MOBILE ROBOT PATH PLAN NING USING
GENETIC ALGORITHM GLOBAL PAT H
PLANNING AND POTENTIAL FIELD PATH
ADJUSTING

by

AbdelRahman Mahmoud Eliwa

Submitted in partial fulfilment of the
requirements for the degree of
Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia
April 2017

© AbdelRahmairkliwa, 2017

To my Mother Ola and my Father Mahmoud

TABLE OF CONTENTS

LIST OF TABLES. ... e em e eee e e e Vi
LIST OF FIGURESottt e e e e eme e e viii
AB ST RAC T et Xii
LIST OF ABBREVIATIONS USED.........oiiiiie e Xiii
ACKNOWLEDGMENTS e e e e e e eenes Xiv
CHAPTER 1 INTRODUCTION ...ttt eeee et ne e 1
11 INTRODUGCTION. ... itttiiieeee ettt et e e e e e s e nibbbe e e e e e e e e s ame s 1
1.2 BACKGROUND......cciiiiiiitiiiiie ettt e bt e e e e e s e abb e e enese e 1
1.3 THESIS MOTIVATION. ..ottt ettt rme et e e e e e e e 2
1.4 THESIS OUTLINE.......cutiiiiiiiiiiiiei ettt eer e e e e e e ame s 5
CHAPTER 2 OVERVIEW ON MOBILE ROBOTICS AND PATH PLANNING....... 6
2.1 INTRODUGCTION. ...ttt e e ettt ene et e e e e s e e e e e e e ame s 6
2.2 OVERVIEW ON GLOBATH PLANNING AND REED WORKS............cccvvvveeeee. 6
2.3 EVALUATION CRITERIOMN.cttiiiiiiiiiiiii ettt 7
2.3.1 Evaluation Criterion-IObstacle AVOIdanCe.............oooouviiiiiiiiniiiiiiieee e 7
2.3.2 Evaluation Criterion-Path Length.............cooooiiiii e 7
2.3.3 Evaluation Criterion-3AlIgorithmEffiCIENCY.........ooiiiiiiiiiii e 8

CHAPTER 3 OVERVIEW ON GLOBAL PATH PLANNING USING GENETIC ALGORITHM

3.1 INTRODUGCTION.cuiiiiiiiiiiiiiiiiiiiiimr e e e e 10
3.2 BIOLOGICAL EXAMPBLE.... ..o 10
3.3 OVERVIEW ON GENETIC ALGORITHM.......ovtiiiiiiiiiiiimeeeeeeeeeeeeeeeee e 11
3.3.1 GenetiC Operator: CrOSSOVEL.......ciiii i ceeeeeeeeieeeeeeeeeeeeeeeeeeeeeeaeaaaaaaaaaaaaaaaaaaaeens 12
3.3.1.1 SINQGIE POINE CrOSSOVEL....ccciiutiiiieiiiiiiiae sttt e e sttt e s sibbee e e s s s e e s e snbbee e e e enbeeas 12
3.3.1.2 TWOPOINT CrOSSOVEN.......eiiiiiiiiiiiie ittt 14
3.3.1.3 Scattered CrOSSOVEL...........cocuiiiiiiiiiiiii i s 14
3.3.2 Genetic Operator: MULALIONcooiiiiiiiiee e 15
3.4 PATH PLANNING GA ... ettt 17

3.4.1 Advantages of Using GA for Path Planning............cccccooeimimiriiiiniiiiiiieeeees 17

3.4.2 Disadvantages of Using GA for Path Planning.............cccccccevviiiiiienceennnnnne. 17
Chapter 4 Experimental Setup AND Algorithm Development.......................... 21
4.1 INTRODUCGCTION. ...ttt e rer et e e e e e e e e eeas 21
4.2 GLOBAL PATH PLANNER: EMPTY.MAR. ..ot 21
4.3 GLOBAL PATH PLANNER: STATIC.MAP. ... 22
4.4 GA PATH PLANNER: NUMBER OF TURNING POINTS.......ccccoiiiiiiiiiiiee 23
4.5 ROBOT CONTROLLER IMPLEMENTATION. ..., 24
4.6 MULTIPLE ROBOT IMPLEMENTATION......ccutiiiiiiiiie e 25
4.7 POTENTIAL FIELD PATH ADJUSTOR..... oo 25
4.8 LEADER ASSIGNMENT FEATURE ... 27
4.9 DYNAMIC OBSTACLE IMPLEMENTATION ..ot 28
Chapter 5 Experimental Data and ReSULLS...............ovvviiiiiiiiiniieeee 31
51 GA TEST: EMPTY MAR. ...ttt e e e e 31
5.2 GA TEST: STATIC MAPR.L...ooii e 32
5.3 GA CROSSOVER TESTING. ...ttt ettt etmeat e e ani e 33
54 ROBOT CONTROLLER IMPLEMENTATIQN......c.ciiiii e 34
55 COMPARING GA TO AC . e et eer e e aa s 36
5.6 MULTIPLE ROBOT IMPLEMENTATIOQN.ccoviiiiiei e 41
57 POTENTIAL FIELD IMPLEMENTATION. ..ot 42
5.8 DYNAMIC OBSTACLE IMPLEMENTATION......coiiiii e 43
5.9 DYNAMIC OBSTACLE HANDLING. ...t een e 45
5.10 EVALUATING NUMBER OF TURNS. ..o eme e 46
5.11 POTENTIAL FIELD ADJUSTOR . TEST ...ttt eme e 51
512 LEADER ASSIGNMENT TEST ... eer e e 53
5.13 FULL ALGORITHM IMPLEMENTATION. ..ot e 60
Chapter 6 Conclusion and Future WOrKS...........ccovvvveiiiiiiis i eee e 63
6.1 CONCLUSIQN... .ottt e e et mr s e e e eae e e e eatn s e e eesamneernaeeeeed 63
6.2 FUTURE WORKS ...ttt e e e e e e e e e et e e e e e e eameeanaees 66
6.3 CONTRIBUTION. ...ttt e e e e me et e e e e et e e e e e ea e eeameeanneaes 67

(2]] ToTe =1 o])2 68

AppendixX A FIOWCHAIt FIQUIES............uiiiiiiiiiiiiiiiiee e 70
ApPeNdiX BC MaP FIQUIES.......uuuiii ettt eema e e e e e e e e e 73
Appendix CGGenetic AlGOrithm Data..............uveeiiiiiiiiiii e 75
ApPENdiX D: COAE SCIRL.. ... e e e e e e e e e 79

LIST OF TABLES

Table 1:Outputted Path for Test Scenario: Empty Map, Single Robot........................ 32
Table 2:0Outputted Path for Test Scenario: Static Map 1, Single Robot...................... 33
Table 3:Total path Lengths attained through each crossover type..........ccccceeevieeeeennn. 34

Table 4:Outputted Path for Test Scenario: Static Map 1, Single Robot.
Path Mapped by GA and Path Followed by Robot Controller....................ccoeeeeeee. 35

Table 5:Shows the results [7] attaimefrom using the ACO algorithms........................ 39

Table6! f 32NAGKYQa tFGK 580GlAf.4..6A0K. . SELBNKYSY

Table 7:ACO [7] Algorithms Path DetailS..............uuuuiriieiiimiiiiiiiiissss e 40
Table 8:Outputted Path Details for Test Scenario: Static Map 1, 3 Rabats................ 42
Table 9:0utputted Paths for Each of the Dynamic Obstacles.............ccccccceeeiiiiiinns 44
Table 10:Shows data collected from different dodging strategies.............ccccccceee....... 45

Table 11:Outputted Paths fo Turning Point Experiment, 3 Robots, Static Map.1........ 47
Table 12:0Outputted Path for Turning Point Experiment, 3 Robots, Static Map 2.......: 47

Table 13 Outputted Path for Potential Path Adjustments Experiment:

Static Map 1, 2 RODOLS.ccoiiii i —————— 52
Table 14 Outputted Path for Potential Path Adjustments Experiment:

Static Map 2, 2 RODOLS.cooiiiii e ———— 52
Table 15 0Outputted Path for Leader Assignment ExperiméfitA Settings.................... 54
Table 16:Outputted Path for Leader Assignment Experim@&RS Settings.................... 55
Table 17:Outputted Path for Leader Assignment Experim@&RLA Settings.................. 56
Table 18:Outputted Path for Leader Assignment Experimé&ifG Settings.................... 57
Table 19Outputted Path for Leader Assignment Experim&iiG Settings.................... 58

Vi

Table 20:Shows data collected from 3 Robot Experiment
shown visually iN fIQUIE 3.........ooooiiiiiiiiieeeeeeeeeeeeee e 62

Table 21 Table below shows the Testing data for the
SinglePoint Crossover Genetic Algorithm Testing............cooovvviiiiieeiieeeieeeeeeevvveneens 75

Table 22 Table below shows the Testing data for the
Two-Point Crossover Genetic Algorithm TeSHNG........vvvvvvviieiieiiiiii e 76

Table 23 Table below shows the Testing data for the
Scattered Qrssover Genetic Algorithm TeSHNGcccvviiiiiiiieeee e 77

vii

LIST OF FIGURES

Figure 1:Outputted Mapped Path for Test Scenario: Empty Map, Single Rahat........ 32
Figure 20utputted Mapped Path for Test Scenario: Static Map 1, SingletRaha........ 33

Figure 3:Outputted Mapped Path for Test Scenario:
Static Map 1, Single Robot. Robot Controller path shown on the right figure............. 35

Figure 4:A screenshot from [7] taken corresponding to Experiment 2
shown in Table 9. Screenshot shows planned paths using SACO (ACS)
=T Lo [@I S 1 AN [o T 11 PP 37

Figure 5A screenshot from [7] taken corresponding to Experiment 3
shown in Table 5. Screenshot shows planned paths using SACO (ACS)
and ACEMH AIQOITtNMS......coi e 37

Figure 6:Experimental Data showing the optimal path in a similar
map to Figure 4. 5 GEN with 1 TP was used on the left, while 5 GEN
with 1 TP was used 0N the MgNL.........oooo e 38

Figure 7:Experimental Data showing the optimal path in a similar map
to Figure 4. 50 GEN with TP was used on the left, while 50 GEN with 1 TP
WAS USEA ON the MM ... e e e e e 38

Figure 8. Experimental Data showing the optimal path in a similar map
to Figure 5. 5 GEN with 1 TP was used on the left, while 5 GEN with 1 TP
was used oNthe right..........cooooi e ————— 38

Figure 9 Experimental Data showing the optimal path in a similar map to
Figure 5. 50 GEN with 1 TP was used on the left, while 50 GEN with 1 TP
was used OMhe FgNt.........cooooiii e ————— 39

Figure 10A bar graph showing the visual representation of the compared
data from both own algorithms and the algorithms from the ACQ.[Z].........c.c.cc.c.... 40

Figure 11 Outputted Mapped Path for Test Scenario: Static Map 1, 3 Robots.
Robot Controller paths shown on the right figure............cooeiiii i, 41

Figure 12Shows an example of how a robot would respond to another
robot when on course for COIlISION. i e e 42

viii

Figure 13O0utputted Mapped Path for Potential Path Adjustments

Experiment: Static Map 1, 2 RODOLS.........coooveeiiiiiiee,

Figure 14O0utputted Mapped Path for Potential Path Adjustments

Experiment: Static Map 2, 2 RODOLS..........ccoooeviiiiiiee,

Figure 15Shows an example of how robot 1 could be set up to

adjustits planned path in response to a dynamic obstacle...............ccccccvunnnnnnns

Figure 16Path for Dynamic Obstacles. Figure on the left shows
the paths planned for the dynamic obstacl&sgure on the right

shows the obstacle controller paths.............ccevi

Figure 17Three cases shown. Robot 1 is set up a path from point A

to B, while varying the numbef turning points.............ooocciiiiiii i

Figure 18Outputted Mapped Path for the turning Point Experiment.
Incremental Turning Points. Map Reference Corresponds to data in

.......... 43

.......... 43

e 44

.......... 44

table 11. 10 Generations(left) and 50 Generations (right). Static Map.1...................48

Figure 190utputted Mapped Path for the turning Point Experiment.
Pre-set minimum.Map Reference Corresponds to data in

table 11. 10 Generations(left) and 50 Generations (right). Static Map.1..........

Figure 200utputted Mapped Path for the turng Point Experiment.
Presset Maximum Turning Points. Map Reference Corresponds to data

in table 11. 10 GEN(left) and 50 GEN (right). Static Map.l.........c..ccccccvvvvvnnnnns

Figure 21 Outputted Mapped Path for TP Experiment.
Incremental Turning Points. Map Reference Corresponds

.......... 49

e 49

to data in table 1210 GEN(left) and 50 GEN (right). Static Map.2...........ccccceeeeeieennnn. 50

Figure 220utputted Mapped Path for TP Experiment.
Presset minimum Turning Points. Map Reference Corresponds

to data in table 1210 GEN(left) and 50 GEN (right). Static Map.2.............ccccvvvvunnnnnn. 50

Figure 230utputted Mapped Path for TP Experiment.
Presset maximum Turning Points. Map Reference Corresponds

to data in table 1210 GEN(left) and 50 GEN (right). Static Map.2.............ccccuvveveee.. 50

Figure 24Mapped Pathdr Leader Assignment Experiment

NLA Settings. Figure on the right is a magnified versian.................cccoeeennneee.

Figure 25Mapped Path fo Leader Assignment Experiment
SRS Settings. Figure on the right is a magnified version..................cccccee, 55

Figure 26 Mapped Path for Leader Assignment Experim&RLA Settings
Figure on the right is @ magnified VErSION.............uvueimiiiiicciiee e e e e 56

Figure 27Mapped Path for Leader AgeimentExperiment CTG Settings
Figure on the right is @ magnified VErSION.............uuueeiiiiiiieciiee e e 57

Figure 28Mapped Path for Leader Agaiment ExperimentFTG Settings

Figure 30Figure shows the planned path output for 3 robots.
The respective robot controllers are shown in Figure.31...........ccoooviiiiiiiiiiiieeeeennnne 61

Figure 31path data with the full algorithm implementation.
3 Robots were implemented. 3 Dynamic obstacles were present.

Figure on the right shows a magnified version of clustered area..............cccccceeeeeennnn 62
Figure 32Flowchart figure for the setup of the GA path planner...................cceeeen.... 70
Figure 33Flowchart figure for GA path planner and robot contraller.......................... 70

Figure 34Flowchart figure for parallel GA setup for multiple
rObOt €XPENMENTAl SAIP.......evviiiiiiiiiiii e e e e e e e e e e e e e e e e e e aeeeaeeeeeeeeeeeeeenes 71

Figure 35Flowchart figure for single multipurpose GA for multi
robot eXPerimeNntal SEIUR.........uvuiieiieiii eeeaees 72

Figure 36 Flowchart figure used for the incrementing turning

POINES EXPEIMENL.uuieiiiieeiie e e e e e e eee e e e e e e e e e e e e e e e e e eeaeeaaeeeaeeeeeeeeeeeeeeeeseesssssssssnsssssssss d 2
Figure 37Howchart figure for the coded SCriptS SEtUR........vcviiiiiiiiiiiiiinee e, 12
Figure 38Empty Map (Size€: L00XL00).....cccceeeiiiiiiiiiiiiieeeeeeeeeeessiiiiieeeeeeee e e e e e snneeeen d 3
Figure 3950X50 StatiC MaAP L........uuriiiiiiiiieeeii it a e e e e e e e 74
FIQUIre 40StatiC IMAP 2....cooiiiiiiiiiiiie ettt e s e e e e e e e e 74

Figure 41shows the planned path using the GA
(SinglePoint Cross Over) for 5 generations..............ouvvvvvveiieeeeeeeeeeeeeeeeeeeeeeeeeeeennnnnnnnnnes 76

Figure 42shows the planned path using the GA
(SinglePoint Cross Over) for 50 generatiQns...............coevvvveeeeevvevvevvveeinieennnesnnsnnnnnnenn £ 0

Figure 43shows the planned path using the GA
(Two-Point Cross Qar) for 5 genNeratioNS..........ueeeeeiiiiieiisier e ee e e e e e e e e e e e e e e aeeaaaaaaeeaes 77

Figure 44shows the planned path using the GA
(Two-Point Cross Over) for 50 generations............oovvviiiiieiiieeieeeiieeeeeeeeeeeeeeeeeeeerreenaneees 77
Figure 45shows the planned path using the GA

(Scattered Cross Over) for 5 generatiQnS..........cccuvvviiiiiieeeeeee e 78

Figue 46shows the planned path using the GA
(Scattered Cross Over) for 50 geNeratiONS.uuuerrrurrrmmmnennansessaeeeaeeeseeeeeeeaaaeeas 78

Xi

ABSTRACT

The purpose of thighesiswas to develop an algorithm which solves the path
planning problem for a twwheeled mobile robot. The algorithmcluded multiple
robots within it. The algorithm was developed by first identifying the problem at hand,
expanding on it and then designireafures which solvedachpart of theproblem The
motivation behind this study is thtte path planning algorithm could be applied to real
world applications once perfected to a certain degree. The algorithm was composed of
two main sukalgorithms: an dfline component and an dme one. The offine
component was a global path planner which used a genetic algorithm to find the optimal
path between the source point and the goal point while only accounting for static
obstacles. The second component wdscal path planner utilizing artificial potential
fields in order to adjust the path at hand to account for any dynabjects Multiple
configurations were tested and evaluated. The algorithm was compared to an Ant Colony
Optimization algorithm and itrpved to be more efficient with respect to the maps used
in the study. The algorithm was evaluated for advantages and limitations and future study
aspects were identifiedzuture works included: expanding the algorithm to allow for
more robots, implementin the algorithm to a real life application and recreating

miscellaneous situations to test the flexibility of the algorithm.

Xii

LIST OF ABBREVIATION S USED

GA Genetic Algorithm

GEN Generation

ACO Ant Colony Optimization

DNA Deoxyribonucleiacid

C/O Cross Over

SPCO Single Point Cross Over

TPCO Two-Point Cross Over

SCO Scattered Cross Over

GAITP Genetic Algorithmwith incremental turning points
GAPTP Genetic Algorithmwith the preset turning points
SACO Simple Ant ColonyOptimization

ACS Ant Colony System

ACO-MH Ant Colony OptimizationMeta Heuristic
TP Turning Points

NLA No Leader Assignment

SRS Simple Ranked System

RRLA Repeated Random Leader Assignment
CTG Closest to Goal

FTG Farthest to Goal

cm certimeter

sec seconds

Xiii

ACKNOWLEDGMENTS

First and foremost, | would like to thank God. Next, | would like to express my
gratitude to my supervisor, Dr. Jason Gu for his continuous helpyatioh and support
throughout thisthesis His guidance hakelped me at all stages of the research and

during the writing of my thesis.

| would like to thank my parents for their continuous support and for being my
rock throughout this journey. Thank you for keeping me going even when | thought |

could not.

Afterwards, | would like to thank the rest of my committee members: Dr. William
Phillips and Dr. Kamal ESankary for their encouragement, constructive feedback and

insight.

I would | i ke to thank my fellow | ab ma

constuctive feedback and questions throughout my research process. Having an outside

view helped in identifying problems which

Finally, 1 would like to thank all my friends in Halifax. Your presence contributed

to me keeping my sayiand actually finishing my work.

Xiv

XV

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

This thesis develops a modified path planning algorithm which attempts to solve a
global path planning problem for a mobile robot. The algorithm is developed from the
ground up based on the requirements presented and the problem identified. The scope of
this thesiswas made to include static environment with purely-mmving obstacles, as
well as changing environments which included both static and dynamic obstacles. The
algorithm can be identified as a tyart algorithm. One part is thadfline global pah
planner achieved with genetic algorithm tool. The second part isoatine path adjustor
which is based on thartificial potential field method. The algorithm was adjusted to
account for both single and multiple robot cases, and could be scaleduewen if
required.

The goal of this chapter is tact as the introductory portion to thisesis The
problem is introduced. Next, the field of study is related to and the motivation is made
clear. This chapter also serves ituroduce the necessary bgcund information

regarding path planning as a problérhe outline of thethesisis stated in this section.

1.2 BACKGROUND

Mobile robotics is a field which is researched heavily in our world today. This is

because of the fact that mobile robots are ablperform marrequired tasks through

automation[8]. Specifically, the sulfield of path planning is of interest. This field
focuses on how a mobile robot will move within its environment.

The problem at hand is to find a path between two points: thepstattand the
goal point. The basic requirement for the path is that it must avoid any obstacles within
the given environmerji.1].

Path planning varies from one algorithm to another. Path planning could be
classifiedastwo main categories: lat and glolal. Localrefers to path planning which is
done on the spot, purely on a situational b§8js The robot senses an obstacle, and
evaluates its local environment and moves in response to that. Global path planning
includes the entire map as the environmenting the robot the information within the
entire map to act upoj®]. If both were combined, because of the nature of the global
path planning needing the entire map as input, it will be used first before local path
planning. As a result, it is safe $ay that the better the path achieved through global path
planning, the less dependency the algorithm will place on the local path planning
component

While both path planning types have their own advantagesliaadvantageshe
algorithm developed \thin thisthesiswill be primarily built upon global path planning.

Local path planning will be still considered and added to the algorithm when needed.

1.3 THESIS MOTIVATION

The main motivation behind this thesis that mobile robotics could be used in
hazardous industrial applicatiof&0]. Industrial applications, could be safer if mobile
robotics were to replace the human operator aspect, both for the human and at the same

time, achieve better results with higrecision[2]. Other applications may also include

areas which are too hazardous for a human operator. These may include: fiery areas,
extremely highly pressured areaotherareas with dangerous environmental facf8ts
In addition, more applicatieancould be the basis for the motivation for mobile
robots. Other than hazardous areas, there are environments which would benefit from the
presence of a robot from an efficiency perspective. This could include environments
which need service, but are tofidult for the human operator. An example of this could
be air ducttleaning[3]. Due to their tight spaces, a human operator could have difficulty
servicing these areas while adhering to the proper safety guidelines. While the size of an
adult human opator could prove to be a limitation, a mobile robot could be rebuilt in
many size to fit multiple areas, depending on the task at hand.
Another motivation would be the researched field of automated vehicles. The
development of selfiriving cars has beenrgving more popular over the yeairBhe
better the algorithm, the more it is likely to simulate the human intuition generated
solution [8]. With the applications of global positioning systems (GPS) and satellite
i magery, a gl obal map for the cards envir
would include static obstacles such as the road structures or any nearby buildings.
Another possible application for this algorithm would be aerospace travel. Air
traffic control towers have an overviewed map of the aerial space and what planes occupy
what space. Because of that, global path planning could be applied to this field. Howeve
obstacles in this field could include other objects other than ptaees[12]. Obstacles
may include: areas to avoid suchasdyiarea s, hi gh tur bul ence area
Forthese situations, a solution could be given via solving the global path planning

problem. This is because an accurate map of the environment could be provated (r

maps, aerospace magsp]. That, in addition to a cleapredefined source point where
the mobile robot is starting from and a predefined goal point which the robginig to
reach.

That being said, the real world applications require the consideration of dynamic
changes within the environment. In the car situation, moving obstacles sottieasars,
pedestrians and other external factors.

In the case of the emspae situation, other planes moving could represent
dynamic obstacle$6]. In addition tothis, weather conditions which are constricted
within a specific area, could also be defined as an obstacle form. An example of this
would be an ongoing storm whigh defined within a specific geographical area and is
moving within a specific directiothatis both predicted and monitored in real tifa8].
Current world air traffic controls allow the monitoring of such conditions.

From an engineering point of view,etimain fundamental requirement foselt
driven car would be to reacits assigneddestinationsafety. In order to do that, any
obstacle collisions must be avoided and preventdus makes obstacle collision the
fundamental requirement in this path plengnproblem.

After obstacle collisionis identified as the primary requirement, secondary
requirements could be identified. The path length should be taken into consideration. The
path planning problem is aimed for the robot to travel from points A tohis Wwould
imply that the shorter the path, the more plausible the algorithm wilhkeddition, he
shorter the path, the less time it will take the robot to make the trip. A path planning

algorithm should be aimed to generate generically short pabiestaken.

Another secondary requirement for the algorithm is its efficiefrtythis case,
efficiency refers to the computational cost which the algorithm needs in order to perform
its assigned taskiVhile taking obstacle collision and path lengtito considerationthe
computational cost of the algorithm has to be taken into account. If the algorithm is
computationally expensivéut generates a path which is not significantly better itan
competition then it loses its advantage. A plausiblgorithm should be balanced in

terms of the time it takes to execute and the quality of the results which it produces.

1.4 THESIS OUTLINE

Following this introductory chapter, chapter 2 gives an overview on the field in
guestion that is mobile robotics. Afteards, chapter 3 provides an overview on genetic
algorithms, how they operate, and their relation to global path planning as a problem.
Chapter 4 includes the experimental setup for the algorithm, as well as the algorithm
development order. Chapter 5 pmetsethe results attained from the experiments. Chapter
6 is the conclusion attained from the results, as well as the possible areas of future works

on the algorithm.

CHAPTER 2 OVERVIEW ON MOBILE R OBOTICS

AND PATH PLANNING

2.1 INTRODUCTION

Mobile robots are a major application in the modern world. The specific type of
robots which thighesisfocuses on are whegtpe. This would be the robots which have
a range of motion similar to that of a car. Within the introduction, an argument was made
for the application of the algorithm on aerospace vehicles, that is also the case. The
algorithm couldoe applied on robots which have a similar rangmofion The purpose
of this section is to give a descriptive overview on the global path planning problem with

regards to differential robot.

2.2 OVERVIEW ON GLOBAL P ATH PLANNING AND

RELATED WORKS

Global pah planning describes a situation in which a robot is given the task to
plan and follow a path from points A to[B]. This task has to be done while avoiding
any obstacles present within the environment and while remaining within the boundaries
of the enwonment. What makes global path planning unique is that the map data is fed
into the algorithm for the path to be planned out.

While this is ideal for static obstacles, the case of a moving obstacle must also be

taken into consideration. In order to dust themobile robot must be equipped with at

least one type of sensor in order to sense the location of any obstacles that may have
displaced since the initial path has been planned.

Once the differential robot has sensed that it is headed for collsitbn a
displaced obstacle, changes to its path must be made. This is where the]pstihg
takes place in order to still reach the goal with the shortest distance possible, while still

being able to avoid all obstacles within the environment.

2.3 EVALUATIO N CRITERION

2.3.1 Evaluation Criterion 1Obstacle Avoidance

Obstacle avoidance is the primary criterion of evaluation for the path planning
algorithm. This is because of the fact that if the robot does indeed collide with an
obstacle, it has failed its purpos finding an obstaci&ee path. Avoiding all obstacles
is the main motivation behind this type of path planning situgdidh

The robot has to avoid all obstacles, taking into consideration their shape, size and
orientation. The algorithm plama path for the robot to move around the obstacle to avoid
it, while still moving towards the goal point. Some algorithms plan a path to trace the
obstacle faced until it is no longer obstructing the path to the goal. While other algorithms

plan a new paths a response to the presence of the obstacle, avoiding it altogether.

2.3.2 Evaluation Criterion 2Path Length

Path length is the second criterion of evaluation for the global path planning
problem. Ideally, an algorithm producing the shortest possible h@tieen the source
and the goal is the desired cdsg From the previous section on obstacle avoidance, a

straight line will not be the common solution due to the presence of obstacles within the

environment. As a result of that, the path planned wilstnikely have turning points in
which the robot changes its direction and its orientation.

Since one of the motivations behind automated path planning is to mimic the most
logical pathpotentiallyplanned by a human, the path has to be intuitively skortthat
reason, any useless motions taken by the robot within its path has to be taken into
consideration. An example of that would be the robot making a perfect loop and then
continuing with its path towards the goal. Unless the loopdeag to avoid aobstacle

it increases the path lengtieedlessly

2.3.3 Evaluation Criterion 3Algorithm Efficiency

The third most important criterion in evaluating the quality of a path planning
algorithm is its efficiency. After the first two criterions are considereel aligorithm at
hand is one which produces obstaitkse pathswith their lengths taken into account.

The nextitem to be evaluated is the computational cost of the algorithm. That
directly refers to the time the algorithm takes to complete and have glpatied out.
This is an important thg to consider because it is possible for an algorithm to have a
computational cosbutweighingthe results it produces. Ideally, it is desired to have an
algorithmproducinggood results with low computational cost. However, that is usually
not the case. As such, algorithms have to be weighed in and compared against one
another according not only to the quality of the results they produce, but how long it
takes them to prodecsaid results.

Global path planning refers to cases where the entire map is given as an input to

the algorithm. This initially was the entirety of the study scope ofth@sis However,

due to the simple nature of static obstacle avoidance as a probéestope of théhesis

was widened in order to include dynamic obstacles as well.

CHAPTER 3 OVERVIEW ON GLOBAL P ATH

PLANNING USING GENET IC ALGORITHM

3.1 INTRODUCTION

The purpose of this chapter is to provide an overview on genetic algorithm and their
applications in path planninghe concept of genetic algorithm is derived from models
mimicking realworld evolution processes. The model represents the idea that within
specific species, the ideal candidates for survival are the individuals with the heritable
traits suited for the surrounding conditions. These traits are then passed on to the

following generation of the species which will be more adaptable to the icorsdit4].

3.2 BIOLOGICAL EXAMPLE

An example of this could be given through a populatioa wfoths. The population of
moths included two color variations: black and peppered. With the environment being the
industrial world, the white moths had a higher chance of being preyed upon. This is due
to the fact thavisually they stood out more ithe environment, unlike the black moths.

This resulted in an increase of black moths and a noticeable decrease the in the white
moths[4]. Within this example, a population was introduced. Afterwards, the population

responded to thenvironmentit was presentk with, adapting with it. This particular

example was part of a series of eMperi ment

1C

3.3 OVERVIEW ON GENETIC ALGORITHM

The basic concept of a genetic algorithm is to start with an initial population. The
populatbn is then evaluated for its fitness, per individual, according to a specific grading
criteria. Afterwards, through the application of certain genetic operators, the second
generation of the population would be produced. The second generation would
supposdly be better than its predecessor when being evaluated for its fithess. This
process would repeat, until a specificnher of generations is reacheadtil a certain
fitness is reached or another stop condition could be placed on the genetic alfistjthm
In order to explain the concept of genetic operators, the canoémhenotypes and
genotypes have to be explained.

Phenotype is the physical description of the genetic trait. Inr otads,
phenotype is the "neooded" description of the individualsenotype represents the
coded information which the phenotype is trying to desciilgd. An example of the
difference between these two factors could be shown when describing a frog population.
The frog's DNA and genetic markers are considered its gem¢iy). However,its
phenotypes would include aspects such as the frog's body color, eye color, limb length,
tongue length.

This is applied within a genetic algorithm, through having a population with its
individuals genetically marked. An example of thi®uld be having the individual
shown below:

Individual 001: 0100110010
The number shown above represents the genetic identifier of the individual. Each

number location corresponds to a specific marker. This would be the genotype of the

11

individual. In thenature oftheglobal path planning problem, an individual will represent

a specific path. Each number within its genetic identifier could correspond to a specific

locational node which the path crosses i§ 1 and doesn'tiit is a 0. This would be one

example as to how a path could be genetically encoded into the genetic algorithm.
Afterwards, through identifying the genetic markers of each individual, and

evaluating their fitness, it is possible to select which genetic markers give the individual

the best fitness value. These traits could then be passed on to offspring individuals which

would have mixed traits from its parent paths. Thus is the concept of crossover.

3.3.1 Genetic Operator: Crossover

Crossover is the most basic genetic operator. It is Bacause it is the one most
witnessed within nature within the real world. A real life example would be the genetic
heritage of certain traits from one's parents.eample of genetictrait would beeye
color. The eye colors of both parents contributedlly to the eye color of the offspring.
While some traits are recessive, requiring both parents to have it for it to be passed on, or
even dominant, requiring only one parent to have it, the concept of crossover is allowing
all of it to happen. A moretting example would be having two parent individuals, each
with a specific genetic advantage. From an evolutionary point of view, the ideal
crossover would exchange the genes of both parents in a constructive fashion. This would
allow the offspring to bedrn with both genetic advantages, achieved from both parents

[14].
3.3.1.1 Single Point Crossover

An example of this could be presented by looking at both individuals presented

below:

12

Individual 001: 0100110010
Individual 002: 1001001101

If individuals 001 and 02 represent the population at its initial generation stage, a
simple crossover operator would be setup to produce two children which would be
individuals 003 and 004 shown below:

Individual 003: 010021101
Individual 004: 010010010

The highlighted section in Individuals 003 and 004 represent the genotypes which
were crossover from the parenthie exampleabovewas a simple crossover which took
half the genetic markers of each individuals and exchangedhitm&tone from the other
parent If this was a constructive crossover operator, then individuals 003 and 004 would
have higher fitness than individuals 001 and 002. Afterwards, the children individuals
would replace the parent individuals within the population. This process esitegb
multiple times, creating new generations of individuals with their respective fitness
getting higher with each iteration.

Crossover is an operator which allows the genetic algorithm to create individuals
based on the fitness of the previous genamatidAs such, with old generations being
removed from the population, the overall population would ideally increase in its average
fitness. This would also mean that the best individual within the population with each
generation would increase in fitnessledlly, this would indicate that the genetic
algorithm has found the solution to the problem presented.

Single point crossover describes an

genotypes past a certain point. The example presented earlier with howUuaivid3

13

and 004 were formed with their respective parents, individuals 001 and 002 is a single

point crossover example.

3.3.1.2 Two-PointCrossover
Another type of crossover is the twoint crossover. For this particular
crossover, the genotypes are crossdwetween both parents between two particular
locations. An example of this is given with individuals 1 and 2, whichregveoduced
below:
Individual 001: 0100110010
Individual 002: 1001001101
For the case of a twpoint crossover, only genotypes presenthimita certain
range would be crossed over. For example, if thegwaiat crossover was designed to
crossover only the genotypes present between genotypes 2 and 6, then the crossover
would yield individuals 005 and 006 shown below:
Individual 005: @010®010
Individual 006: 100111101
The crossover genotypes are highlighted on the offspring individuals:pdimo
crossover could be setup to explore only certain genotypes which could lead to a more
controlled evolution of the population. However, it couldoalsave certain genotypes
unexplored because of its specific targeting capabilities. This could potentially lead to a

delayed evolution.

3.3.1.3 Scattered Crossover

The third type of crossover to be considered is scattered crossover. For this

particular kind of crossover, a random binary vector is created in which the

14

corresponding genotypes are selected accor
individuals 001 and 002 were to be crossed over using this method, a random binary
vector needs to be assigha@s shown below:
Individual 001: 0100110010
Individual 002: 1001001101
Vector: 1000110011
The wvector has the same size as both
genotypes are to be crossover with the | oc
resulting crossover would be as shown below with individuals 007 and 008.
Individual 007:1100000001
Individual 008:0001111110
The highlighted genotypes in individuals 007 and 008 are a result of the scattered
crossover.The example presented above shdhat scattered crossover is even more
targeted than twpoint crossover because of its dependency on the selection vector.
Once again, this could allow for the specific targeting of genes, but could prove a
hindrance if the right genes are not selectethkyector. Within genetic algorithms, the

concept of mutation is also one to be considered alongside crossover.

3.3.2 Genetic Operator: Mutation

Mutation is anotheigenetic operatoused in GA While it is less common to
witness than crossover in the real dprthere are still a number of examples. An
example of that would be heterochromia. While both parents had two distinct eye color,
the offspring had an entirely new genetic trait of different eye colors in each eye. While

mutations are rarer to witneskey can still occur.

15

As the name suggests, mutation implies that the operator would divert from what
is expected. Mutation can be described from the point of view of a genetic algorithm by
referring back to the individual presented earlier (shown below):

Individual 001: 0100110010

The mutation operator could vary in many ways. The simplest one would be an
operator setup to flip the first genetic marker of the individad]. As a result, the
individual would be:

Individual 001 (After mutation)1100110010

. The highlighted genotype shows the mutated genotype in Individual 001 after
mutation. Mutation could operate to introduce new traits which would be otherwise
unattainable through crossover alone. Potentially, this could cause a bigger jump in
fitness values, if the mutated individuals are better than their preyimdecessor
However, it is also true that mutation could introduce new faults within an individual.
This would be shown through the mutated individual having a lower fitness than its
previouspredecessor

With the combination of mutation and crossover, the GA ie &b generate
individuals which possess higher fitness than the ones present within the previous
generations. This process is repeated with each iteration, causing the average fitness as a
result. As the fitness increases, the GA presents a case of gemeerwithin its total
fitness values. This is because of the fact that with each generation, the top percentile is
selected to occupy the new generational pool according to their respective fitness. The

fitness convergence could be used to evaluate hdWwheeGA is behaving.

16

3.4 PATH PLANNING GA

There are several advantages to using GA to solve a path planning problem.
Firstly, GA supports muHlobjective taskslf the path solutiorfis required to have several
properties to it, a GA could be constructedneet those needs. An example of this would
be a path requirement of obstacle avoidance and for the path length to be within a certain
limit, due to fuel resources of the robot. A genetic algorithm could be custom made in
order to fit those particular negdand bias each requirement to come up the ideal path

needed.

3.4.1 Advantages of Using GA for Path Planning

The second advantage is that the GA is improved upon with time. The main
feature of the GA is that it depends on generational iterations. As suchmorth
generations, a better result is expected. However, there is a limit for how much
improvement the solution will have. Eventually, no significant improvement to the
solution will be made with increased generations. With more generations, the GA is able
to introduce traits discovered and eliminate weaknesses it identifies. Any traits which
increase the fitness of the individuals is more likely to be passed along to the next
generation of paths. At the same time, any weaknesses which lower the fitpesissof

will not be passed along and will be eliminated as a result.

3.4.2 Disadvantages of Using GA for Path Planning
While there are advantages to using genetic algorithm, there are a number of
disadvantages to also consider. These are important to have idecatisn in order to

attempt to effectively solve the global path planning problem.

17

The first disadvantage is that the genetic algorithm does not guarantee that the
global maxima will be attained. The genetic algorithm is set up in a black box manner for
it to run for a specific number of generations or until a certain stop condition is met.
However, the possibility exists that the genetic algorithm could loop around itself in
effectively or even produce a solution which does not solve the problem.

The seond disadvantage would be the ideal parameters for the GA could vary
depending on the problem. These parameters include, but are not limited to: population
size, maximum number of generations, number of genetic markers and genetic operators
used. These arall parameters which control how the genetic algorithm operates.
However, as to how the parameters could be setup best for the algorithm, that would be
achieved through trial and error.

Thirdly, the black box fashion of the algorithm poses another disadge as the
user is not certain of what the algorithm is learning. Since the genetic algorithm is run in
a black box fashion, this means that once all the parameters are set up, then the algorithm
runs and the fitness results from each generation avensfide algorithm then produces
a solution which it believes to satisfy the conditions of the problem set up by the user.
The user has to make sure that the algorithm is indeed solving the correct problem
intended. The genetic algorithm could be connedlioig and making connections where
there isn't any reason to.

Another disadvantage is the time the genetic algorithm takes to converge with its
results. This refers to when the algorithm is running, producing the fitness values for each
generation. The timthat the algorithm takes to converge with.

Anot her feature of GAO s to consider

18

exploitation[14]. If the GA is setup mainly for exploration, that means that the search
space which the GA is working with is larger than normal. The GA would then be tasked
with simply finding all possible features which could be found within the population
search spac&his would usually include exploring all possible features to be explored in
order to increase the fitness of the individuals. On the other hand, exploitation is the
opposite of that concept. Exploitation involves limiting the search space to a defined
limit. This would cause the GA to focus on specific features and improve on them
through each generational iteration. This would be best shown in a GA focusing only on a
single genotype to improve within its given population. The balance between exploration
and exploitation is needed for a wélhctioning GA, as both are needé&tkploration is
needed, as it gives to GA the advantage of discovering new features which would
simplify the solution, if one is indeed discovered. On the other hand, exploitaatsois
needed, because the iterations are needed for the GA to improve on the solution attained
by the GA.Including the previous work done in GA, Sugihara and Smith (1977) explored
the application of a fixed path length evolutionary schg@je It was foundthat the
respective algorithm performed well in simple environments, however, required hours to
complete a solution for the complex environments. Tu and Wang (2003) suggested a
variable length evolutionary scheme, which proved to be more flexible, howielezd
a ono solutiond [8llor some test scenari os
Since the idea of a GA was explained in the previous section, it is known that the
global path planning problem will be solved by first selecting an initial population of a
possible solution. These caddte solutions are then evaluated for their fitness.

Afterwards they are run through the GA and undergo crossover and mutation through

19

generations of data. After the final generation is born, the best individual of that
generation is expected to be theatisolution for the algorithm.

The initial population would be locational nodes present within the environment.
Each mode would represent a trait for the individual within the generation. The individual
would be a path.

This allows for the paths to cros®w with one another, thus partially editing the
path as needed. Mutation could introduce new nodes which could potentially be
unattainable if crossover was applied purely on its own. The number of nodes would
represent the number of traits each individumathe population has. This would be an
essential parameter in setting up the GA.

The probabilities at which the crossover and mutation operators take place would
also have to be specified. This would allow the GA to know how to move from one
generation d another. In addition, a maximum number of generations needs to be
specified in order to tell the algorithm when to stop. If fimsiting parameter is not
implemented, then the algorithm could attempt to run indefinitely, attempting to further
improve tle best path at hand with each generation. While this could promise a better
path result potentially, it certainly would be more computationally expensive, thus

reducing the efficiency of the algorithm.

20

CHAPTER 4 EXPERIMENTAL SETUP AND

ALGORITHM DEVELOPMEN T

4.1 INTRODUCTION

This section provides a detailed description of the experimental setup used to build,
test and troubleshoot the algorithm. The section is structured chronologically in order to
show the thought process involved in the algorithm development and in oqfervide
the justification and reasoning behind each action taken. This seictimmduces
algorithm features anwvhy they were implemented. Their respective testing will be

provided in Chapter 5.

4.2 GLOBAL PATH PLANNER: EMPTY MAP

The first step to developintpe algorithm was to build it in its most basic form.
That is, it was required to design a simple galinning algorithm which would plan a

path from point A, the source to point B the goal. The map used included no obstacles at

21

all. With the GA tool usé in MATLAB, the current setup allowed the algorithm to draw

a straight line between both the source and the goal point.

4.3 GLOBAL PATH PLANNER: STATIC MAP

After the algorithm was shown to function as expected, the empty map was populated
with more details. These details only included static obstacles. The GA had to be
modified in order to find a path which had the condition of not having any points occupy
a point coordinate with a static obstacle on it. In order to do that, the fithess function of
the GA had to be further specified. Since the GA functioned by populating a pool of
paths, with their coordinates as the genotypes of each path, this was util@etbi to
bias the GA towards obstacle free paths. This was done by assigning a penalty value to
paths which had at least one section occupying a static obstacle location. The penalty
value served as an indication that the path in question is of an ektréow fitness
value. As a result, the path with the penalty value would have its probability of passing
on its features extremely reduced. In addition, should the path manage to get selected to
path its traits to the future generation of paths, the offgppaths would also be
evaluated with the same condition, and would have the penalty imposed on them as well.
This would further reduce the probability of a faulty path section being passed on to the
final generation produced by the GAhe fithess funedbn model used to achieve this
process is shown below:

Q B Q6hd B nQé&daow)
The penalty is zero for unobstructed paths, but is set to an extremely high value for

obstructed paths'he GA implemented in the previous sextiwas used in order to find

22

the shortest, obstacfeee path from the source point to the goal point. The GA would
populate a pool of paths which are randomly generated. All of the generated paths have a
pre-defined number of turning points. The turningirds represent the genotypes of the
paths and how they differ from one another. Following that, the fitness of each path is
evaluated. The fitness evaluation is dependent on whether the obstaclefisgatnot,

and its total length. If an path waseevpartially crossing through a static obstacle, its
fitness score would be penalized sewgretffectively making the path invalid
Afterwards, the paths undergo the crossover operation, discussed in the previous chapter.
The new offspring paths are thewmaluated for their own respective fitness. Then, the top
percentile of paths would be selected to populate the new pool according to their fitness.
This process was then repeated multiple times, producing a new generation of paths with
each generation. &dr the limit of generations has been reached, the GA produces the
path in its current pool with the highest fithess as the output. Since the GA is being used
as a tool to generate the initial paths, single point crossover was used for simplicity

purposes.

44 GA PATH PLANNER: NUMBER OF TURNING

POINTS

The GA had to have the number of turning points defined in order to occupy its pool
with the initial population of randomly generated paths. For that reason, some testing had
to be done in order to know the opdahmumber of turning points to be specified. An
experiment was designed for that purpose. The purpose of this experiment was to

determine whether it was better to have a relatively high number of turning points, or to

23

set the number of turning points as iacrementing variable. While the pset high
number case would almost always guarantee a path, forcing the GA to occupy the pool
with paths with high number of turning points would increase its processing time
significantly. This is due to paths havingora genotypes which would be crossed over
with each iteration. Another point to consider was that an increased number of turning
points means increased path features, some of which could be unneeded. This would
require a higher generation limit in orderfiiter the unneeded features out. This would

al so cause an increase in the algorithmods
the number of turning points set at a lower value, only incrementing if a path could not be
found with the current settisgcould be considered. It is expected that an incrementing
value would provide a simpler path as it would guarantee the minimum number of
turning points. However, if a path was not attained, and the number of paths had to be
incremented, that would meanaththe GA would have to run again. This repeated
operation could add to the computational cost of the algorithm. It is for that reason that a
comparison experiment needs to be put in place in order to determine the best course of

action.

4.5 ROBOT CONTROLLER I MPLEMENTATION

Afterwards, the next step was to add in a robot which would follow the path planned
by the GA planner. In order to do this, the PBresuit tool MATLAB tool was used.
The tool allowed the creation of a driver robot as an object, with a specific speed,
orientation and starting position. The robot is then instructed to follow the path planned
out for it, while still adhering to the driver settings that have been set on it, such as its

driving speed.

24

4.6 MULTIPLE ROBOT IMPLEMENTATION

Following that, the codattained up to this point was used in order to create the
multiple robot experiment. The GA was used in order to create paths for 3 robots in total
given the same map, but different source and goal points for each respective robot. Each
robot had its ownantroller which follows the respective path planned for it by the GA.

With the implementation of multiple robots, the effect on the GA path planner had to
be considered. With more robots in play, it was decided to run the GA for each robot in
parallel. Ths is due to a number of reasons. The first reason is that if that were not the
case, the GA would have had to been reconfigured in order to find all paths for each robot
which would mean three times the pool and three times the computational cost. That
computational cost would scale even higher with the addition of more robots. The second
reason was that in the case the algorithm was unable to find a solution for even one of the
robots, the other robots would be left without action, waiting for all pathsetfound,
causing increased delayed time in the algo
the paths for all robots, with the addition of more paths, the paths for the robots would
become more complicated. With more paths occupying the map, dherkess open
spaces for the algorithm to map out new paths for the remaining robots. Having the GA
run once for each robot, fixes the scalability and also allows for each robot to
independeny operate. The multiple robotaivchart setup for the series camparallel

cases is presentedAppendix A

4.7 POTENTIAL FIELD PATH ADJUSTOR

25

From there, a problem was spotted within dhgorithm. Thatproblem wagotential
robotrobot collisions. While the GA accounted for the static environment, the paths
generated di not account for robots occupying the same point in space at the same time.
While it was possible to redesign the GA to have rabfectives, the complexity of the
algorithm would increase drastically with the addition of more robots, the variability of
the maps and if other changes were to be applied. With consideration to that, the solution
attained to this complication was to design an online path adjuster which would run when
needed casby-case in the event of an upcoming collision.

The conceptofpentialif el d i s defined i n KhaTmebds 19
Obstacle Avoidance f or M@]nTherobotanbves affectadn d Mo
by different #Ainvisibleo potential fields.
respective robot which decide on its directed path. To design this, the goal point
described to each robot had an attractive potefitials towards it. In addition, several
repulsive fields had to be implemented.

To start off, each robot had a repulsive field emitting from it. This allowed the robots
to move away from one another, in the case that they get too close within thetiaflue
radius of one another. Furthermore, a repulsive field was added on the environment itself.
More specifically, a repulsive field was created on the static obstacles present within the
environment. This was possible since the map data was provideel abgorithm as part
of the global path planner used earlier. This specific repulsive field was not created so as
to prevent the robot from colliding into static obstacles. Rather, it was created to act as a
biasing agent. Should the online path adjustngenttriggered to change the path of one

robot about to collide with another, the static obstacle repulsive field will encourage the

26

dodging to take place away from areas with heavier densities of static obstacles. This
would be shown visually by observirtigat the robots dodge one another while moving
towards areas whifah eadr.e Trher e uff plostea olfe t hi s
robotrobot complications. One possible complication was that the robot could end up in

a worse position than its earlistate due to it performing a dodge with another robot.

4.8 LEADER ASSIGNMENT FEATURE

After the concept of potentiaield was explored in order to prevent any retmiot
collisions, another complication was noticed. That complication is that due to thts rob
operating with the same settings, their respective repulsive fields were also equal in
magnitude. This caused any 2 robots heading for collision to perform similar dodging
motion, in opposite directions from one another. However, that action woutgkrtrig
anot her dodge order once the robots were
observed most clearly in robots which have their overall paths close to one another, with
their respective source and goal points also fairly close. As a result ebthidication,
the robotrobot dodging caused multiple path adjustments which significantly added to
the total path length travelled by both robots. A fix had to be implemented in order to
solve this complication, as that would have been a significan@timnit to the algorithm
if left unfixed.

The fix implemented for the complication above was to assign a ranking system.
Every time a collision is set to take place, the online path adjuster will utilize a certain
ranking system which assigns one robotéo bt he Al eader 0, and the
Afoll ower 0. The foll ower robot wi || be th

while the leader robot will continue on its path unchanged.

27

The leader assignment implementation is a feature which isduded into the
algorithm in order to solve the complication caused by robots dodging one another
equally. The next step was to decide on how the ranking system was achieved. For
troubleshooting purposes, the ranking system wasigsgned or was randondglected
through arandomly generateadumber.

However, for the application of the algorithm, there needs to be a logical reason for as
to the ranking system was <chosen. One or
creation order. In other words, robot dwd be the leader should it encounter robots 2 or
3; while robot 2 would be the leader should it encounter robot 3. This method was too
simple and did not account for the current positions of the robots. As a result, the
respective distanced each robotdhto reach its respective goal was taken into
consideration. If a robot was closer to its goal than the other robot it was headed to
collide with, it would become the leader in that case. This ranking system allowed the
algorithm to prioritize robots to caplete their paths as soon as possible. Another ranking
system was considered, assigning the rdéahestfrom its respective goal point as the
leader. This biased the algorithm towards all robots finishing their paths within the same

time period.

4.9 DYNAM IC OBSTACLE IMPLEMENTATION

The next step was to include dynamic obstacles within the map. In order to do this,
the PurePursuit tool was called upon. Basically, a dynamic obstacle would be created by
creating another robot which follows a set path giteit. After the dynamic obstacle

had completed its path, the robot would make a turn and follow its path in reverse

28

(switching its assigned source and goal points respectively). This would give the effect of
a dynamic obstacle which patrols a certain fetiwveen two given points.

Unlike a fellow robot driving towards its respective goal point, the dynamic obstacle
is different in the sense that it does not dodge any incoming obstacle. A dynamic obstacle
will remain on its planned path regardless of any incoming obstacles. I&s gumpose is
to be an obstacle in order to test the flexibility of the algorithm and its ability to handle
dynamic obstacles placed within the map.

In order to implemen dynamic obstacles within theedder assignment script
described earlier within thisestion, the dynamic obstacles were automatically assigned
the top ranking with the leadéollower rank. That would mean that a dynamic obstacle
would never have to dodge, and that the robot had to perform the dodging task in order to
avoid a collision.

In order to avoid dynamic obstacles, the potential field avoidance strategy was used
once again. However, unlike a robrobot interaction, different avoidance strategies had
to be placed in order to deal with dynamic obstacles headed for collision. Tus te
the fact that a dynamic obstacle will not dodge or avoid the robot no matter what. In
addition, the path planned for the dynamic obstacle is not known to the robot in any way.
Hence, different avoidance strategies had to be thought of and testel@iirio deal with
this complication.

Following this, the avoidance strategies used in order to deal with dynamic obstacles
were explored. These included:

1 Stop and Wait

29

This strategy included that the robot, upon sensing the dynamic obstacle within a
certin influential radius, would stop its motors and wait. The robot would start again
once the dynamic obstacle was no longer being detected.

1 Stop and Dodge
This avoidance strategy included the stop part described in the earlier avoidance
strategy. Howeverfollowing the stop action, the robot would proceed to dodge the
dynamic obstacle in a manner similar to how robots dodge one another if they get
within each otheroés influenti al range. T
stop aspect, which wouldake it identical to how the robots were designed to dodge
one another within that version.

1 BackUp/Reversing
This avoidance strategy dictated that upon sensing the dynamic obstacle, the robot
would plan to reverse its motion to an earlier position and #tempt its planned
path again. The logic behind this strategy is to allow the obstacle to move out of the

robotdés way, without stopping the robotds

Each strategy would be evaluated on its own through testing, in order to explore its

strengths aah limitations.

30

CHAPTER 5 EXPERIMENTAL DATA AN D RESULTS

5.1 GATEST: EMPTY MAP

This section is aimed to present the data and results performed by the
experimental setup described in chapteilhe first part of this section is to preséms
data attained from thdrgjle robot experiment. Figure s hows t he GA path
output with regards to a map not containing any static obstadtgs. that for all the
mapped paths figures, the circled points indicate the starting point forbie while the

star marked point indicates the goal point. Each robot has a unique color assigned to it.

31

Map Environment

201

30

40

X-axis

50

60

70

80 1

w] &

0

20

40 60
y-axis

80

100

Figure 1: Outputted Mapped Path for Test Scenario: Empty Map, Single Robot

Corresponding ath data is presented in talile

Table 1: Outputted Path for Test Scenario: Empty Map, Single Robot..

Path Length (cm)

Path Coordinates

111.50
Y (cm) X (cm)
90.00 10.00
64.16 38.11
45.06 59.91
37.27 68.23
19.75 82.85
13.25 89.02
10.00 90.00

5.2 GATEST: STATIC MAP 1

Figure 2 shows examples of how the static robot had its path planned from its

source to its goal through the static environment.

32

Map Environment

10 1

20 1

X-axis

30 1

40 1

50
0 10 20 30 40 50

y-axis
Figure 2 Outputted Mapped Path for Test Scenario: Static Map 1, SingletRob

Table2: Outputted Path for Test Scenario: Static Map 1, Single Robot..

Path Length (cm) 61.00
Y (cm) X (cm)
45.00 40.00
44.16 35.51
. 39.00 20.46
Path Coordinates 3596 18.29
32.42 13.73
14.30 6.93
5.00 5.00

Table2 showsthe path coordinasevisually presented in Figug It can be seen
t hat the GAOGs biasing against paths c¢cross
conparing the paths from Figure and Figure2. The GA is shown to be effective in
mapping out valid paths in accordance to the static obstacles provided. No path sections

are crossing through a static obstacle.

5.3 GA CROSSOVER TESTING

Next, the genetic algorithm was to be evaluated. The GA was iaestadh cases

with 5 generations and 50 generations. Three different crossover types were used. The

33

crossovers used were: singleint crossover (SPCO), twmoint crossover (TPCO) and
Scattered crossover (SCO). Only the path length was used as the iteia of
evaluations. This is because of the fact that all of the trials were run with the same
generation numbers. As a result, the processing time will be the same for all of them
Table 3 below show the total path lengths attained from the experiniaetdata trials

are shown in append.

Table 3: Total path Lengths attained through each crossover type

Total Path Lengtlicm)
of Generations 5 50
Single Point C/O 67 55
Two-Point C/O 93.5 61
Scattered C/O 73 61

From the results shown in TablepBeviously, it can be seen that the trials with
the 50 generations yielded paths with less length than those yielded by the 5 generation
trials. This makes sense because with every generation, more crossover is applied on the
paths which are then selectied their fithess and the process is repeated. The result from
that process is the increased fitness of the paths within the population. From the results
above, it can be seen that the single point crossover (SPCO) yielded the lowest of all path
lengths n both the Egeneration case and the-§6neration case. As a result of that, the
algorithm was continued with singfmint crossoverTesting showed that varying the
mutation probability did not have a direct correlation with the efficiency of the path

generatedAs a result, mutation was dropped as a genetic operator used by the algorithm

5.4 ROBOT CONTROLLER IMPLEMENTATION

34

Figure3 shows how the robot controller handles the mapped path given. It can be
seen that with the implementation of a robot contrplleere is a base path deviation
present between the path planned and the path followed by the robot controller. This is

due to the robot settings set up by the controller.

Map Environment

Map Environment 0
0
10 1 / 10 1 .
o 20 T . @ 207
g >
e ©
X ¥ %
30 1 30
40 1 7_ 40 1
B
50 50
0 10 20 30 40 50 0 10 20 40 50
y-axis y-axis
Figure 3: Outputted Mapped Path for Test Scenario: Static Map 1, Single Robot. Robot Controller path shown on the
right figure

In Tale 4, the % path deviation was shown to be 3.34% which is within the acceptable

range.

Table 4 Outputted Path for Test Scenario: Static Map 1, Single Robot. Path Mapped by
GA and Path Followed by Robot Controller.

Y (cm) X (cm)
45.00 5.00
_ 44.18 10.26
Path Coordinates 4330 12.58
42.49 14.83
26.81 26.26

35

17.59 33.75

5.00 45.00
MappedPath Length (cm) 56.00
Followed Path Length (cm) 57.87
% Path Deviation 3.34%

It can be visually observed that with minimum number of turns specified, the
algorithm relatively finds the shortest distance between the source and the goal point.
This isdue to the fact that with minimum number of turning points specified, the more
the robot is more likely to travel along a straight line to its destination. This minimizes
the total distance travelled. Maps which are too simple benefit from this feature.
However, with maps that are too complex, the algorithm will not be able to plan a path
from the specified source and goal point with the current specified number of turning
points. It is for that reason, that the variable number of turning points is cawidér

results from that experiment will be discusses later within this section.

5.5 COMPARING GA TO ACO

The next section compared the Genetic Algorithm designed withithégsswith
the ACO algorithm[7]. The second algorithm had to be similar in the task that it was
solving, in order to have an unbiased comparison of the results. The second algorithm
chosen was a set of two algorithms both based on Ant C@etiynization [7] Figure4
and5 show the maped path outputs usij@]é s a | g o r i6shows she evaluatioh e

results for these algorithms.

36

The best tour found in the last group The best tour found in the last group

Mp---p---p---p---p---r---r- Wpemcpmmmgm e e mm e mmmp = =
h lefgth =33.8995 ! : path lefgth 341421 ' !
mmebcccloccdoccloned 18Khcccbc el e le e oo [QUGN [N N, Lo--d
: : : : 1 1 | 1 1
P | R R I
i i S S e 16‘—_______‘___'_" i S Tl S e |
: : : : d 1] 1 1 1
T S s e g s --4----\'-___:____:____{
. : : : 1 | |] |
e e Y B AL ARl GO b
i i ' ' 1 1 1 ' 1
T B B B (¢] R ek D R --l----'----'----'-----'r

, v ' ; ! | I ‘ ' |
IS N SUE SR S SR S SO A

' N N i ' L 1 1 1] 1

. '

S R S S R U S S S
ST TTTTYTYTTTYCTTTYCTTT ! ! ' ' !
N S U SR] 1

1 ' 1 1 1 1 1 1 1 1] 1

T T T | S S L
~TrTTTTTTTTTTTTTTTT 1 1 [1 1 | 1] 1

' 1 1 ' 1 1 l] [1 1 1 ' 1
1 ' ' ' 0 ' ' ' r Il r ' r L !
- L L { 0 2 4 6 8 10 12 14 16 18 20
14 1 18 20

. . A Optimal Path found with ACO-MH for Experiment 2
1 Optimal Path found with SACO for Experiment 2

Figure 4: A screenshot froffY] taken corresponding to Experimensi2ownin Table5. Screenshot shows planned
paths using SACO (ACS) and AGMH Algorithms

The best tour found in the last group The best tour found in the last group
e R R e LR T
' . . . '):a(h length 3} 7279 |
- oy A P [
1 ' 1 ' 1 I 1 l 1
' ! ' ! ' !
L R] SRS SUET! TUTT EUEE SELE SE
1 ' ' 1 " 1 1 1
L e e at SEEE TP EEPLEE PR
! ' ! ' | ' ! ' !
' ' ' | ' |
7 A A,
i ' i ' \ ' i ' 1
I
1
. PR
! ' ! ' '
i ' i ' '
6k mdemadacccbkacclocedacscbh e Wecndaccabaaa 4
\ ' ! ' '
! ' ! ' '
R iyt ORE TER ELEE SRR TR i
1 ' 1 ' 1 " 1 1 1
2. ALY SO U AU SR S N :
' ' ' ' 1 1 1 1
! ' ! ' ! ! ! ' ! ' H : ' ' 1 r ' . : :
00 ’ "1 ’ é ’ ' 1' 1’8 ' 0 2 4 6 8 10 12 14 16 18 20
Optlmal Path found W1th SACO for Experiment 3 Optimal Path found with ACO-MH for Experiment3

Figure 5: A screenshot frorfv] taken corresponding to ExperimensiBownin Table 5 Screenshot shows planned
paths using SACO (ACS) and AG@OH Algorithms

Figures6, 7, 8 and 9 shows the bench testing done for the GA. The mesesl
were similar, with the same source and goal points. Bench testing was done on the GA
with incremental turning points (GAITP) as well the GA with the-gg€ turning points
(GAPTP). This was done to further test the effectiveness of the incrementagtpoint

feature.

37

Generations | TP Time Cost (sec) Path Length (cm) Generations |[TP| Time Cost (sec) Path Length (cm)

5 1 141 285 5 5 4.55 405
Map Environment OMaF’ Environment Map Environment Map Environment
0 %l - 0 0
0 ; w 0
@ 10 g 10 s 10 s 10
x = x x
20 20+ 20\ 20
0 10 20 0 10 20 0 10 20 0 10 20
y-axis y-axis y-axis y-axis

Figure 6: Experimental Data showing the optimaltp in a similar map to Figurd. 5 GENwith 1 TP was used on the
left, while 5SGENwith 1 TP was used on the right.

Generations | TP Time Cost (sec) Path Length (cm) Generations | TP| Time Cost (sec) Path Length (cm)
50 1 10.01 28 50 5 11.35 27
Map Environment Map Environment Map Environment OMap Environment
0 0 0 r
=] 1 0
s 10 3 10 & 10 % 10
>l< > >)l<
20\ 20N 20 20
y-axis y-axis y-axis y-axis

Figure 7: Experimental Data showing the optimal path in a simitep to Figue 4. 50 GENwith TP was used on the
left, while 50GENwith 1 TP was used on the right.

Generations | TP Time Cost (sec) Path Length (cm) Generations |[TP| Time Cost (sec) Path Length (cm)
5 1 1.36 30.5 5 5 241 37.5
0Map Environment 0Map Environment Map Environment Map Environment
= | 0 " 0
w 0 n =
© 10 | L G 10 | L S 10 | L | © 10 | L
D . U D
= b3 = x
20 ZOC 20 20
0 10 20 0 10 20 0 10 20 0 10 20
y-axis y-axis y-axis y-axis

Figure 8: Experimental Data showing the optimal path in a similar map to FiguEeEGENwith 1 TP was used on the
left, while 5SGENwith 1 TPwas used on the right.

38

Generations | TP Time Cost (sec) Path Length (cm) Generations | TP| Time Cost (sec) Path Length (cm)

50 1 9.88 29.5 50 5 11.18 28.5
Map Environment Map Environment Map Environment Map Environment
1 0) 0 br 0

2 e 2] @8
g 10 g 10 $ 0 | e T 10 |
i U i U
> x > x

20'E 20° 20\& 20\

0 10 20 0 10 20 0 10 20 0 10 20
y-axis y-axis y-axis y-axis

Figure 9: Experimental Data showing the optimal path in a similar map to Figut® GENwith 1 TP was used on
the left, while 5GGENwith 1 TP was used on the right.

The location of the static obstacles was also replicatedleS @ and 7shows the

comparison results of the algorithms.

generation limit, the time cost of the algorithm was relatively significant. However, these

versions of the GA did produce paths which had relatiled path lengths. When a low

generation setting was combined with a high turning point value, the result was
undesirable. The result attained from this combination was a path which was extremely
high compared to the other test cases. In addition, tleedost for the algorithm was not

low either. Figure 10 visually represents the data attained from comparing the GA

algorithms and the ACO algorithms in terms of their respective time cost and path length.

Table 5 Shows the resul{§] attained from using the ACO algorithms.

SACO(ACS) ACOMH
Ex No Distance (cm) Time(sec) Distance (cm) Time(sec)
1 31.80 3.67 28.63 3.27
2 33.90 6.57 32.14 6.90
3 32.73 2.40 32.14 2.37

39

t

Table6: Al gori t hmés Path Details with
Algorithm GAITP GAPTP
Turning Points 1 1 5 5
of Generation 5 50 5 50
Distance | Time | Distance| Time | Distance| Time | Distance| Time
(cm) (sec)| (cm) (sec)| (cm) | (sec)| (cm) | (sec)
Experiment1| 2850 | 1.41| 28.00 |10.01| 4050 | 455| 27.00 |11.35
Experiment2 | 3050 | 1.36 | 2950 | 988 | 37.50 | 2.41| 28.50 |11.18
Table7: ACO [7] Algorithms Path Details
Algorithm SACO SACO-MH
Distance(cm) | Time (sec)| TP | Distance(cm) | Time (sec)| TP
Experiment 1 33.90 6.57 15 32.14 6.90 10
Experiment 2 32.73 2.40 11 32.14 2.37 13

Comparing GA (Incremental and et Value) and Ant Colony
Optimization Algorithms

45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00

Distace (cm) / Time(s)

Figure 10: A bar graph showing the visual representation of the compared data from both own algorithms and the

Q
&

algorithms from theACO [7].

40

(_,v

Q
&

o’
&

m Expl Distance (cm)
Exp 1 Time (sec)
H Exp2 Distance (cm)

B Exp2 Time (sec)

e X |

The most successful combination was having a low generation setting with a low
turning point. That combination yielded paths with relatively low length. In addition, the
time cost for that combination was exceptionally lower than the other settings, lkean w
compared to the Ant Colony Optimization (ACO) Algorithms. The reason why this
particular algorithm performed exceptionally better was because the map is simple
enough to allow the GA to outperform the ACO. In the case that the map is more
complicatedthe ACO might excel over the GA. The simple map was used because the

ACO [7] used it.

5.6 MULTIPLE ROBOT IMPLEMENTATION

As for the multiple robot experiment, the GA proved as effective with multiple
robots in producing paths which are static obstacle Figeire 30and TableB show the
mapped paths and the mapped path coordinate data respectively. The GA is shown to
remain effective when handling 3 robots in a parallel structDogreponding data is

shown in table 8

Map Environment Map Environment

10 1 10 1

20 1 20 1

 xaxis

w
=
©
x
30 1 30 1
40 1 40 1
50 -
0 10 20 30 40 50 | 0 10 20 30 40 50
y-axis i y-axis
Figure 11: Outputted Mapped Path fdrest Scenario: Static Map 1, 3 Robots. Robot Controller paths shown on the
right figure

41

Table8: Outputted Path Details for Test Scenario: Static Map 1, 3 Robots.

Robot 1 Robot 2 Robot 3
Y(cm) | X(cm) | Y (cm) | X(cm) | Y (cm) | X (cm)
Path Coordinates 41.00 5.00 5.00 41.00 | 35.00 4.00
31.61 | 13.18 | 14.30 | 31.98 | 21.50 | 24.36
5.00 41.00 | 41.00 5.00 4.00 35.00
Mapped Path Lengtftm) 50.00 50.00 46.00
Followed Path Lengtfcm) 50.90 52.00 44.60
% Path Deviation 1.80% 4.00% 3.04%
5.7 POTENTIAL FIELD IMPLEMENTATION

With regards to robetobot interaction, the potential field feature added was

shown to be operating as intended with robots performing avoidance actions when

approaching the prdetermined influential radius of one anoth&he Figure below

presents an example of how a robot would adjust its planned path when within the

influential range of another robot. The example shows both robots performing the path

adjustment.

10 A

20 1

X-axis

30 A1

40 1

50 -

Map Environment

10 20 30
y-axis

40 50

Map Environment

20 22

24 26

y-axis

28

Figure 12: Shows an example of how a robot would respond to another robot when on course for collision

42

Figuresl13andl14 show two separate examples of the ratotot interaction

within two separate test maps. The leader assignment feature is discussed inetetail lat

on within this section.

x-axis

x-axis

Map Environment Map Environment

5 //_}é 5

20 1

25 1

e -]
yd
/'/
EON e [30
//(’
35 q /// r 35
40 4 o b o0

45 F a5

X-axis
I
5]

50 50
o 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Figure 13. Outputted M&Bped Path for Potential Path Adjustments Experimént: Static Map 1, 2 Robots

Map Environment Map Environment

X-axis
n
&

30 7

35 1

40

45

50 50
0 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

y-axis y-axis

Figure 14: Outputted Mapped Path for Potential Path Adjustments Experiment: Static Map 2, 2 Robots

5.8 DYNAMIC OBSTACLE IMPLEMENTATION

After dynamic obstacles weradded, the online path adjustment feature was

modified in order to account for dynamic obstacles. The Figure below presents an

43

example of how a robot would deal with a dynamic obstacle, while maintaining its

planned path to its goal point.

Map Environment

24 e
4 -
26 Y-
o /7
=~ 28
B3 477
30 /
/!
32 o &
16 18 20 22
y-axis
Figure 15: Shows an example of how robot 1 could be set up to adjust its planned path in response to a dynamic
obstacle

Figure 16shows the positioning of three dynamic obstacles, along with their
mapped paths and robot cailer implementation. Tabl® shows the path coordinate
data of the dynamic obstacles added.

Map Environment Map Environment

0 0

10 1 10 1
L 201 « 201
g g

x —
30 1 30 1
*.
40 1 40 1 -\
*L - -
50 50
0 10 20 30 40 50 0 10 20 30 40 50
y-axis y-axis

Figure 16. Path for Dynamic Obstacles. Figure on the left shows the paths planned for the dynamic obstacles. Figure
on the right shows the obstacle controller paths.

Table9: Outputted Paths for Each of the Dynamic Obstacles.

Dynamic Obstacle 1 2 3
Y (cm) X (cm) Y (cm) X (cm) Y (cm) X (cm)
Path Coordinates 21.00 28.00 5.00 35.00 26.00 10.00
16.00 28.00 15.00 45.00 36.00 20.00

44

5.9 DYNAMIC OBSTACLE HANDLING

Next was the experi ment designed to t
obstacles. The experiment was set up with 1 robot and 1 dynamic obstacle within its
planned path. The situation was run with all the avoiding strategies which included: Stop,
Dodge, Reverse. Afterwards, multiple strategies were combined in a chronological order
which formed: reversdodge and stopeversedodge. TablelO shows the results from
that experiment. The length of each path followed in each strategy was measured.
Comparien was made against the path followed with the robot controller if no action
was taken. Percentage path deviations were also calculated in each case.

Table10: Shows data collected from different dodging strategies

Dodging Strategy Pfézgﬁﬁ”(z\g)e d % Path Deviation Pa_llfrmlzoélsi\gl)ng
No action 21.33 0.00% 26.83
Stop 21.18 0.70% 108.19
Dodge 22.23 4.24% 101.50
Reverse 25.82 21.05% 114.62
ReverseDodge 22.68 6.33% 102.67
StopReversDodge 22.68 6.33% 118.23

It was found that including the stop function on its own or in a combination of
actions added to the time the robot took to complete its course, and did not contribute to
minimizing the path followed when combined with other strategies. However, on ifs own
it had a very lowpercentag@ath deviation value of 0.7%. However, the stop strategy on
its own was insufficient in dealing with all the testing scenarios attempted, varying robot
path and dynamic obstacle path. The strategy most suited for dynamic obstacle handling

was the reversdodge. This strategy could handle all the testing scenarios attempted. In

45

addition, it had a mediurpercentaggath deviation value of 6.3% which is still within

the acceptable range. It also had a relatively low path following time value.

5.10 EVALUATING NUMBE R OF TURNS

The following sections are aimed to evaluate specific features present within the
developed algorithm, using the attained results. The first feature to be evaluated is the
specification of the number of turns. Due to how the GA was setupaltjogithm
managed to find the shortest possible path due to the specification of a low value for the
number of turning points. As discussed in chapter 4, the number of turning points
represented the number of genotypes which the GA takes into considefatiower
number of turning points operates well within simple maps because the robot does not
need to turn many times. However, within more complicated maps, the GA would be
unable to produce a desirable path while being constrained by the maximum mdmber
turning points. As a result, this feature experiment was cre8tealvn in the following
figure arethreecases which the robot was given the same map, source and goal points.

The only variable was the number of turning points.

1 turning point 15 turning point 30 turning points

Map Environment Map Environment Map Environment

Figure 17: Three caseshown. Robot 1 is set up a path from point A to B, while varying the number of turning points

As observed in the previous figure, having a low number of turning points
benefitted the algorithm in finding a simple path, rather than the second case, vehere t

algorithm was forced to use the high number of turning points specified. Doing so caused

46

the GA to produce a path with repeated turns which were unneeded because the shortest
path is a desirable criteria of evaluation. If the map was a more complasethe low

number of turning point will have the algorithm stuck in an infinite loop, as the algorithm
fails to find a path with the constraints it has been given. In order to fix this, the algorithm

is given a minimum value for the number of turns itially uses. In the case that it finds

a path with the current parameters, it will proceed to pass it on to the robot controller. In
the case that that GA was unsuccessful in finding a path, the algorithm will increment the
number of turning points andstart the algorithmFigure 36 in Appendix Ashowsa
flowchart visually repres#ing this process.

Two criteria or evaluation were measured for the performance of the GA in each
case. The criteria were computational time and path length. It was shown that having an
incrementing number of turning points allowed the algorithm to attain paths which were
relatively minimal in their length. Table$8 and 19 show the data attained from these
experiments using two separate test maps.

Table11: Outputted Paths for Turning Point Experiment, 3 Robots, Static Map 1

Map Static Map 1
Generations 10 50
Setup of Time | Path Setup of Time | Path
Turning TP | Cost | Length | Figure| Turning | TP | Cost | Length | Figure
Points (sec)| (cm) Points (sec) | (cm)
Incremental| 1 | 3.73 47 18 Incremental| 1 | 14.23 47 18
Total 1| 3.73 a7 Total 1 | 14.23| 47
PreSet PreSet
Minimum 2 | 441 ar 19 Minimum 2| 14.57) 46.5 19
Total 2 | 441 a7 Total 2 | 1457 46.5
PreSet PreSet
Maximum 5| 737 | 715 20 Maximum 5 |20.04| 48 20
Total 5| 737 715 Total 5 120.04| 48

Table12 Outputted Path for Turning Point Experiment, 3 Robots, Static Map 2

47

Map Static Map 2
Generations 10 50
Setup of Time | Path Setup of Time | Path
Turning TP | Cost | Length | Figure| Turning | TP | Cost | Length | Figure
Points (sec) | (cm) Points (sec) | (cm)
Incremental 1 | 346 0 Figure | Incremental 1 | 1405 0 Figure
2 | 4.01 50 51 2 | 15.18| 47.5 51
Total 2 | 7.48 50 Total 2 | 29.23| 47.5
M'T;f‘rﬁjrtn 2 | 456 | 52 Fig;re Mﬁ;ﬁfﬁ:ﬂ 2 | 17.35| 56.5 Fig;re
Total 2 | 4.56 52 Total 2 | 17.35| 56.5
e Se | 5 | 674 58 Figgre eSS |5 | 2279| 59 Figgre
Total 5| 6.74 58 Total 5 (2279 59

The corresponding mapped paths are provided in Fig@&d®, 20, 21, 22 and23.

. Map Environment Map Environment
0
10 10 1
% =
G G
> >
30 30
40 40 1
50 50
0 10 20 30 40 50 0 10 20 30 40 50
y-axis y-axis

Figure 18 Outputted Mapped Path for the turning Point Experiment. Incremental Turning Points. Map Reference
Corresponds to data in tablel. 10 Generations(left) and 50 Generations (right). Static Map 1.

48

Map Environment Map Environment

0 0
10 1 10 1
o 20 1 w 20 1
= =
© ©
x x
30 1 30 1
40 1 40 A
50 50
0 10 20 30 40 50 0 10 20 30 40 50
y-axis y-axis

Figure 19 Outputted Mapped Path for the turning Point Esipeent. Preset minimum. Map Reference Corresponds
to data in tablell. 10 Generations(left) and 50 Generations (right). Static Map 1.

Map Environment Map Environment
0 0
10 1 10 1
o 20 1 o 20 1
R =
© m
X x
30 1 30
40 1 40 1
50 50
0 10 20 30 40 50 0 10 20 30 40 50
y-axis y-axis

Figure 20: Outputted Mapped Path for the turning Point Experiment-$&teMaximum Turning Points. Map
Reference Corgponds to data in tablel. 10 GEN(eft) and 50GEN (right). Static Map 1.

49

Figure 21: Outputted Mapped Path farP Experiment. Incremental Turning Points. Map Reference Corresponds to

Figure 22 Outputted Mapped Path farP Experiment. Preset minimum Turning Points. Map Reference Corresponds

X-axis

Figure 23 Outputted Mapped Path farP Experiment. Preset maximum Turning Points. Map Reference Corresponds

x-axis

X-axis

10

20

30

40

50

20

30

40

50

20

40

50

Map Environment

:.-
&/ me
- s

0

10 20 30

y-axis

40 50

X-axis

20

30

40

50

Map Environment

Y
&8/ me
L

10 20 30

y-axis

40 50

data in tablel2. 10GEN(eft) and 50GEN (right). Static Map 2.

Map Environment

Map Environment

o 20
- -R -
[4+]
>
30
50

10

0

10 20 30

y-axis

40 50

0

10 20 30

y-axis

40 50

to data in tablel2. 10 GEN(eft) and 50GEN (right). Static Map 2.

Map Environment

Map Environment

0
. 10 1 . -
Hl .“”‘. .
=
4]
3
30 1
L o L
50
0 10 20 30 40 50 0 10 20 30 40 50
y-axis y-axis

to data in tablel2. 10 GEN(left) and 50GEN (right). Static Map 2.

50

For the higher prset maximum number of turns, a short path was attained, but
with a relatively high time cost. Ithe cases of a pigt minimum number of turning
points, an ideal path length was attained, with an acceptable time cost. The problem is
that the preset minimum has to be set in accordance to each map, source and goal point.
From the data, it can be deeulcthat having an incremental number of turning points,
allows for the algorithm to be flexible in multiple maps. Since the incremental setup

starts at low value, the time cost for the initial failed runs is not a significant time loss.

5.11 POTENTIAL FIELD ADJUSTOR TEST

The second feature to be evaluated was the potential field algorithm. In order to
be most effective, the algorithm needed to work on a case by case basis. If and only if 2
robots come within close proximity of one another, the potential Betipt would be
activated to cause both robots to dodge one another. Once both robots have exceeded
each otheroés influence radius, then the rc¢
path. In order to test this out, an experiment with 2 robots atap.sin order to bias the
robots to be on course to collide with one another, the source of the first robot was the
goal for the second robot and vice versa. This causes the algorithm to prodysatsvo
which were very similar to one another, thus cagighe robots to be on course for a
collision. Figure 13shows the data from that particular experiment. dae collected
included the path planned by the GA as well as the actual path followed by the robot
controllers. The robot controllers use the @lanned path as a reference, but in the case
of an expected collision, the potential field algorithm would cause certain deviations in
order to avoid a collision. The difference between both paths was calculated in order to

attain the percentage deviatiparformed by the potential field script

51

From Observing the data figure 13 it can be seen that the potential field script

is operating effectively. The robots follow their intended path until one of the potential

fields force them otherwise. The dodgiisgperformed to a degree that the robots avoid

one another from a safe distance, but return to their planned paths afterwards. The

mapped path coordinate data is presented in taBlasd14.

Table 13: Outputted Path for Potential Path Adjustments Expent: Static Map 1, 2

Robots
Robot 1 Robot 2
Path Planned Length (cm) 60.00 60.00
Path Followed Length (cm) 61.70 63.50
Path Length Differencém) 1.70 3.50
Path Deviation %Difference 2.83% 5.83%

Table14: Outputted Path for Potential Path Adjustments Experiment: Static Map 2, 2

Robots
Robot 1 Robot 2
Path Planned Length (cm) 45.00 45.00
Path Followed Length (cm) 46.40 48.00
Path Length Differencém) 1.40 3.00
Path Deviation %Difference 3.10% 6.66%
The static potenti al field exerted

by

avoidance be biased towards more open spaces, to a certain degree. The paths followed

were all shown to have less than 7% path deviation.

It should be noted
settings. All the robots are set up with an initial angular orientation of 0. Depending on its

path, the robot will turn and adjust its orientation accordingly while stiiinggaits motors

t hat s ome

of

t

he

de\

running. This causes some deviation to the path. Another cause of path deviation is that

the pure pursuit controller contains a characteristic called look ahead distance. This

characteristic, allows the robot to remain deviated from it, ptit can see that

52

eventually, it will return to the correct path. This characteristic was kept in order to

provide further incentive for the robots to return to their original planned path.

5.12 LEADER ASSIGNMENT TEST

Next, the Leader Assignment featureswia be evaluated. The leader assignment
feature was designed in order to assign certain robots as leaders to other robots. The
leaders would not have to dodge, and would continue on their path normally. The
follower robot respective to the leader assigmemlild proceed to dodge around the
leader. This was aimed to decrease the total path deviations occurring when dealing with
multiple robots.

In order to do this, an experiment was setup with 2 and 3 robots within a specific
map. A collision was encouragdry assigning the robots respective source and goal
points which were near one another. Multiple Adjustments were done to the algorithm for
testing purposes. The testing scenario was run with no leader assignment (NLA), simple
ranked system (SRS), repeataddom leader assignment (RRLA). After those scenarios
were run, the testing environment was changed to include 3 robots. With 3 robots in
place, a testing case was done for Closest to Goal (CTG) and Farthest to Goal (FTG). A

simple description is given f@ach testing setting.

53

NLA: No Leader is assignment. All robots dodge one another as equals. Data presented

in figure 24 and tablel5.

Map Environment Map Environment

10

20 1

X-axis
X-axis

30 1

40 1

50 -

10 20 30 40 50 20 22 24 26 28
y-axis y-axis
Figure 24: Mapped Path for Leader Assignment Experim8iitA Settings. Figure on the right is a magnified version

Table15: Outputted Path for Leader Assignment ExperimBiA Settings

Robot 1 Robot 2 Total

Total Mapped Path Length (cm) 50 50 100
Total FollowedPath Length (cm) 52.06 55.32 107.38
% Path Deviation 4.12% 10.65% 7.38%

54

SRS: A ranking system -sisulatom dhe radkmngsystem ist h e
only assigned once. Ranking System is assigned based on the robot number. Data

presented ifigure 25 and tablel6.

Map Environment Map Environment

10 1

20 1

X-axis
X-axis

30 1

40 1

50
0 10 20 30 40 50 18 20 22 24 26

y-axis y-axis
Figure 25: Mapped Path for Leader Assignment Experim8mRS Settings. Figure on the right is a magnified version

Table 16: Outputted Path for Leader Assignment Experim8®RS Settings

Robot 1 Robot 2 Total

Total Mapped Path Length (cm) 50 50 100
Total Followed Path Length (cm 50.90 54.50 105.40
% Path Deviation 1.80% 9.00% 5.40%

55

r

RRLA: When the robots are on course for collision, a ranking is given to the robots
randomly. The ranking is reassignedevery time a collision is about to occur. Data

presented ifigure 26 and tablel?.

Map Environment

Map Environment

10 1

20 1

X-axis
X-axis

30 A1

40 1

50
0 10 20 30 40 50 18 20 22 24 26 28

y-axis y-axis
Figure 26: Mapped Path for Leader Assignment ExperimBRLA Settings. Figure on the right is a magnified version

Table17: Outputted Path for Leader Assignment ExperimBRLA Settings

Robot 1 Robot 2 Total

Total Mapped Path Length (cm) 50 50 100
Total Followed Path Length (cm 52.79 54.73 107.52
% Path Deviation 5.58% 9.47% 7.52%

56

CTG: When the robots are @ourse for collision, a ranking is given to the robots based

on theirdistance to their goals respectively. The closer thetnsho its goal, the higher

its ranking. Data presented in figu2& and tablel 8.

Map Environment

%

10 1

20 1

X-axis

30 1

40 1

50 -

10 20 30
y-axis

Figure 27: Mapped Path for Leader Assignment Experim@itG Settings. Figure on the right is a magnified version

40 50

X-axis

Map Environment

15

20

y-axis

25

Table 18: Outputted Path for Leader Assignment Experim€miG Settings

Robot 1 Robot 2 Robot 3 Total

Total Mapped Path Length (cn 50 50 44 144
Total Followed Path Length (cnf 50.90 53.40 44.50 148.80
% Path Deviation 1.80% 6.80% 1.14% 3.33%

57

FTG: When the robots are on course for collision, a ranking engiw the robots based
on theirdistance to their goals respectively. The fartherrobotis to its goal, the higher
its ranking. Data presented in figu28 and tablel 9.

Map Environment

Map Environment

@

10 1

20 1
g o
5 @
> 30 1 >

¢
40 1
50 -
10 20 30 40 o0 16 18 20 22 24 26 28
y-axis y-axis

Figure 28 Mapped Path for Leader Assignment ExperimEiG Settings. Figure on the right is a magnified version

Table19: Outputted Path for Leader Assignment ExperimEmG Settings

Robot 1 Robot 2 Robot 3 Total

Total Mapped Path Lengtlom) 50 50 44 144
Total Followed Path Lengtftm) 55.43 54.40 45.10 154.93
% Path Deviation 10.86% 8.80% 2.50% 7.59%

For the first 3 test cases, the leader assignment did show improvement of the
overall path deviation. With the NLA, the robots had a percentage path deviation of
4.12% and 10.65% respectively. With SRS in place, only one robot had to perform the
dodging ation, so the robots had a percentage path deviation of 1.80% and 9.00%
respectively. However, for the RRLA case, the robots were randomly selected as the

leader and follower. That random selection process was called upon twice and the roles

58

were switchedAs a result, both robots deviated from their paths. For that particular test
case, the robots had a percentage path deviation of 5.58% and 9.47% respectively. It was
clear that assigning one of the robots as a leader and the other as its follower, m@inimize
the percentage deviation of each robot. The RRLA case had increased deviation because
the random leader/follower selector ran multiple times when both robots came within
close proximity of one another.

For the last two test cases with the 3 robots ircgla different result was
attained. The CTG case had the robots with % path deviations of 1.80%, 6.80%, and
1.14%. This showed that at the time the robots came within close proximity with one
another, the robot farthest to its respective goal, was agsagma follower. As a result,
the % path deviation was focused into one path rather than be dispersed amongst all 3
paths. For the FTG case, the opposite logic was used. At the robots came within close
proximity with one another, the robot farthest torgspective goal, was assigned as a
leader. This was aimed to encourage the algorithm to have all the robots complete their
paths at the same time. However, the robots had a percentage path deviation of 10.86%,
8.80% and 2.50% respectively. The FTG leadsigmment caused the robots which were
in the lead and closer to their goal to move out of the way for the robot farthest to its
goal, their leader. This caused needless path deviations and increased the total path
deviation significantly for 2 out of th@ robots. From observing the collective data from
the leader assignment experiment, it can be seen that the leader assignment can be a
feature which reduces the path deviations. However, that depends on what criteria the

leader and follower are chosen.tfe wrong leader assignment strategy is chosen, the

59

path deviations could be ireased needlessly as a resuigufe 29 shows the mapped

paths for the NLA leader assignment settings for the 3 robot implementation.

Map Environment Map Environment
10 1 »
74

o 0 ; o
L 2
b
- .

40 -

50 -

10 20 30 40 50 6 18 20 22 24 26 28

y-axis yRus

Figure 29: Mapped Path for NLA settings with 3 Robots in play

It can be seen that with 3 robots implemented, the path deviations become more
and more significant. This would be an important feature to consider if the number of

robots is to be scaled even further.

5.13 FULL ALGORITHM IMPLEMENTATION

The final experiment was the implementation of the full algorithm. This
experiment was designed with 3 robots within a map which included 2 static obstacles
and 3 dynamic obstacleBigure 30shows the GAplanned paths for each robot. Figure
31 show the robot controller implementatidfigure 37 is the flowchart showing the flow

of the code scripts provided in Appendix D.

60

Map Environment

10 7

20 1

X-axis

30 1

40

0 10 20 30 40 50
y-axis

Figure 30: Figure shows the planned path output for 3 robots. Theasge robot controllers are shown in Figure
3L

61

Map Environment

Map Environment

0
10 7 A//
.’/ 4
>

o 20] / o
L :
m L]
P =

30 1

0] FA,

C/ >
50
0 10 20 30 40 50 16 18 20 22 24 26

y-axis y-axis

Figure 31: path data with the full algorithm implementation. 3 Robots were implemenBachenic obstacles were
present Figure on the right shows a magnified versiormloktered area

The magnified map shown iingure 31shows the online path deviations which
the robots did in response to one another as well as in response to the dynamic obstacle.

Table20: Shows data collected from 3 Robot Experiment shown visudityuie 31

PathType/Robot # Robot 1 Robot 2 Robot 3
Path Planned Length (cm) 47.00 45.50 39.50
Path Followed LengtliNo Action)(cm) 47.93 46.13 40.95
Path Followed Length(cm) 50.11 52.65 51.45

% Path Deviation 4.56% 14.15% 25.64%

Corresponding path data is shown in ta®le The full algorithm is effective in
handling the test scenarios attempted. The leader assignment portion of the code is also
effective. This is shown in the robots having varying % path deviation. Robot (idnad
highest % path deviation. This is due to it being the farthest to its goal when the
evaluation was made. The path length followed was compared to the pathataigtid

with no action taken

62

CHAPTER 6 CONCLUSION AND FUTUR E WORKS

6.1 CONCLUSION

While other algorithms use the GA as the main problem solving tool to generate
the obstacldree paths, the iterative process makes it difficult to apply for dynamic
obstacles handling. The algorithm in thiesispresents a twpart algorithm. The first
part is an offline GA global path planner which deals with the static environment at hand.
The second part is an online path adjustor which is based on the potential field method.
The algorithm is shown to be effective with handling both static and dynabstacles.

The algorithm was applied for both single and multiple robots. Different dodging
strategies had to be assigned for the robbbt potential collisions and the robot
dynamic obstacle potential collision.

This specific algorithm uses the GA ander to generate the general path which
the robot controller uses as a base input. The robot controller could adjust the path should
a collision is predicted. Possible collisions could include other robots following their own
respective paths or even dymia obstacles which will not dodge any incoming object.

Different features were added in order to fix situational complications. One of
those complications was the equal dodging of robots. More dodging resulted in increased
path deviations which in somees@arios complicated the situation even further than
before the dodge. In order to fix and mitigate this, the leadership assignment feature was
i mpl emented. This feature was inspir-ed fro
life traffic cases. Diférent methods were tested in order to decide on who will be the

leader and who will be the follower. Through testing, it was decided that priority ranking

63

will be given based on which robot is closer to its respective goal. This made the
algorithm prioritze robots reaching their respective goals faster. This feature also
handled the dodging of dynamic obstacles. Since dynamic obstacles do not dodge any
incoming objects no matter what, they are given the highest of all rankings by default.

Another feature Wwich was added was the incrementing turning points feature.
Due to the nature of how the GA was set up, assigning more turning points resulted in
more complicated paths and increased processing time. In order to mitigate this, a base
minimum for the turnig points was assigned for the GA to compute a path with. If the
GA is unsuccessful, the number of turning points is incremented and the process is
repeated. This allowed the GA to be more flexible with different types of maps; finding
simple paths where pded and more complicated ones for the maps which are more
complex in their nature.

The GA global path planner was compared to two different algorithms based on
the ant colony optimization method. Due to the simple nature of the maps used within
[7], the low generation GA proves to be more superior in terms of path length and
computational cost. However, that may not be always the case for all maps. Additional
testing may be required on more complicated maps to truly understand the advantages
and disadvamtges of using each algorithm.

Another possible limitation present within the algorithm is the simplicity of the
potential field path adjustor. The adjustor takes action once the robot has a foreign object
present within a specific radius of influence amuhe robot. It does not take into
consideration the properties of the foreign object. These properties may include but are

not limited to: size, speed, acceleration, path and orientation. One possible improvement

64

would be to have the robots aware ofeachher 6 s properties as th
own respective paths. This could allow for smarter dodging actions to be taken.

Another limitation noticed within the algorithm is related to the potential field
forces applied on the robot. If the forces ¢gdrfrom the dynamic obstacles, static
obstacles and other robots cancel out, the robot could potentially have a no solution in
terms of how to act. Additional testing may be required in order to make the algorithm
more flexible within smaller maps, thulkoaving for a more condensed collision space.

One relevant point to note is the time cost evaluation criteria. While the
computational time cost of the GA path planner is calculated and used as an evaluation
criterion, that is not the time for the fullgalrithm. Since the algorithm consists of two
parts: an offline and an online portion, the time cost needs to include that as well.
Additional testing could be done in order to account for both the computational time cost
and the time it takes for the roboontroller to complete its path. However, that would
cause the time cost to scale more significantly with scaling the map sizes.

As for the comparisorwith the ACQ the GA provedto be more effective.
However, it is important to note a few points aboat tomparison. The map used within
[7] was too simple. Because of that, the low generation GA was more effective in finding
a path which is optimal in distance and with a relatively low time cost as well. It is
important to note that if the comparison waade with more complicated maps, then the
GA might not prove to be as effective with its current settings. Another area where
additional testing in future works could b

multiple path planning algorithm, includy different maps and scenarios. Analyzing

65

what makes an algorithm most effectiaea certain situation, could allow for the creation
and modification of a hybrid algorithm which is most flexible in all situations.

In conclusion, the algorithm presented within tthesisis designed from the
ground up, managed to solve the global path planning problem presented. There exists
room for improvement and additional features to be added in order to make the algorithm

moreadaptable and applicable to different scenarios, maps and complexities.
6.2 FUTURE WORKS

There are areas of future works allow for more improvements to the algorithm.
These include: more scenario testing for the algorithm, additional modifications to the
potential field path adjustor. More testing could be done to compare the algorithm to
other path planning algorithms which may or may not be based on GA, in order to
explore additional features to be included. In addition, the implementation of the
algorithm in a real life test scenario is another area for future Warkthermore, more
objects could be added to the test environment to test how the algorithm would deal with
a higher cluster of objects. A more advanced queuing system could be establisteed whe
the robots communicate with one another and assign a rank on a criteria different than
which is closer to the respective goal point. Larger dynamic obstacles could be tested on
the algorithm, adjusting it accordingly. Furthermore, a variable path |lerogtld be
implemented into the algorithm. This approach would evaluate the map at the global path
planner stage, assigning it a score. That score would be used to identify how complex
does the GA have to be. This will have to be tested against the tpmimglata attained
in thisthesisin order to prove the effectiveness of such a feature. Finally, an experiment

could be designed in order twsoste¢i bo@ sSheéeu

66

Where there is no possible path to make for the rdimw will the algorithm deal with
such a situation. Similar situations could be crafted in order to test the flexibility of the
algorithm in dealing with all possible cases. This would further help in developing this

algorithm to be one that is realisaod more applicable to the real world.
6.3 CONTRIBUTION

The contribution of this thesis is revisited within this section. Genetic algorithm is a
heavily researched field. As a result, adding contributions to the field could prove

difficult. Rather, the mai contribution lies within the features implemented within the
algorithm. These features contribute mainly to the field of path planning. These include
the turning point experiment pertaining to the genetic algorithm portion, as well as the
leader assignnmt feature added to the potential field path adjustor. Adding features to

the algorithm, not only makes it unique and more differentiable than other algorithms but
also allows the experimentation on only certain aspects of the algorithm. Testing on these
aspects allows for a more directed testing approach, and allows the addition of additional
contributions even to heavily researched fields such as genetic algorithm use in path

planning.

67

BIBLIOGRAPHY

[1] Ahmed, A., Abdalla, T. Y., & Abed, A. A2015). Path Planning of Mobile Robot by
using Modified Optimized Potential Field Methothternational Journal of Computer
Applications,113(4), 4.0. doi:10.5120/19812614

[2] Distante, C., Indiveri, G., & Reina, G. (2009). An applicatiénmmbile rokotics for
olfactory monitoring of hazardous industrial sitésdustrial Robot: An International
Journal 36(1), 5359. doi:10.1108/01439910910924675

[3] Jeon, S., Jeong, W., & Park, D. (2014). A Stable TracKingtrol of Skid Steered
Mobile Platform.Proceedings of the 11th International Coefeze on Informatics in
Control,Automation and Robotics. doi:10.5220/0005113305560561

[4] Kettlewell, H. B. (1955). Selection experiment® industrial melanism in the
LepidopteraHeredity,9(3), 323842. doi:10.038/hdy.1955.36

[5] Khatib, O. (1986). Realime Obstacle Avoidace for Manipulators and Mobile
Robots. Autonomous Robot Vehicle896-404. doi:10.1007/978-46138997%2_ 29

[6] Large, F., Laugier, C., & Shiller, Z. (2005). Navigatioméng Moving Obstaels
Using the NLVO: Principles and Applications to Intelligent Vehiclégitonomous
Robots,19(2), 159-171. doi:10.1007/s1051d05-06108

[7] Mohanraj, T. (2014). Mobile Robot Path Planning inds Ant Colony
Optimization.International Journal of Research n Engineering and
Technology03(23), 16. doi:10.15623/ijret.2014.0323001

[8] Raja, P. (2012). Optimal path planning of mobile robots: A revieigrnational
Journal of thé’hysical Scienced(9). doi:10.5897/ijps11.1745

[9] Wu, Z., Fu, W., Xue, R., &/ang, W. (2016). A Novel Global Path Plannihethod
for Mobile Robots Based on TeachingearningBased
Optimization.Information,7(3), 39.d0i:10.3390/info7030039

68

[10] Yue, G., Xuelian, S., & Zhanfeng, Z. (2014). Based on Ant Colony Algorithm to
Solve the Mobile Robots Intelligent Path Planning for Avoid Obstacletrnational
Journalof Artificial Intelligence & Applications,5(1), 1. doi:10.5121/ijaia.2014.5101

[11] Zeng, C., Zhang, Q., & Wei, X. (2012). G#ased Global Path Planning fdobile

Robot Employing A* Algorithm.Journal of Computer§,(2). doi:10.4304/jcp.7.2.470
474

[12] Singh, V., & Willcox, K. E. (2016). Methodology for Path Planning with Dynamic
DataDriven Flight Capability Estimatiorl.7th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference. doi:10.2514/6.2114

[13] Air Traffic Control Center Weather Services. (n.d.). Retrieved February 30, 2017,
from http://www.nws.noaa.gov/om/aviation/cwsu/CWSUs_1 pager.pdf

[14] Mitchell, M. (1998).An Introduction to GeneatiAlgorithms. Cambridge, MA: MIT.

69

APPENDIX A- FLOWCHART FIGURES

Source

.

Map ——»

Genetic Algorithm
(GA)

Goal

)

Path
Mapped

Figure 32 Flowchart figure for the setup of the GA path planner

Source l

Genetic Algorithm
(GA)

Goal j

Map ——>

Path —>» Robot Controller
Mapped

) Path
Followed

Figure 33. Flowchart figure for GA path planner and robot controller

70

Source

y

Map ———>

Genetic Algorithm
(GA) 1

Path
——>»Mapped—>
1

)

Goal 1

Source

i

Robot Controller 1

Path
—>»Followed
1

Map ——»

Genetic Algorithm
(GA) 2

Path
—>»Mapped—>|
2

Goal 2

J

Source

i

Robot Controller 2

Path
——>»Followed
2

Map ——»

Genetic Algorithm
(GA) 3

Path
—>»Mapped—>
3

Goal 3

J

Robot Controller 3

Path
——>»Followed
3

Figure 34: Flowchart figure for parallel GA setup for multiple robot experimental setup

71

Source

1
Source

2
Source

3

Map ——>»

Goal 1

Multi-Purpose GA

Goal 2

Goal 3

Path
Path
— Mapped 1 —>»| Robot Controller 1 —>Fo||c11wed
Path Path
Mapped 2 ——»| Robot Controller 2 ——>»Followed
2
Path Path
—> —>»{ Robot Controller 3 —>»Followed
Mapped 3 3

Figure 35 Flowchart figure for single multipurpose GA for multi robot experimental setup

Source

EREEE

Increment Turning Point

Map ——>|

Genetic Algorithm

(GA) 1

Goal 1 —j

Path
Mapped—>|
1

Robot Controller 1

Path
—>»Followed
1

Figure 36- Flowchart figure used for the incrementing turning points experiment

Initialization >

(o]

a_start

b_start >

Robot_Simu

Obstacle Controller

while(goal_not_reached){

Obstacle_drive

Y

PotentialProto

v

ranking_script

Y

act_robots

>

update_robots

¥

drive_robots

Figure 37: Flowchart figure for the coded scripts setup

72

APPENDIX B i1 MAP FIGURES

Map Environment

0 20 40 60 80 100
y-axis
Figure 38 Empty Map (size: 100x100)

73

10 1

20 1

30 1

40 1

50 -

10

20

30

40

50

10 20 30 40 50

Figure 39 50x50 static map 1

.
5 B
-

10 20 30 40 50

Figure 40: Static Map 2

74

APPENDIX C- GENETIC ALGORITHM DATA

Table21- Table below shows the Testing data for the Strglmt Crossover Genetic
Algorithm Testing

of Generations 5 50
Path Length{cm) 67 55
Y (cm) X (cm) Y (cm) X (cm)
45.00 40.00 45.00 40.00
44 .54 33.78 44.11 37.86
. 47.97 25.47 42.68 27.51
Path Coordinates 38.77 772 25.99 12.90
25.02 5.28 15.14 7.79
16.32 6.98 9.76 6.13
5.00 5.00 5.00 5.00

75

5 Map Environment - 108 Best: 67 Mean: 1.3705e+08
©
; L Best fitness
8 . Mean fitness | «
10 g 0 i i " ' e L n M 4
w o 05 1 15 2 25 3 35 4 45 5
© Generation
20 § Average Distance Between Individuals
g E 1.4 T T T T T T
@ [a
U 1 2 -
x 8
30 o)) |)) . 1
3 1 15 2 25 3 35 4 45 5
Generation
40 102 108 Best, Worst, and Mean Scores
. 1 1]
0 10 20 30 40 50 0 ; * :
. 1 15 2 25 3 35 4 45 5 55 6
SRl Generation
Figure 41 shows the planned path using the GA (SkRget Cross Over) for 5 generations
Map Environment g 108 Best: 55.5 Mean: 250056
0 s
; * e Best fitness
] . Mean filness
10 ‘EO " ML IS TTS IS TS LT T PYPURT LTS & Di-04 T PP "
0 5 10 15 20 25 3 40 45 50
© Generation
g Average Distance Between Individuals
) 20 82 T T T T T T T
= 7]
- ot
X g stes.. .
30 = . . : 17 T terageead H a
g 5 10 15 20 25 30 35 40 45 50
Generation
40 1 10° Best, Worst, and Mean Scores
2 T T T T T T T T T T
o]
0 10 20 30 40 sg oL T I e e T e
. 5 10 15 20 25 30 as 40 45 50
R Generation

Figure 42 shows the planned path using the GA (SiRpint Cross Over) for 50 generations

Table22- Table below shows the Testing data for the -Ra@mt Crossover Genetic
Algorithm Testing

of Generations 5 50
Path Length{cm) 93.5 61
Y (cm) X (cm) Y (cm) X (cm)
45.00 40.00 45.00 40.00
40.75 23.08 44.14 41.02
. 35.69 20.34 35.82 42.51
Path Coordinates 26.50 19.20 21.35 38.75
27.66 24.56 17.26 35.42
42 .44 11.93 6.67 15.86
5.00 5.00 5.00 5.00

76

Map Environment g 108 Best: 93.5 Mean: 2.175e+08
T
N ; * Bestfitness
% * Mean fiess |
10 Eo . " . " . " " + L "
Lo 05 1 15 2 25 3 35 4 45 5
o Generation
2 Average Distance Between Individuals
«» 20 813 T T Y T T
opm 12}
; E 12} 1
x
30 o4, . . ‘ . . ; .
2.
z ! 15 2 25 3 35 4 45 5
Generation
40 5 X 10? Best, Worst, and Mean Scores
1
50 1T]
0 10 20 . 30 40 50 1 15 2 25 3 35 4 45 b 55 6
y-axis Generation
Figure 43 shows the planned path using the GA (ARaint Cross Over) for 5 generations
Map Environment o 108 Best: 61 Mean: 9.55006e+06
0 = 5¢
; . . Best fitness
i s .. * Mean filness
10 | E o e . . . - .
0 5 0 15 20 25 30 35 40 45 50
® Generation
20 1 2 Average Distance Between Individuals
.9 % 2 T T T T T T T
S a,t
U o 1 i
> « . .o .
30 1 E’D 1 i I I prece, *e sstetengrgg,
3 5 10 15 20 25 30 35 40 45 50
Generation
40 1 108 Best, Worst, and Mean Scores
10F T T T T T T T T T T
5[J
0 ——— A i —
‘ 5 10 15 20 25 30 35 40 45 50
y-axis Generation

Figure 44 shows the planned path using the GA (ARwint Cross Over) for 50 generations

Table23- Table below shows the Testing data for the Scattered CrosSéveestng

of Generations 5 50
Path Length{cm) 73 61
Y (cm) X (cm) Y (cm) X (cm)
. 45.00 40.00 45.00 40.00
Path Coordinates 4274 33.09 2416 35.51
47.53 12.96 39.00 20.46

77

39.73 13.50 35.96 18.29
23.24 2.15 32.42 13.73
9.80 3.04 14.30 6.93
5.00 5.00 5.00 5.00
. Map Environment 8 108 Best: 73 Mean: 1.838e+08
=5r
[v]
:) . - Best fitness
] Mean fitness | *
10 1 .E- 0 L n L i L i L n | i
L 0 05 1 15 2 25 3 3.5 4 45 5
o Generation
w 20 1 g . ' Ava‘rage Di?lanoe B‘eMaen'lndlvld‘uaIs '
3 Ca2f 1
30 1 5 . . ‘ . : \ .
5 1.1
z 1 15 2 25 3 a5 4 45 5
Generation
40 1 02 10° Best, Worst, and Mean Scores
5 J
o S
10 20 30 40 50 0 ! : . . .
) 1 15 2 25 3 35 4 45 5 55 6
y-axis Generation
Figure 45shows the planned path using the &&dtteredCross Over) for 5 generations
Map Environment g 108 Best: 57 Mean: 5.56001e+07
2 5[
0 @
: . . Best fitness
b fe, e * Mean fitness
£ ol TR vagg® S By
10 1 Lp 5 10 15 20 25 30 35 40 45 50
® Generation
2 Average Distance Between Individuals
o 20 g 2 T T T T T T T T T
= =
% g'[
30 - S0 . M BT L LA PETAE FLLLS L S LT LE)
= 5 10 15 20 25 30 35 40 45 50
Generation
40 102 108 Best, Worst, and Mean Scores
0 T T T T T T T T T T
5 i
. M Tl Tt
0 10 20 30 40 50 5 10 15 20 25 30 35 40 45 50
y-axis Generation

Figure 46 shows the planned path using the G&dtteredCross Over) for 50 generations

78

APPENDIX D: CODE SCRIPT

0

(¢

-- %

%macro.m

Initialization;

a_start;

Robot_Simu;

% -
-- %

%lnitialization.m

'Initialization start'

%Code for Initialization to be run first time only (see planogram)

global map source old_source goal source2 old_source2 goal2 source3
old_source3 goal3 oldmap map2 splineSmoothing
global obs_source obs_old_source obs_goal obs_source2 obs_old_source2

obs_goal2 obs_source3 obs_old_source3 obs_goal3

% input map read from a bmp file
%map 1 is the map's first state
map=im2bw(imread(‘'map2_50x50.bmp"));

%p----------- Robots ----------------- %
%Robot 1

source=[45 5];

old_source=source;

goal =[5 30];

%Robot 2
source2=[40 5];
old_source2=source2;
goal2=[10 40];

%Robot 3

79

source3=[45 10];
old_source3=source3;
goal3=[10 30];

/A -

%

L Obstacles ----------------- %

%Obstacle 1

obs_source=[28 21]; %28 16
obs_old_source=obs_source;
obs_goal=[28 16]; %28 22

obs_path(1,:)=obs_source;
obs_path(2,:)=obs_goal;

%Robot 2
obs_source2=[35 5];
obs_old_source2=source2;
obs_goal2=[45 15];

obs_path2(1,:)=obs_source2;

obs_path2(2,:)=obs_goal2;

%Robot 3
obs_source3=[10 26];
obs_old_source3=source3;
obs_goal3=[20 36];

obs_path3(1,:)=obs_source3;

(¢4

L

TN T
oo

firstrun=0;

0=0;

Q=2;
controlrate=1000000;
speedfactor=1.0;
slowfactor=0.5;
stopfactor=0;

first_attempt_1=0;
first_attempt_2=0;
first_attempt_3=0;

first_time=0;
'Initialization complete’
% -

- %

%10000

- %
%a_start.m
'A_Start'

% Num of points that repre
and goal

sent a candidate path, excluding the source

80

noOfPointsinSolution1=1;
noOfPointsinSolution2=1;
noOfPointsInSolution3=1;
NoOfGenerations=50; %50
PopulationSize=100;
splineSmoothing=false;

tic;

if ~feasiblePoint(source,map), error('source lies on an obstacle or
outside map');

end

if ~feasiblePoint(goal,map), error(‘goal lies on an obstacle or outside
map');

end

if ~feasiblePoint(source2,map), error('source2 lies on an obstacle or
outside map');

end

if ~feasiblePoint(goal2,map), error('‘goal2 | ies on an obstacle or
outside map');

end

if ~feasiblePoint(source3,map), error('source3 lies on an obstacle or
outside map');

end

if ~feasiblePoint(goal3,map), error(‘goal3 lies on an obstacle or
outside map');

end

options=gaoptimset('PlotFcns' , {@ga plotbestf, @gaplotdistance,
@gaplotrange}, 'Generations' ,NoOfGenerations, '‘PopulationSize' ,PopulationS
ize, 'CrossoverFcn' ,@crossoversinglepoint);

[solution cost] = ga(@PathCostGA_R1,
noOfPoaintsInSolution1*2,[],[],[1,[],zeros(noOfPointsInSolution1*2,1),one
s(noOfPointsInSolution1*2,1),[],options);

path=[source; [solution(1:2:end)"*size(map,1)
solution(2:2:end)*size(map,2)]; goal];

[solution2 cost2] = ga(@PathCostGA_R2,

noOfPointsInSol ution2*2,[1,[1,[0.[],.zeros(noOfPointsInSolution2*2,1),0ne
s(noOfPointsinSolution2*2,1),[],options);

path2=[source2; [solution2(1:2:end)*size(map,1)
solution2(2:2:end)*size(map,2)]; goal2];

[solution3 cost3] = ga(@PathCostGA _R3,
noOfPointsInSolution3*2,[],[1.[1.[],zeros(noOfPointsIinSolution3*2,1),0ne
s(noOfPointsinSolution3*2,1),[],options);

path3=[source3; [solution3(1:2:end)*size(map,1)
solution3(2:2:end)"*size(map,2)]; goal3];

81

while (PathCostGA_RZ1(solution)>size(map,1)*s ize(map,2) ||
PathCostGA_R2(solution2)>size(map,1)*size(map,2)||
PathCostGA_R3(solution3)>size(map,1)*size(map,2))

if PathCostGA_ R1(solution)>size(map,1)*size(map,2)

'Path 1 ERROR: NO PATH WAS FOUND for pathl’

noOfPoaintsinSolution1=noOfPointsIn Solution1+1;

[solution cost] = ga(@PathCostGA_R1,
noOfPoaintsInSolution1*2,[],[],[1,[],zeros(noOfPointsInSolution1*2,1),one
s(noOfPointsInSolution1*2,1),[],options);

path=[source; [solution(1:2:end)*size(map,1)
solution(2:2:end)"*size(map,2)]; goal] ;

end

if PathCostGA_R2(solution2)>size(map,1)*size(map,2)
'Path2 ERROR: NO PATH WAS FOUND for path2'
noOfPointsinSolution2=noOfPointsInSolution2+1;
[solution2 cost2] = ga(@PathCostGA _R2,
noOfPointsInSolution2*2,[],[1.[].[],zer os(noOfPointsIinSolution2*2,1),0ne
s(noOfPointsinSolution2*2,1),[],options);
path2=[source2; [solution2(1:2:end)*size(map,1)
solution2(2:2:end)*size(map,2)]; goal2];
end

if PathCostGA_R3(solution3)>size(map,1)*size(map,2)

'Path3 ERROR: NO PATH WAS FOUND for path3'

noOfPointsInSolution3=noOfPointsIinSolution3+1;

[solution3 cost3] = ga(@PathCostGA_R3,
noOfPointsInSolution3*2,[],[1.[1.[],zeros(noOfPointsIinSolution3*2,1),0ne
s(noOfPointsIinSolution3*2,1),[],0ptions);

path3=[sou rce3; [solution3(1:2:end)*size(map,1)
solution3(2:2:end)"*size(map,2)]; goal3];

end
end

if splineSmoothing
path=bsp(path);
end

'A_Complete'

b_start;

0% - - - - - —
- %

%b_start.m

'B_Start’

H=size(path,1);

H2=size(path2,1);

H3=size(path3,1);

bsp_=false;
if bsp_
path=bsp(path)

82

path2=bsp(path2)
path3=bsp(path3)
end

oldpath=round(path);
oldpath2=round(path2);
oldpath3=round(path3);

'B_Complete'

()

(¢

— 0/0

%Robot_simu.m
plotpath;

i=1; %row counter
j=1; %col counter
max_rows=size(map,1);
max_cols=size(map,2);
featurematrix=[];

path_r1=[];
path_r2=[];
path_r3=[];

%forward3=1;
Q1=3;

Q11=3;

Q2=3;

Q22=3;

Q3=3;

Q33=3;
mem=0;
mem1=0Q11;
mem11=Q111;
mem2=0Q21;
mem22=0Q22 1;
mem3=0Q31;
mem33=Q33 1;

rlaction=0;
r2action=0;
r3action=0;

r12rank=0;
r13rank=0;
r23rank=0;

for j=1:max_cols
for i=l:max_rows
if map(i,j)==0; %check if current cell is obstacle - filled
Loc=[i;il;
featurematrix=horzcat(featurematrix,Loc);

83

%featurematrix([1 2],:) = featurematrix([2 1],:);
%featurematrix(
end
end
end

MapFeatures=size(featurematrix,2);

imshow(map);
axis on;
grid on;
hold on;

robotRadius = 1.0;

%opes map window

xlabel('y -axis') % x- axis label
ylabel('x -axis') % y- axis label
axis([0 size(map,2) 0 size(map,1)])

map_backup=map;

if firstrun==0
map_backupxor = xor(map_backup,1);
map_backup = robotics.BinaryOccupancyGrid(map_backupxor);

oldpath=fliplr(oldpat h);
oldpath2=fliplr(oldpath2);
oldpath3=fliplr(oldpath3);

obs_path=fliplr(obs_path);
obs_path2=fliplr(obs_path2);
obs_path3=fliplr(obs_path3);

firstrun=1;
end
plot(path(:,2), path(:,1), k --d)
plot(path2(:,2), path2(;,1), 'k --d)
plot(path3(:,2), path3(:,1), k --d)

84

robot1CurrentLocation = oldpath(1,:);
robotlGoal = oldpath(end,:);

robot2CurrentLocation = oldpath2(1,:);
robot2Goal = oldpath2(end,:);

ro bot3CurrentLocation = oldpath3(1,:);
robot3Goal = oldpath3(end,:);

initialOrientationl = 0;
initialOrientation2 = 0;
initialOrientation3 = 0;

robot1CurrentPose = [robot1CurrentLocation initialOrientationl];
robot2CurrentPose = [robot2CurrentLocation initialOrientation?2];
robot3CurrentPose = [robot3CurrentLocation initialOrientation3];

robotl = ExampleHelperDifferentialDriveRobot(robot1CurrentPose);
robot2 = ExampleHelperDifferentialDriveRobot(robot2CurrentPose);
robot3 =E xampleHelperDifferentialDriveRobot(robot3CurrentPose);

controllerl = robotics.PurePursuit;
controller2 = robotics.PurePursuit;
controller3 = robotics.PurePursuit;

controllerl.Waypoints = oldpath;
controller2.Waypoints = oldpath2;
controller3.Waypoints = oldpath3;

controllerl.DesiredLinearVelocity = 1.5;

85

controller2.DesiredLinearVelocity = 1.5;
controller3.DesiredLinearVelocity = 1.5;

controllerl.MaxAngularVelocity = 10;
controller2.MaxAngularVelocity = 10;
controlle r3.MaxAngularVelocity = 10;

controllerl.LookaheadDistance = 1.5;
controller2.LookaheadDistance = 1.5;
controller3.LookaheadDistance = 1.5;

goalRadiusl = 0.2;
distanceToGoal = norm(robotlCurrentLocation

goalRadius2 = 0.2;
distanceToGoal2 = norm(robot2CurrentLocation

goalRadius3 = 0.2;
distanceToGoal3 = norm(robot3CurrentLocation

obstaclecontroller
0=0;

robotlGoal);

robot2Goal);

robot3Goal);

while (distanceToGoal > goalRadiusl || distanceToGoal2 > goalRadius2 ||

distanceT 0Goal3 > goalRadius3)

[vl, omegal] = step(controllerl, robotl.CurrentPose);
[v2, omega?2] = step(controller2, robot2.CurrentPose);
[v3, omega3] = step(controller3, robot3.CurrentPose);

obstacledrive

PotentialProto;
obs_robot1CurrentLocation;

locationlist;

if (distanceToGoal>=goalRadiusl)

86

path_r1(Q1,:)=robotlCurrentLocation;

Thetal_current=robotl.CurrentPose(3); %Current Orientation
Saved

drive(robotl, v1, omegal)
PotentialProto;

robotlCurrentLocation = robotl.CurrentPose(1:2);
distanceToGoal = norm(robot1CurrentLocation - robotlGoal);

r obot1CurrentLocation;
if QL memil>1
XRobotl_previous=transpose(path_r1(Q1 - mem1,’));

else
meml=1;
xRobotl_previous=transpose(path_r1(Q1,:));
end
%xRdootl_previous=transpose(path_r1(Q1 - mem,’))
XRobotl_current=transpose(path_r1(Q1,:));
else
v1=0; %stop robotl when reached destination
end

if (distanceToGoal2>=goalRadius2)
path_r2(Q2,2)= robot2CurrentLocation(2);

drive(robot2, v2, omega?2)
PotentialProto;

robot2CurrentLocation = robot2.CurrentPose(1:2);
distanceToGoal2 = norm(robot2CurrentLocation - robot2Goal);

path_r2(Q2,:)=robot2CurrentLocation;
Q2;
memz2;
if Q2 mem2>1
xRobot2_previous=transpose(path_r2(Q2 - memz2,));
else
mem2=1;
xRobot2_previous=transpose(path_r2(Q2,:));
end

xRobot2_current=transpose(path_r2(Q2,:));

87

else
v2=0;
end

if (distanceToGoal3> =goalRadius3)
path_r3(Q3,:)=robot3CurrentLocation;

Theta3_current=robot3.CurrentPose(3); %Current Orientation Saved
drive(robot3,v3,0mega3)

robot3CurrentLocation = robot3.CurrentPose(1:2);
distanceToGo al3 = norm(robot3CurrentLocation - robot3Goal);

if Q3 mem3>1

XRobot3_previous=transpose(path_r3(Q3 - mema3,’));
else

mem3=1;

XRobot3_previous= transpose(path_r3(Q3,.));
end

XRobot3_current=transpose(path_r3(Q3,:));

else
v3=0; %stop robot when reached destination

end

end

(yU - - - - - ===
- %

%obstaclecontroller.m

obs_robotlCurrentLocation = obs_path(1,:);
obs_robotGoal = obs_path(end,:);

obs_robot2CurrentLocation = obs_path2(1,:);
obs_robot2Goal = obs_path2(end,:);

obs_robot3CurrentLocation = obs_path3(1,:);
obs_robot3Goal = obs_path3(end,:);

obs_initialOrientation = O;
obs_initialOrientation2 = 0;
obs_initialOrientation3 = 0;

obs_robotCurrentPose = [obs_robot1CurrentLocation

88

obs_initialOrientation];

obs_robot2CurrentPose = [obs_robot2CurrentLocation
obs_initialOrientation2];

obs_robot3CurrentPose = [obs_robot3CurrentLocation
obs_initialOrientation3];

obs_robot = ExampleHelperDifferentialDriveRobot(obs_robotCurrentPose);
obs_robot2 = ExampleHelperDif ferentialDriveRobot(obs_robot2CurrentPose);
obs_robot3 = ExampleHelperDifferentialDriveRobot(obs_robot3CurrentPose);

obs_controller = robotics.PurePursuit
obs_controller2 = robotics.PurePursuit
obs_controller3 = robotics.PurePursuit

obs_ controller.Waypoints = obs_path;
obs_controller2.Waypoints = obs_path2;
obs_controller3.Waypoints = obs_path3;

obs_controller.DesiredLinearVelocity = 0.5;
obs_controller2.DesiredLinearVelocity = 0.5;
obs_controller3.DesiredLinearVelocity = 0.5;

obs_con troller.MaxAngularVelocity = 12;
obs_controller2.MaxAngularVelocity = 12;
obs_controller3.MaxAngularVelocity = 12;

obs_controller.LookaheadDistance = 0.1;
obs_controller2.LookaheadDistance = 0.1;
obs_controller3.LookaheadDistance = 0.1;

obs_goalRadius =0.1;
obs_distanceToGoal = norm(obs_robotl1CurrentLocation

obs_goalRadius2 = 0.1;
obs_distanceToGoal2 = norm(obs_robot2CurrentLocation

obs_goalRadius3 = 0.1;
obs_distanceToGoal3 = norm(obs_robot3CurrentLocation
0% - - - - - —
- %
%obstacledrive.m

[obs_v, obs_omega] = step(obs_controller, obs_robot.CurrentPose);
[obs_v2, obs_omega2] = step(obs_controller2, obs_robot2.CurrentPose);
[obs_v3, obs_omega3] = step(obs_controller3, obs_robot3.CurrentPose);

if (obs_distanceToGoal>=0bs_goalRadius)
drive(obs_robot, obs_v, obs_omega)

obs_robotl1CurrentLocation = obs_robot.CurrentPose(1:2);

obs_robotGoal);

obs_robot2Goal);

obs_robot3Goal);

obs_distanceToGoal = nor m(obs_robot1CurrentLocation -

obs_robotGoal);
else

89

%Switch path go backwards
obs_path=flipud(obs_path);
temp_source=obs_source;
temp_goal=obs_goal;
obs_source=temp_goal;
obs_goal=temp_source;
obst aclecontrollerl;

end

if (obs_distanceToGoal2>=0bs_goalRadius?2)

drive(obs_robot2, obs_v2, obs_omega?2)
obs_robot2CurrentLocation = obs_robot2.CurrentPose(1:2);
obs_distanceToGoal2 = norm(obs_robot2CurrentLocation

obs_robot2Goal);
else
%Switch path go backwards
obs_path2=flipud(obs_path2);
temp_source2=0bs_source2;
temp_goal2=obs_goal2;
obs_source2=temp_goal2;
obs_goal2=temp_source2;
obstaclecontroller2;
end

if (obs_distanceToGoal3>=0bs_goalRadius3)
drive(obs_robot3, obs_v3, obs_omega3)
obs_robot3CurrentLocation = obs_robot3.CurrentPose(1:2);
obs_distanceToGoal3 = norm(obs_robot3CurrentL

obs_robot3Goal);
else
%Switch path go backwards
obs_path3=flipud(obs_path3);

temp_source3=0bs_source3;
temp_goal3=obs_goal3;
obs_source3=temp_goal3;
obs_goal3=temp_source3;
obst aclecontroller3;
end
% - — - -

- %
%locationlist.m
Q1=0Q1+1;
Q11=Q11+1;
Q2=Q2+1;
Q22=Q22+1;
Q3=Q3+1,
Q33=Q33+1;

%mem=1,;

path_r1(Q1,1)=robotlCurrentLocation(1);

90

ocation

path r1(Q1,2)= robotlCurrentLocation(2);

path_r2(Q2,1)=robot2CurrentLocation(1);
path_r2(Qz2,2)=robot2CurrentLocation(2);

path_r3(Q3,1)=robot3CurrentLocation(1);
path_r3(Q3,2)=robot3CurrentLocation(2);

%Q is current location

%@ 1 is previous Location

% - - - - - ——
- %

%PotentialProto.m

Thetal=omegal,;

Theta2=omegaz;

Theta3=omega3;

%VPR=Variable Per Robot

xSourcel=transpose(source); %VPR
xSource2=transpose(source2); %VPR
xSource3=transpose(source3); %VPR
xGoall=transpose(goal); %VPR
xGoal2=transpose(goal2); %VPR
xGoal3=transpose(goal3); %VPR
XRobotl=transpose(robotlCurrentLocation); %VPR
XRobot2=transpose(robot2CurrentLocation); %VPR
xRobot3=transpose(robot3CurrentLocation); %VPR

RadiusOfinfluence=1 .2;
RadiusOfInfluenceEnv=0.5; %4
RadiusOfinfluence_dynamic=1.2;

KEnvironment=3; %1
KGoal=0.05; %0.6

KObj=0.5;

Kdynamic=0.3;

KTotal=0.01; %0.001

Goal_Errorl = transpose(xGoall - XRobotl); %VPR
Goal_Error2 = transpose(xGoal2 - XRobot2); %VPR
Goal_Error3 = transpose(xGoal3 - xRobot3); %VPR

FGoal_l1=transpose(1*(Goal_Errorl)/norm(Goal_Errorl));
FGoal_2=transpose(1*(Goal_Error2)/norm(Goal_Error2));
FGoal_3=transpose(1*(Goal_Error3)/norm(Goal_Error3));

%Compute Distance between Robots

%Robotl- Robot2

XDistancel2=xRobot1(1) - xRobot2(1); %VPR
YDistancel2=xRobot1(2) - xRobot2(2); %VPR
Dpl2=[XDistancel2;YDistancel?2]; %VPR

91

Distance_12 = sqrt(sum(Dp12.2)); %VPR
ilnfluencial_12 = find(Distance_12<RadiusOfIinfluence); %VPR

%Robotl- Robot3
XDistancel3=xRobot1(1) - XRobot3(1); %VPR
YDistancel3=xRobot1(2) - XxRobot3(2); %VPR

Dp13=[XDistancel3;YDistancel3]; %VPR
Distance_13 = sqrt(sum(Dp13.2)); %VPR
ilnfluencial_13 = find(Distance_13<RadiusOfInfluence); %VPR

%Robot2- Robot3
XDistance23=xRobot2(1) - XRobot3(1); %VPR
YDistance23=xRo bot2(2) -xRobot3(2); %VPR

Dp23=[XDistance23;YDistance23]; %VPR
Distance_23 = sqrt(sum(Dp23.2)); %VPR
ilnfluencial_23 = find(Distance_23<RadiusOfInfluence); %VPR

%Compute Distance between Robotl and Environment

%Rt Env

DplEnv = featurematrix - repmat(xRobotl, 1,MapFeatures);
DistancelEnv = sqgrt(sum(DplEnv. 2));

ilnfluenciallEnv = find(DistancelEnv<RadiusOflnfluenceEnv);

%R2 Env

Dp2Env = featurematrix - repmat(xRobot2,1,MapFeatures);
Distance2Env = sqrt(sum(Dp2Env.*2));

iinfluencial2Env = find(Distance2Env<Radiu sOfInfluenceEnv);
%R3 Env

Dp3Env = featurematrix - repmat(xRobot3,1,MapFeatures);

Distance3Env = sqgrt(sum(Dp3Env.*2));
ilnfluencial3Env = find(Distance3Env<RadiusOfInfluenceEnv);

dynamicobstacles

%while(~isempty(ilnfluencial_12) || ~isempty(il nfluencial_13) ||
~isempty(ilnfluencial_23) || ~isempty(ilnfluencial_R302) ||
~isempty(ilnfluencial_R303))

(ilnfluencial_12);
(ilnfluencial_13);
(ilnfluencial_23);

%R1
%R1 R2
if (~isempty(ilnfluencial_12)) %R1 R2
%vector sum of repulsions:
rhol2 = repmat(Distance_12(ilnfluencial_12),2,1);

92

else

V12 = Dp12(;,ilnfluencial_12);

DrhoDx12 =

-V12./rhol2;

F12 = (1./rhol2 - 1./RadiusOfInfluence)*1./(rh012./2).*DrhoDx12;

FObjects_12 =

KObj*sum(F12,2);

%nothing close

FObjects_12 =[0;0];
end
%R1 R3
if (~isempty(ilnfluencial_13)) %R1 R3

else

%vector sum of repulsions:
rhol3 = repmat(Distance_13(ilnfluencial_13),2,1);
V13 = Dp13(:,ilnfluencial_13);

DrhoDx13 =

-V13./rhol3;

F13 =(1./rho13 - 1./RadiusOfinfluence)*1./(rh013.72).*DrhoDx13;

FObjects 13 =

KObj*sum(F13,2);

%nothing close

FObjects_13 =[0;0];
end
%R2
%R2 R1
if (~isempty(ilnfluencial_12)) %R2 R1
%vector sum of repulsions:
rho21 = repmat(Distance_12(ilnfluencial_12),2,1);
V21 = Dpl12(:,ilnfluencial_12);
DrhoDx21 = -V21./rho21;
%F21 = (1./ rho2l - 1./RadiusOfInfluence)*1./(rho21.72).*DrhoDx21,
F21=(1./rho21 - 1./RadiusOfinfluence)*1./(rho21.72).*DrhoDx21;;
FObjects 21 = KObj*sum(F21,2);
else
%nothing close
FObjects_21 =[0;0];
end
%R2 R3
if (~isempty(ilnfluencial_23)) %R2 R3
%vector sum of repulsions:
rho23 = repmat(Distance_23(ilnfluencial_23),2,1);
V23 = Dp23(:,ilnfluencial_23);
DrhoDx23 = -V23./rh023;
F23 = (1./rho23 - 1./RadiusOfinfluence)*1./(rho23. 72).*DrhoDx23;
FObjects_23 = KObj*sum(F23,2);
else
%nothing close
FObjects_23 =[0;0];
end
%R3
%R3 R1
if (~isempty(ilnfluencial_13)) %R3 R1

%vector sum of repulsions:
rho31 = repmat(Distance_13(ilnfluencial_13),2,1);

93

V31 = Dp13(;,ilnfluencial_13);
DrhoDx31 = -V31./rho31;
%F31 = (1./rho31 - 1./RadiusOfInfluence)*1./(rho31.72).*DrhoDx31;
F31=(1./rho31 - 1./RadiusOfinfluence)*1./(rho31 /2).*DrhoDx31;;
FObjects_31 = KObj*sum(F31,2);

else
%nothing close
FObjects_31 =[0;0];

end

%R3 R2

if (~isempty(ilnfluencial_23)) %R3 R2
%vector sum of repulsions:
rho32 = repmat(Distance_23(ilnfluencial_23),2,1);
V32 = Dp23(:,ilnfluencial_23);
DrhoDx32 = -V32./rho32;
%F32 = (1./rho32 - 1./RadiusOfInfluence)*1./(rho32.72).*DrhoDx32;
F32=(1./rh0o32 - 1./RadiusOfinfluence)*1./(rho32." 2).*DrhoDx32;
FObjects_32 = KObj*sum(F32,2);

else
%nothing close
FObjects_32 = [0;0];

end

%R Environment
if (~isempty(ilnfluenciallEnv))
%vector sum of repulsions:
rholEnv = repmat(DistancelEnv(ilnfluenciallEnv),2,1);
V1Env = DplEnv(;ilnfluencialLEnv);
DrhoDx1Env = - V1Env./rholEnv;
F1Env = (1./rholEnv -
1./RadiusOfinfluenceEnv)*1./(rholEnv."2).*DrhoDx1Env;
FObjects1Env = KEnviro nment*sum(F1Env,2);
else
%nothing close
FObjects1Env = [0;0];
end;
%R2 Environment
if (~isempty(ilnfluencial2Env))
%vector sum of repulsions:
rho2Env = repmat(Distance2Env(ilnfluencial2Env),2,1);
V2Env = Dp2Env(:,ilnfluencial2Env);
DrhoDx2Env = - V2Env./rho2Env;
F2Env = (1./rho2Env -
1./RadiusOfInfluenceEnv)*1./(rho2Env.”2).*DrhoDx2Env;
FObjects2Env = KEnvironment*sum(F2Env,2);

else
%nothing close
FObjects2Env = [0;0];
end;
%R3 Environment

if (~isempty(ilnfluencial3Env))

%vector sum of repulsions:

94

rho3Env = repmat(Distance3Env(ilnfluencial3Env),2,1);
V3Env = Dp3Env(;,ilnfluencial3Env);
DrhoDx3Env = - V3Env./rho3Env;
F3Env = (1./rho3Env -

1./RadiusOfInfluenceEnv)*1./(rho3Env.”2).*DrhoDx3Env;
FObjects3Env = KEnvironment*sum(F3Env,2);

else

%nothing close

FObjects3Env = [0;0];
end;

%Rt 01
if (~isempty(ilnfluencial_R101))
%vector sum of repulsions:
rho_R101 = repmat(Distance_R10O1(iInfluencial_R101),2,1);
V_R101 = Dp_R10O1(;,ilnfluencial_R101);
DrhoDx_R101 = -V_R101./rho_R101;

F R101=(1/rho _R101-
1./RadiusOfInfluence_dynamic)*1./(rho_R101.72).*DrhoDx_R101;
FObjects_R101 = Kdynamic*sum(F_R101,2);

else
%nothing close
FObjects R101 =[0;0];
end

%R 02
if (~isempty(ilnfluencial_R102))
%vector sum of repulsions:
rho_R102 = repmat(Distance_R102(ilnfluencial_R102),2,1);
V_R102 = Dp_R102(:ilnfluencial_R102);
DrhoDx_R102 = -V_R102./rho_R102;
F_R102 = (1./rho_R102 -
1./RadiusOflInfluence_dynamic)*1./(rho_R102.72).*DrhoDx_R10 2;
FObjects R102 = Kdynamic*sum(F_R102,2);
else
%nothing close
FObjects R102 =[0;0];
end
%R 03
if (~isempty(ilnfluencial_R103))
%vector sum of repulsions:
rho_R103 = repmat(Distance_R103(ilnfluencial _R103),2,1);
V_R103 = Dp_R103(:,ilnfluencial_R103);
DrhoDx_R103 = -V_R103./rho_R103;
F_R103 =(1./rho_R103 -
1./RadiusOfiInfluence_dynamic)*1./(rho_R103.72).*DrhoDx_R103;
FObjects_R103 = Kdynamic*sum(F_R103,2);
else
%nothing close
FObjects R103 =[0;0];
end
%R2 01
if (~isempty(ilnfluencial_R201))

%vector sum of repulsions:

95

rho_R201 = repmat(Distance_R201(iInfluencial_R201),2,1);
V_R201 = Dp_R201(;, ilnfluencial_R201);
DrhoDx_R201 = -V_R201./rho_R201;

F_R201 = (1./rho_R201 -
1./RadiusOfInfluence_dynamic)*1./(rho_R201.72).*DrhoDx_R201;
FObjects R201 = Kdynamic*sum(F_R201,2);

else
%nothing close
FObjects_ R20 1 =[0;0];

end

%R2 02

if (~isempty(ilnfluencial_R202))
%vector sum of repulsions:
rho_R202 = repmat(Distance_R202(ilnfluencial_R202),2,1);
V_R202 = Dp_R202(:,ilnfluencial_R202);
DrhoDx_R202 = -V_R202./rho_R202;

F_R202 = (1./rho_R202 -
1./RadiusOfInfluence_dynamic)*1./(rho_R202.72).*DrhoDx_R202;
FObjects_R202 = Kdynamic*sum(F_R202,2);

else
%nothing close
FObjects_R202 = [0;0];
end

%R2 O3
if (~isempty(ilnfluencial_R203))
%vector sum of repulsions:
rho_R203 = repmat(Distance_R203(iInfluencial_R203),2,1);
V_R203 = Dp_R203(:,ilnfluencial_R203);
DrhoDx_R203 = -V_R203./rho_R203;
F_R203 =(1./rho_R203 -
1./RadiusOfInfluence_dynamic)*1./(rho_ R203.#2).*DrhoDx_R203;
FObjects_R203 = Kdynamic*sum(F_R203,2);
else
%nothing close
FObjects_ R203 =[0;0];
end
%R3 01
if (~isempty(ilnfluencial_R301))
%vector sum of repulsions:
rho_R301 = repmat(Distance_R301(ilnfluencial_R301),2,1);
V_R301 = Dp_R301(;,ilnfluencial_R301);
DrhoDx_R301 = -V_R301./rho_R301;
F_R301 = (1./rho_R301 -
1./RadiusOfiInfluence_dynamic)*1./(rho_R301.72).*DrhoDx_R301;
FODbj ects_R301 = Kdynamic*sum(F_R301,2);
else
%nothing close
FObjects_R301 =[0;0];
end
%R3 02
if (~isempty(ilnfluencial_R302))
%vector sum of repulsions:
rho_R302 = repmat(Distance_R302(ilnfluencial_R302),2,1);
V_R302 = Dp_R302(:,ilnfluencial_R302);
DrhoDx_R302 = -V_R302./rho_R302;
F_R302 =(1./rho_R302 -

96

1./RadiusOfInfluence_dynamic)*1./(rho_R302.72).*DrhoDx_R302;
FObjects R302 = Kdynamic*sum(F_R302,2);

else
%nothing close
FObjects_R302 = [0;0];
end
%R3 03

if (~isempty(ilnfluencial_R303))
%vector sum of repulsions:
rho_R303 = repmat(Distance_R303(iInfluencial_R303),2,1);
V_R303 = Dp_R303(;,iInfluencial_R303);
DrhoDx_R303 = -V_R303./rho_R303;
F R303 =(1./rho_R303 -

1./RadiusOfInfluence_dynamic)*1./(rho_R303.72).*DrhoDx_R303;

FObjects R303 = Kdynamic*sum(F_R303,2);

else
%nothing close
FObjects R303 =[0;0];

end

FGoal_1 = transpose(KGoal*(Goal_Errorl)/norm(Goal_Errorl));
FGoal_2 = transpose(KGoal*(Goal_Error2)/norm(Goal_Error2));
FGoal_3 = transpose(KGoal*(Goal_Error3)/norm(Goal_Error3));

FObjects_1=FObjects_12+FObjects_13;
FObjec ts_2=FObjects_21+FObjects_23;
FObjects_3=FObjects_31+FObjects_32;

FObjects_dynamic_1=FObjects_ R101+FObjects_R102+FObjects_R103;
FObjects_dynamic_2=FObjects_R201+FObjects_R202+FObjects R203;
FObjects_dynamic_3=FObjects_R301+FObjects_R30 2+FObjects_R303;

FTotal_1 =
KTotal*(FGoal_1+FObjects_1+FObjects1Env+FObjects_dynamic_1);

FTotal 2=
KTotal*(FGoal_2+FObjects_2+FObjects2Env+FObjects_dynamic_2);

FTotal 3=
KTotal*(FGoal_3+FObjects_3+FObjects3Env+FObjects_dynamic_3);

Magnitude_1 = min(1,norm(FTotal_1));
Magnitude_2 = min(1,norm(FTotal_2));
Magnitude_3 = min(1,norm(FTotal_3));

FTotal_1 = FTotal_1/norm(FTotal_1)*Magnitude_1;
FTotal 2 = FTotal_2/norm(FTotal_2)*Magnitude_2;
FTotal 3=F Total 3/norm(FTotal_3)*Magnitude_3;

Magnitude_4 = min(1,norm(FObjects_1));
Magnitude_5 = min(1,norm(FObjects_2));
Magnitude_6 = min(1,norm(FObjects_3));

97

FObjects_1 = FObjects_1/norm(FObjects_1)*Magnitude_4;
FObjects 2 = FObjects_2/norm(FObjects_2)*Magnitude_5;
FObjects_3 = FObjects_3/norm(FObjects_3)*Magnitude_6;

ranking_script
act_robots;

update_robots;
% - - - -

%ranking_script.m

followerscript=6; %6
leaderscript=2; %2
defaultscript=2; %2

dynamicscript=7;
stopscript=0;

%Whichever robot is closer to its goal gets priority

if distanceToGoal>distanceToGoal2
%r1 is closer to goal, rl gets priority on r2
r12rank=0.1;

elseif distanceToGoal<distanceToGoal2
ri2rank=1;

end

if distanceToGoal>distanceToGoal3
%r1 is closer to goal, rl gets priority on r3
r13rank=0.1;

elseif distanceToGoal<distanceToGoal3
r13rank=1;

end

if distanceToGoal2>distanceToGoal3
%r2 is closer to goal, r2 gets priority on r3
r23rank=0.1;

elseif distanceToGoal2<distanceToGoal3
r23rank=1;

end

98

if (~isempty(ilnfluencial_12))
%R1 R2
if rl2rank<=0.5
%rlis leadertor2
%'Robot 1 is leader to R2'

r2action=followerscript;
rlaction=leaderscript;
%r3action=defaultscript;

actrobot?2;
actrobotl;

%r2action=testscript;
%actrobot?2;

elseif r12rank>0.5
%r2 is leader to rl
% 'Robot 2 is leader to R1'

rlaction=followerscript;
r2action=leaderscript;
%r3action=defaultscript;

actrobotl;
actrobot?2;

%rlaction=testscript;
%actrobotl,;

end
end

%R1 R3

if (~isempty(ilnfluencial_13))
if rl3rank<=0.5
%r1l is leader to r3
%'Robot 1 is leader to R3'

r3action=followerscript;
rlaction=leaderscript;
%r2action=defaultscript;

actrobot3;
actrobotl;

%actrobot?2;

%r3action=testscript;
%actrobot3;

% 'Robotl Has Priority, Robot3 dodges'
elseif r13rank>0.5
%r3 is leader to rl
%'Robot 3 is leader to R1'

rlaction=followerscript;
%r2action=defaultscript;
r3action=leaderscript;

actrobotl;

actrobot3;
%actrobot2;
%rlaction=testscript;

%actrobotl;

end
end

if (~isempty(ilnfluencial_23))
if r23rank<=0.5

%r2 is leader to r3
% 'Robot 2 is leader to R3'

r3action=followerscript;
%rlaction=defaultscript;
r2action=leaderscript;

actrobot3;
actrobot?2;
% actrobotl;

%r3action=testscript;
%actrobot3;

10C

elseif r23rank>0.5
%r3 is leader to r2
% 'Robot 3 is leader to R2'

%rlaction=defaultscript;
r2action=followerscript;
r3action=leaderscript;
%'HELLO!

actrobot?;
actrobot3;

%actrobotl;

%r2action=testscript;
%actrobot2;

% 'Robot3 Has Priority, Robot2 dodges'
end
end

if (~isempty(ilnfluencial_R101))| [(~isempty(ilnfluencial_R102))||(~isempt
y(ilnfluencial_R103))

%rlaction=followerscript;
%actrobotl,;
%updaterobotl;

rlaction=stopscript;
actrob otl;
updaterobotl;

rlaction=dynamicscript;
actrobotl;
updaterobotl;

else

101

rlaction=defaultscript;
actrobotl;
updaterobotl;

end

if (~isempty(ilnfluencial_R201))||(~isempty(ilnfluencial _R202))||(~isempt
y(ilnfluencial_R203))

%r2action=followerscript;
%actrobot2;
%updaterobot2;

%r2action=followerscript;
%actrobot2;
%updaterobot?2;

r2action=stopscript;
actrobot2;
updaterobot2;

r2action=dynamicscript;
actrobot2;
updaterobot2;

else
r2action=defaultscript;
actrobot2;
updaterobot?2;

end

if (~isempty(ilnfluencial_R301))||(~isempty(ilnfluencial_R302))||(~isempt
y(ilnfluencial_R303))

r3action=stopscript;
actrobot3;
updaterobot3;

r3action=dynamicscript;

102

actrobot3;
updaterobot3;

else

r3action=defaultscript;
actrobot3;
updaterobot3;

end

update_robots;
% - - -
%act_robots.m
actrobotl;
actrobot2;
actrobot3;
% - - -
%actrobotl.m
%{

r#faction - if r#faction is O, robot is to return to previous location
if r#action is 1, robot is to go to forward locat ion
%}

if rlaction==0
%rlaction O
controllerl.DesiredLinearVelocity=0.0000000000000000001;
end

if rlaction==1
%rlaction 1
controllerl.DesiredLinearVelocity=1.5;
updaterobotl;

end

if rlaction==
%rlaction 2
controllerl.DesiredLinearVelocity=1.5;

controllerl.DesiredLinearVelocity=1.0*controllerl.DesiredLinearVelocity;
XRobotl=xRobotl+FTotal 1;

Thetal = - atan2(FTotal_1(1),FTotal_1(2));
updaterobotl;

end

if rlaction==

10

1)

%rlaction 3

XRobotl=xRobotl+FTotal 1;

Thetal = - atan2(FTotal_1(1),FTotal_1(2));
updaterobotl;

end

if rlaction==
%rlaction 4
XRobotl=xRobot1+FTotal_1;
Thetal = - atan2(FTotal_1(1),FTotal_1(2));
updaterobotl;
end

if rlaction==5
%rlaction 5
xRobotl=xRobotl previous+FTotal_1;
Thetal = - atan2(FTotal_1(1),FTotal_1(2));
updaterobotl;
end

if rlaction==6
%rlaction 6
controllerl.DesiredLinearVelocity=0.0000000000000000001;
xRobotl_previous=tr anspose(path_r1(Q1 - memll,));
Thetal = - atan2(FObjects_1(1),FObjects_2(2));
XRobotl=xRobotl_previous;
updaterobotl;

if Ql>=memll+5
memll=memll+1

if memll>=5
mem11=1;
end
end
end
if rlaction==
%rlaction 7
controllerl.DesiredLinearVelocity=0.0000000000000000001;

xRobotl_previous=transpose(path_r1(Q1 -mem1l,)));
Thetal = - atan2(FObjects_dynamic_1(1),FObjects_dynamic_1(2));
xRobot1=xRobotl_previous;

updaterobotl;

if Qll>=memll+5
memll=memll+1;

if memll>=5
mem11=1;
end
end

end

104

updaterobotl;

()

(¢

%actrobot2.m

%{

r#faction - if r#factio nis O, robot is to return to previous location
if ri#action is 1, robot is to go to forward location
%}

if r2action==0
%r2action 0
controller2.DesiredLinearVelocity=0.0000000000000000001;

end

if r2action==1
%r2action 1
controller2.DesiredLinearVelocity=1.5;
updaterobot2;
end

if r2action==2
%r2action 2
controller2.DesiredLinearVelocity=1.5;

controller2.DesiredLinearVelocity=1.0*controller2.DesiredLinearVelocity;
XRobot2=xRobot2+FTotal_2;

Theta2 = - atan2(FTotal_2(1),FTotal_2(2));
updaterobot2;
end
if r2action==
%r2action 3
xRobot2=xRobot2+FTotal_2;
Theta2 = - atan2(FTotal_2(1),FTotal_2(2));
end
if r2action==
%r2action 4
XRobot2=xRobot2+FTotal_2;
Theta2 = - atan2(FTotal_2(1),FTotal_2(2));
updaterobot2;
end
if r2action==
%r2action 5
xRobot2=xRobot2_previous+FTotal_2;
Theta2 = - atan2(FTotal_2(1),FTotal_2(2));
updaterobot2;
end
if r2action==

%r2action 2
contr oller2.DesiredLinearVelocity=0.0000000000000000001;

10t

XRobot2_previous=transpose(path_r2(Q2 - mem22,’));
Theta2 = - atan2(FObjects_2(1),FObjects_2(2));
xRobot2=xRobot2_previous;

updaterobot2;

if Q2>=mem22+5
mem22=mem22+1

if mem22>=5
mem22=1;
end
end

%updaterobot2;
%oreturn;

end
if r2action==7 %r2action 2 is stop, backup and dodge
controller2.DesiredLinearVelocity=0.0000000000000000001;
xRobot2_previous= transpose(path_r2(Q2 - mem22,’));
%Theta2 = - atan2(FObjects_dynamic_2(1),FObjects_dynamic_1(2));
XRobot2=xRobot2_previous;
updaterobot2;

if Q22>=mem22+5
mem22=mem22+1;

if mem22>=5
mem22=1;
end
end
end

updaterobot2;
% - -
%actrobot3.m
%{

r#action - if r#faction is O, robot is to return to previous location
if r#faction is 1, robot is to go to forward location
%}

if r3action==
%r3action 0
controller3.DesiredLinearVelocity=0.0000000000000000001;
end

if r3action==1
%r3action 1
controller3.DesiredLinearVelocity=1.5;
updaterobot3;
end

if r3action==2

10¢€

%r3action 2
controller3.DesiredLinearVelocity=1.5;

controller3.DesiredLinearVelocity=1.0*controller3.DesiredLinearVelocity;
XRobot3=xRobot3+FTotal_3;
Theta3 = - atan2(FTotal_3(1),FTotal_3(2));
updaterobot3;
end

if r3action==3
%r3actio n3
XRobot3=xRobot3+FTotal_3;
Theta3 = - atan2(FTotal_3(1),FTotal_3(2));
updaterobot3;
end

if r3action==
%r3action 4
xRobot3=xRobot3+FTotal_3;
Theta3 = - atan2(FTotal_3(1),FTotal_3(2));
updaterobot3;
end

if r3action==5
%r3action 5
xRobot3=xRobot3_previous+FTotal_3;

Theta3 = - atan2(FTotal_3(1),FTotal_3(2));
updaterobot3;
end
if r3action==

%r3action 2
controller3.DesiredLinearVelocity=0.0000000000000000001;

xRobot3_previous= transpose(path_r3(Q3 - mema33,’));

Theta3 = - atan2(FObjects_3(1),FObjects_3(2));

XRobot3=xRobot3_previous;

updaterobot3;

if Q3>=mem33+5
mem33=mem33+1;

if mem33>=5
mem33=1;
end
end

end

if r3action==
%r3action 2

controller3.DesiredLinearVelocity=0.0000000000000000001;

xRobot3_previous=transpose(path_r3(Q3 - mem33,%));
%Theta3 = - atan2(FObjects_dynamic_3(1),FObjects_dynamic_3(2));
xRobot3=xRobot3_previous;
updaterobot3;

if Q33>=mem33+5
mem33=mem33+1

if mem33>=5
mem33=1;
end
end
end

updaterobot3;

(¢

%updaterobots.m

updaterobotl;

updaterobot2;

updaterobot3;

% - - - - - —

%updaterobotl.m

rlaction;

if rlaction==0
controllerl.DesiredLinearVelocity=0.0000000000000000001;
end

if rlaction==6 || rlaction==0 | | rlaction==7
controllerl.DesiredLinearVelocity=0.0000000000000000001;

riCurrentLocation=transpose(xRobot1); %R1
robotl.CurrentPose(1)=r1CurrentLocation(1);
robotl.CurrentPose(2)=r1CurrentLocation(2);
robotl.Current Pose(3)=Thetal,;

end

if rlaction==7
controllerl.DesiredLinearVelocity=0.0000000000000000001;

rlCurrentLocation=transpose(xRobot1); %R1
robotl.CurrentPose(1)=r1CurrentLocation(1);
robotl.CurrentPose(2)=r1CurrentLocation(2);
%robotl.CurrentPose(3)=Thetal,;

end

if rlaction~=0 && rlaction~=6 && rlaction~=4&& rlaction~=7
controllerl.DesiredLinearVelocity=1.5;

controllerl.DesiredLinearVelocity=1.5*controllerl.DesiredLinearVelocity;
end

10¢€

[vl, omegal] = step(controllerl, [transpose(xRobotl)
robotl.CurrentPose(3)]);

%robotl.CurrentPose=[transpose(xRobotl) Thetal]

O/U - - - - - ==

%updaterobot2.m
Distance_R201;
r2action;
if r2action==0
controller2.DesiredLinearVelocity=0.0000000000000000001;

end

if r2action==6 || r2action==3 || r2action==7
controller2.DesiredLinearVelocity=0.0000000000000000001;
r2CurrentLocation=transpose(xRobot2); %r2
robot2.CurrentPose(1)=r2CurrentLocation(1);
robot2.CurrentPose(2)=r2CurrentLocation(2);
robot2.CurrentPose(3)=Theta2;

end

if r2action==7
controller2.DesiredLine arVelocity=0.0000000000000000001;
r2CurrentLocation=transpose(xRobot?2); %r2
robot2.CurrentPose(1)=r2CurrentLocation(1);
robot2.CurrentPose(2)=r2CurrentLocation(2);
%robot2.CurrentPose(3)=Theta2;

end

if r2action ~=0 && r2action~=6 && r2action~=3&& r2action~=7
controller2.DesiredLinearVelocity=1.5;

controller2.DesiredLinearVelocity=1.5*controller2.DesiredLinearVelocity;
end

[v2, omega2] = step(controller2, [transpose(xRobot2)
robot2. CurrentPose(3)]);

%updaterobot3.m

Distance R301;
r3action;
if r3action==0
controller3.DesiredLinearVelocity=0.0000000000000000001;

end
if r3action==6 || r3action==3 || r3action==7
controller3.DesiredLinearVelocity=0.0000000000000000001;

r3CurrentLocation=transpose(xRobot3); %r3
robot3.CurrentPose(1)=r3CurrentLocation(1);
robot3.CurrentPose(2)=r3CurrentLocation (2);

robot3.CurrentPose(3)=Theta3;
end

if r3action==7
controller3.DesiredLinearVelocity=0.0000000000000000001;
r3CurrentLocation=transpose(xRobot3); %r3
robot3.CurrentPose(1)=r3CurrentLocation(1);
robo t3.CurrentPose(2)=r3CurrentLocation(2);
%robot3.CurrentPose(3)=Theta3;

end

if r3action~=0 && r3action~=6 && r3action~=3 && r3action~=7
controller3.DesiredLinearVelocity=1.5;

controller3.DesiredLinearVelocity=1.5*contr oller3.DesiredLinearVelocity;
end
[v3, omega3] = step(controller3, [transpose(xRobot3)
robot3.CurrentPose(3)]);

(yv - - - - - -

11C

