velocity p(t) is time-varying and continuous, then the
tracking error , (t) under the action of control law in Eq. (4.2.18) converges to
zero globally and exponentially fast. Multiplying ; on both sides of Eq. (4.2.18)
and omit the constant term Q:

X X .
wi( B)= wi (B P 2 Vi (4.2.19)
J2Nj j2N;

Now denote j =,y Wi (B Pj), EQ. (4.2.19) can be written as; =,
which shows that ; converges to zero globally and exponentially fast. If =0
forall i 2V, then ¢ p np =0, whichmeans ¢ , =0) o, =0.
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4.2.6 CASE Ill: Simulation Results

This case is conducted in two scenarios to test the contralle Eq. (4.2.18). The

rst scenario is a simple case for time-varying leader velbies that is de ned by

8
< Xy, = 0:1cot=200)

* yy, = 0:1sin(t=200)

(4.2.20)

which allows the leaders to steer in a curvature path within &hort period of
time (100s). The followers start in the same position as in Ga 2-Scenario 2 with
an o set from the nominal con guration. The simulation resut is shown in Fig.

4.13.

Leader R1
Leader R2
Leader R3
Follower R4
Follower R5 ||

xO+0O

0 2 4 6

Figure 4.13. Case 3-Scenario 1: Simulation result of timeryang leader velocities

The two followers under the control law in Eq. (4.2.18) can #ack leaders'
velocities while joining and maintaining the desired pengon formation.
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Figure 4.14. Case 3-Scenario 1; norm of the formation error

Although the follower robots do not initially stay in the target formation, they
can track their position error to zero using about 12s, as sia in Fig. 4.14.

l T T
= Follower R4 x velocity error
== [-0llower R4 y velocity error
0.8 f 1
o
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~ 0.6 1
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= 04 F i
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0 —em—
0 50 100 150 200
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Figure 4.15. Case 3-Scenario 1: Simulation result of Robot dntrol error

Since the leaders' velocities are de ned as in Eq. (4.2.2Ghe control law
in Eq. (4.2.18) is able to track the control e ort and resultsin zero velocity
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di erence in both x and y directions.
In addition, changing the target formation in order to overome di erent en-
vironments, another scenario of scaling is conducted. As stin Fig. 4.16.
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Figure 4.16. Case 3-Scenario 2: Simulation result of the foation change

4.3 Summary

In conclusion, the proposed and designed controllers thrglu simulations have
con rmed the e ectiveness of control strategies in achiemg the desired forma-
tion control of MAS. The simulation results have provided comelling evidence
that the controllers not only meet the speci ed performanceéut also adapted
to di erent navigation scenarios with reliability and robugness. As the ane

formation controller in Eq. (4.2.18) is feasible to apply om real-world MAS, ex-
periments of combining obstacle detection and avoidancetiwiformation control

are ready to be performed.
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not true for real-world applications. Thus, virtual leades are designed to achieve
the formation decisions and Robot 2 and Robot 3 become follexg as they are
tracking the positions of virtual Leader 2 and virtual Leade 3 with obstacle
avoidance. Table. 5.1 shows the nominal con guratiofir;g>; .

Table 5.1. Diamond shape formation con guration

Agent X y
Robot 1 0 0.5
Robot 2 -0.5 0
Robot 3 0.5 0
Robot 4 0 -0.5

As in the con guration shown in Fig. 5.1, Edge&;; ::; Es de ne the nodes being
neighbors with each other. The incidence matrixd 2 R® 4 for this formation is

Orobotl robot2 robot3 robot41

E_ 1 1 0 0
EE 1 0 1 0
H= Bg O 1 1 0 & (5.0.2)
EE 1 0 0 1
B O 1 0 1
E O 0 1 1

where \ 1" means the robot is sending information on the edge, \1" dextes the
robot is receiving information on the edge and \0" means theobot is not on this
edge. Using the LMI solvers toolbox in MATLAB [84], the normalied equilibrium
stress vector for edges can be computed based on the nomiral guration and

the corresponding stress matrix is

2 3
0 0:4083 0:4083 04083
04083 0 04083  0:408

= : (5.0.2)
0:4083 04083 0 0:408

0:4083  0:4083 0:4083 0

During the experiments, the virtual leaders are commanded tstay behind
the leader robot based on the con guration in Table. 5.1, to mintain a rigid
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Figure 5.7. Experimental task 2: Narrow gap passing experimahresults

In Fig. 5.7, follower Robot 4 adapted both con gurations wellithout running
out of formation. In Fig. 5.6, the robots are not perfectly stging in the formation
because of the error between the actual encoder with the ROSessages. The
reasons could be the motor performance and/or wheels' frigh di erence. Since
the controller was running on the ROS data, Fig. 5.7 demonsti@s the proposed
algorithm functions as expected. The video of Task | and Task are shown as
in the video of the experiment: https://youtu.be/it113p-n ODU.

5.3 TASK lll: Leader Obstacle Avoidance

The third task mainly focused on the obstacle avoidance padf the algorithm.
In this task, three scenarios are set up for the leader robob tperform obstacle
avoidance. The rst scenario is to set two regular boxes in ghenvironment to
test the feasibility of the proposed algorithm. The snapsh® of the experiment
result are shown in Fig. 5.8.
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Figure 5.9. Experimental task 3-scenario 1: Two obstaclestdetion and avoid-
ance

Robot 1 with the depth camera is able to detect multiple obstes in the
unknown environment and apply the algorithm proposed in Fig.5.2 to avoid
both obstacles with the APF, resulting in a smooth path from thestart point to
the goal point.

However, it is worth mentioning that no external position fedback of state
during all the experiments. The leaders' pose deviates frothe calculated state
due to hardware error and human error from the beginning, wtl accumulates
through the experiments. As the robots' actual position is rtoaligned with the
shared states, the detected obstacles' position could beifstd from its actual
position, causing collisions for other robots. For this thes experiment, thresholds
are assigned to estimated obstacles' positions to competesarhe deviation could
be seen in both task 1 and 2 experimental results.

The second scenario is to set a low-pro le box that is signiantly shorter than
the robot in the environment. The snapshots of the experimemesult are shown
in Fig. 5.10. From Fig. 5.11, the robot is able to detect the loyro le box as an
obstacle and avoid it using the proposed algorithm.
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The third scenario is to set an overhead obstacle such as akles the path
of the robot. The snapshots of the experiment result are shawn Fig. 5.12.
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Figure 5.13. Experimental task 3-scenario 3: Overhead obsla detection and
avoidance

From Fig. 5.13, the robot is able to detect the desk overhead as obstacle
and avoid it using the proposed algorithm. Note the robot toola di erent path
than Scenario 1 and Scenario 2, which shows the proposed abtt avoidance
algorithm is able to navigate through most environments.

5.4 TASK IV: A ne Formation Obstacle Avoidance

After both a ne formation control and the depth camera obstade detection ex-
periments are successful, the last task is to deliver bothrations for the MAS.
In this task, Robots 1, 2, and 3 are applying the APF avoidancelgorithm be-
cause they are playing the leader role although Robot 2 and Rat 3 only chasing
the virtual leaders' position. Robot 4 is only under the a ne formation control
because of the lack of information and ability to sense the @wronment.
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Figure 5.15. Experimental task 4: Obstacle avoidance with ane formation con-
trol

From Fig. 5.15, Robot 4 maintains the formation while other rbots know how
to avoid the obstacle detected by the depth camera. The forman is distorted at
the end of the navigation because the leader detects the cairt on the edge of the
testing area, applying a repulsive force from the APF algotitms and providing a
pushing signal against the moving directions of Robot 2 anddRot 3.

5.5 Summary

In this chapter, the core experimental tasks focused on gopbint navigation,
maneuvering through con ned paths, obstacle sensing andasion, as well as
maintaining precise formation using a ne formation contrd techniques. The
proposed algorithm proved its capability to accurately gule the robots to prede-
termined targets. In the challenging task of navigating though narrow gaps, the
algorithm demonstrated adaptability by successfully adjsting the formation to
pass through without collisions. This aspect of the experiemtation highlighted
the exibility and spatial awareness integrated into the rdoot team.
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When confronted with unexpected obstacles, the algorithm eciently pro-
cessed environmental data to dynamically steer the robotsvay from potential
impacts, ensuring safe traversal and consistent formatiantegrity. This feature
was particularly indicative of the robustness of the obstéde detection and avoid-
ance mechanism programmed within the algorithm.

Additionally, the robots’ performance in maintaining the damond shape showed
a high level of precision in position control, which is critial for operations that
demand strict adherence to formation shapes.

In summary, the extensive experimental results not only valate the e cacy
of the proposed algorithm in achieving the required tasks balso demonstrate
its potential for practical usage in various real-world aplcations that necessitate
autonomous coordinated robot teams.



Chapter 6

Conclusions and Future Research

This chapter provides a summary of the work presented in thikesis and proposes
potential research areas that expand upon the concept of s-aided for MASs
formation control.

6.1 Conclusions

The rst part of this thesis introduces the idea of the MAS formaon problem
and introduces the design and development of an advancedehigent formation
controller employing an a ne formation controller. The improved formation con-
troller is veri ed through a simulation environment and redworld experiments.

The second area of the study concentrates on the establishmef an innova-
tive obstacle avoidance strategy using a depth camera. Thaategy is centered
on the application of a ne formation shift and the APF algorithm. This enables
the MAS to not just detect the obstacles in an unknown environent, but also
make decisions based on the types of obstacles. The use of gtlieamera over-
comes the disadvantage of traditional range sensors, whigfovide more accurate
data while maintaining a lower cost.

In conclusion, this thesis presented a practical and e este application for
MAS navigation and formation control based on a depth cameral'he proposed
avoidance controller successfully guides robots to reachetr goal point while
navigating in an unknown environment. The vision-aided nagation with a ne
formation control can be extended to any type and number of nbde robots with
one leader equipped with the depth camera, it is an advancegstem showcasing
its potential for enhancing the capabilities of MASs in varios applications.
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6.2 Future Work

In the future, di erent formation control methods are requred for MASSs to per-
form even more changeling tasks, such as scaling formatiarratating formation.
More followers could be included showcasing the advantageane formation
controller being centralized controlled. Motion captureystems could also be ap-
plied to perform an external calibration for the robots' stées. Further parameters
could be detailed and tuned to improve performances. Sinceet system applied
a depth camera, other advanced image processes could be aldbd in order to
gain extra information, for example, using the You Only LookOnce (YOLO)
algorithm to detect certain objects and allow the leader to @ke mature forma-
tion strategies. Machine learning could also be used to helpe decision-making
progress whether online or o ine obstacle detection. The gbctive of future re-
search is to propose a novel method for MAS to complete chalggng tasks in a
dynamic environment with other moving mobile robots or movig humans.
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