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Abstract

Critical Infrastructure (CI) forms the backbone of any naton, ensuring the seamless
operation of various sectors such as manufacturing, gas elme systems, nuclear
power plants, transportation, etc. The deployment of Indusial Control Systems
(ICSs) and Supervisory Control and Data Acquisition (SCADA) sgtems facilitates
the management and remote monitoring of the industrial prasses. However, this
advancement has also rendered ICSs vulnerable to numeroyber-attacks. Secu-
rity is crucial to prevent signi cant economic losses and gential loss of life and a
highly responsive Intrusion Detection System (IDS) is vitifor safeguarding Cl. IDSs
often rely on extensive network tra c that includes irrelevant features, leading to
prolonged response time. To address these challenges, weppse a novel approach
called Statistical Parameters - Selective Promising Featel Selection (SP-SPFS).
This method ranks the most relevant features based on stdisal parameters and
selects the most e ective features using a forward seleatiprocess. We evaluate SP-
SPFS by comparing it with other feature ranking and selectiomethods, including
Weighted Feature Importance (WFI) and Forward Feature Seleain (FFS). Speci -
cally, we analyze four combinations: SP-SPFS, SP-FFS, WFI-SPFSyAWFI-FFS.
The e ectiveness of these approaches is assessed usingliased classi ers, namely,
Decision Tree (DT), Random Forest (RF), Gradient Boost (GB),and Extreme Gra-
dient Boost (XGB) on the Gas Pipeline dataset from Mississp State University
(MSU) and its three clusters namely, Command, Function, and &ponse. Perfor-
mance metrics such as execution time, accuracy, fl-scorege@sion, and recall are
evaluated using 10-fold cross-validation. Our ndings shothat SP-SPFS achieves
the highest performance: 99.22% accuracy in 24.24 second W4 features on the
full dataset. For clusters, SP-SPFS-RF reaches 99.24% acawy with 10 features in
179.13 seconds (Command), 99.61% with 11 features in 239%é@onds (Function),
and 98.62% with 7 features in 12.4 seconds (Response). Olle&P-SPFS e ectively
reduces execution time while maintaining high performance

Xi
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Chapter 1

Introduction

The advent of technology has ushered in an era of unparalléleonvenience, yet it
has also introduced a plethora of cyber-threats. This du#i has fostered a com-
plex relationship between humans and technology, charadteed by both admiration
and apprehension. Presently, cyber-threats are extendirgeyond individuals and
in Itrating the organizations that underpin national infr astructure. These organiza-
tions form the Ciritical Infrastructures (CIs) of a nation, regulating essential services
across diverse sectors such as agriculture, healthcareclear energy, transportation,
nancial services, energy, civil and chemical engineeringas pipeline systems, water
plants, and research [3]. Consequently, any attack on theg#rastructures has a
profound impact on society at large.

Industrial Control Systems (ICSs) are pivotal in managingridustrial processes within
these Cls. Comprising hardware, software, operators, neivks, links, etc., [4] ICSs
facilitate seamless distribution and regulation of resoaes. ICSs traditionally were
not integrated into the internet but with the advent of technology and the Internet,
the transition to remote monitoring and surveillance took face. Supervisory Con-
trol and Data Acquisition (SCADA) systems speci cally overse¢he monitoring and
control of ICSs. SCADA systems encompass various componemt€luding Human-
Machine Interface (HMI), Master Terminal Unit (MTU), Remote Terminal Unit
(RTU), Communication Network, Programmable Logic Controlle (PLC), Sensors,
and Actuators [5]. The integration of SCADA systems enables gtnuous moni-
toring and timely data availability, which are crucial for real-time operations. As
mentioned above, ICSs has various applications ranging fnamanufacturing, energy
sector, water and wastewater treatments and distributionfransportation systems,
chemical and pharmaceutical domain, automation, mining.elecommunications, etc.
Historically, ICSs have been frequent targets of cyber-atti&s, with an increasing
number of incidents each year, as detailed in Chapté. Alimi et al. [6] discuss
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the increase of cyber-attacks on ICSs. They also discusseyal reported incidents
of cyber-attacks on gas pipeline systems across the worlctislas the Night Dragon
attack[7], Shamoon attack on the largest energy company ihe& world [7], and attack
on Saipem company [7]. Given the signi cant nancial and huran impact of these
attacks, it is imperative to address these vulnerabilitiesTo combat such issues an
Intrusion Detection System (IDS) will be an optimum choice.IDSs play a crucial
role in safeguarding the SCADA systems by monitoring and angling data to de-
tect threats [8]. A lot of work has been done in developing ID®r ICSs. There
exist di erent kinds of IDS that focus on di erent componens to identify intrusions.
Di erent categories of IDS include [9], [8]:

A

Network-based SCADA IDS: In this approach, the data packets ansmitted

between various components within the SCADA system are utziéd. These
IDSs exhibit rapid computational performance by examiningnly the packet

headers rather than the entire content. However, this methadogy renders
these IDSs vulnerable to cyberattacks that exploit malicias content embedded
within the packet payloads.

Application-based SCADA IDS: In this approach, the data gemated by the
sensors and actuators is utilized. Any deviation from the uglivalues will lead
to it being inferred as a possible cyberattack.

Signature-based SCADA IDS: In this approach, the intrusiongare detected
by matching them against a database of attack signatures oh&wn attacks.
However, it isn't possible to detect new attacks using such s.

Anomaly-based SCADA IDS: In this approach, the intrusions aredetected by
detecting abnormal behavior in system values. It is possélto detect new
attacks as any deviation gets highlighted.

Speci cation-based SCADA IDS [10]: This approach utilizeshie comparison
of the monitored values with prede ned protocols for deteatg intrusions.

There are various IDSs available for the SCADA system such &sort, Suricata, and
Bro [10]. Highly available IDSs are integral to the smooth worfg of ICSs by ensuring
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continuous monitoring, data protection in terms of integrly and con dentiality, swift
attack detection, and enhanced resilience [11].

IDS coupled with Machine Learning (ML) techniques has gaidea lot of attrac-
tion in the past couple of years. The large volume of data genrated by the SCADA
sensors and other components can be used to develop a systemmethod capable
of learning and identifying the patterns that help in anoma} detection [12]. Nu-
merous publicly available datasets for dierent ICSs can bemployed to develop
mechanisms capable of detecting, predicting, and classify potential intrusions.
Some notable publicly available datasets include KDD98 [[L3KDD99 [14], NSL-
KDD [15], SWAT (Secure Water Treatment)[16], Gas Pipelinel7], WADI (Water
Distribution Testbed)[16], Power System Attack dataset [&], BATADAL (Battle of
the Attack Detection Algorithms) [16], etc. as mentioned in19], [6].

There has been a constant and steady increase in the use of MLdetect intrusions
in ICSs. The increase in the use of ML for SCADA security is higighted in [6].
According to [10] ML covers over 38% of the total detection miebdologies used in
IDSs. For any IDS, a reduction in response time while idenyiing intrusions is of
integral importance. This can be achieved in various ways thi the use of tech-
niques such as normalization, feature selection, and dinseonality reduction which
are capable of spontaneous detection and a swift responsevea the substantial size
and feature set of ICS datasets, normalizing data expeditddL model processing.
Also, a huge feature set can serve as a liability to the ML modeif they don't con-
tribute towards deducing the prediction. Hence, selectinghe features that enhance
the prediction capability of the model and reduce the respae time due to reducing
the overall number of features needed for optimum performae [20] is an approach
worth exploring. Researchers have used di erent Feature I8etion techniques such
as Principal Component Analysis (PCA), Canonical Correlatio Analysis (CCA),
Independent Component Analysis (ICA) [4], Functional Di erential Analysis (FDA)
and Cost Matrix [21], and as mentioned by [20]: Forward feata selection (FFSA),
Modi ed mutual information-based feature selection (MMIFS, Linear correlation-
based feature selection (LCFS), Minimal Redundancy Maxim&elevance (MRMR)
and mMRMR#, Fast Correlation Based Filter algorithm (FCBF) and FCBF#, Joint
Mutual Information Maximisation (JMIM) and Normalized JMIM, a nd Euclidian



distance-based selection.

1.1 Motivation and Research Gaps

Our research focuses on the gas pipeline system in ICSs ush®gas pipeline dataset
by [22]. We have used the entire gas pipeline dataset as wedlthree clusters created
from the original Gas Pipeline dataset namely Command, Fution, and Response.
The gas pipeline system is responsible for the smooth diswition of gas to the users
through a complex network of pipelines. This system is momited and controlled
with the help of the SCADA systems. There has been work done faletecting

anomalies using gas pipeline datasets however, there liestain shortcomings in the

present e orts:

" Many ML-based IDSs use entire datasets, resulting in lengthresponse times
and the inclusion of irrelevant features. Feature selectiotechniques are un-

derutilized in addressing this issue.

The performance of feature selection techniques can be iraped further by
using a feature ranking mechanism. However, that also remaian unexplored

area.

" In the event of a cyberattack fast detection leading to a fagesponse is an inte-
gral component of any IDS. Yet response time optimization isften overlooked

in ML classi ers used for IDSs.

Publicly available datasets often su er from imbalance, ippacting model per-

formance.

To address these issues, we focused on reducing the respdnse of ML classi ers
using two feature ranking approaches namely a novel Statisal Parameter (SP) and
Weighted Feature Importance (WFI) based on the work done in [230 hierarchically
arrange the features as well as reduce the dataset dimensility by using the feature
selection methods. In our work, we have also introduced a redveature Selection
algorithm called Selective Promising Feature Selection ($8) and compared it with
the Forward Feature Selection (FFS) algorithm used by [20]. Wealidated classi er
performance using 10-fold cross-validation to select thetomal performer based on
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total execution time, accuracy, F1 score, and other performae metrics to conduct a
comparative analysis between di erent feature ranking méanisms, feature selection
algorithms, and multiple ML classi ers. Through this reseech, we make the following

contributions:

1. We devised a methodology capable of distinguishing attascenarios from nor-
mal operations while simultaneously enhancing performamanetrics.

2. We assessed two ranking mechanisms, namely the SP approact the WFI
method, applied to three clusters of the Gas Pipeline datasdoth with and
without preprocessing. This assessment yielded a hieraicdlly organized set
of features, ranked by their signi cance within the dataset

3. We introduced an innovative feature selection algorithncalled SPFS, which
selectively retains only those features that enhance class performance. This
novel algorithm was benchmarked against the FFS algorithm ugj multiple
machine learning classi ers on three clusters of the Gas Riline datasets, to
identify the most e ective feature selection methodology.

4. We used the SP-SPFS approach on the gas pipeline dataset talarstand the
impact of our proposed approach on the performance of the staers. We
compared our results with other state-of-the-art work as vlleas against the
performance of classi ers when no feature selection was doyed.

5. We conducted a comparative analysis of various machineataing classi ers
in each phase to ascertain the optimal combination for anoryadetection.
The study incorporated 10-fold Cross-Validation to furthe substantiate our

ndings.

6. In our work, we have utilized the complete gas pipeline datet and three
clusters of the Gas Pipeline dataset, which has been prevsty employed in

only one other research work.



1.2 Organization of the Thesis

The remaining sections of this paper include the followingChapter 2 covers the
background knowledge necessary for understanding the rassh. Chapter 3 reviews
the literature and outlines our proposed work. Chapter 4 deils the methodology
employed, while Chapter 5 discusses the experimental rasulChapter 6 concludes
the paper with insights drawn from the research.



Chapter 2

Background

2.1 Industrial Control Systems (ICSs) and its Applications

ICSs are used to monitor and control Cls such as nuclear andettmal power plants,
water treatment plants, power grids, gas pipeline distribtion systems, etc. It con-
sists of wireless as well as control components which help aocomplish di erent
industrial objectives [24]. Cls are the essential systembat form the foundation of
a nation's functionality and development. They are indispesable for the seamless
operation and progression of society and the nation as a wholThese infrastructures
encompass various domains such as healthcare, transpaat communication, and
defense systems making them integral to the functioning obsiety.

2.1.1 SCADA System and its architecture

The SCADA system is a supervisory module within ICSs that is potal in moni-
toring and managing these critical infrastructures. SCADA ystems are employed
to oversee power grids, gas pipeline systems, nuclear powkmts, and healthcare
facilities. They operate atop hardware modules, utilizindP?LC to ensure e cient
and reliable performance [25]. SCADA systems contain variswomponents such as
MTU, RTU, actuators and sensors, HMI, and Data Historian [3]. Fig2.1 illustrates
the architecture of SCADA and the various components involekin it. The section
below explains these components in detalil.

Actuators and Sensors

The actuators and sensors are responsible for gathering tteta as well as performing
a range of inspections, including verifying the presencezsj and color of parts, de-
termining whether products are full or empty, and assessirgpmpliance with quality
standards.
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Figure 2.1: Block Diagram of SCADA Architecture [1]

Human Machine Interface (HMI)

HMI continuously monitors data and provides it to the human components. It is re-
sponsible for showcasing the information acquired in a human-comprehensible format

such as graphs, text, statistics, etc [3].

Data Historian

The Data Historian is responsible for storing the data at regular intervals of time.

It functions as a server at a distant location or a central database [3].



Master Terminal Unit (MTU)

It dispatches commands to eld devices such as PLCs and RTUsclted in remote
areas, enabling the acquisition of essential data from thdamt oor. Furthermore,

the MTU processes this data, records vital status informadhn in the data historian,
and displays it in graphical, curve, and tabular formats ontie HMI to support
informed decision-making processes [5].

Remote Terminal Unit (RTU)

RTUs are responsible for the collection, and monitoring of d& and performing
control functions. They act as an interface to actuators andensors and send it to
MTU for further processing. Also, PLCs and Intelligent Eletronic Devices (IED)
are used as an interface to actuators and sensors[3]. [5].

2.2 Feature Engineering

Feature Engineering is a process of improving the predicéwapabilities of a model
by improving existing features or creating new ones. The merelevant the features,
the less complex the dataset and the better the model's penfoance. There are
di erent techniques for feature Engineering namely:

2.2.1 Feature Scaling

This method allows a dataset's numerical values to be resedlwithin a certain limit
for more uniformity [26]. This provides easier and more acrate predictions. The
techniques used for feature scaling are:

" Normalization: This technique takes the minimum and maximunvalues in a
dataset and rescales all values according to that. The retait is, every value
lies between [0,1]. It is also called Min-Max scaling [27]. €hmathematical
representation is:

x0= X Xmn (2.1)

Xmax Xmin

Here, x°is the normalized value x is the original data, X, is the minimum
value, andXmax is the maximum value.
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" Standardization: This technique uses the mean and standadiviation of the
dataset to rescale the values [27]. The mathematical repesgation is:

X
Z =

(2.2)

Here, z is the standardized valuex is the data value, is the mean of the
dataset, and is the standard deviation of the dataset.

2.2.2 Dimensionality Reduction

Dimensionality reduction is reducing the overall size of #hdataset by removing less
relevant features from it. Reducing the features decreas#se complexity of the
dataset and can aid in better performance of the model. Thisan be performed
using feature selection and feature extraction. This thesidoes not cover the scope
of feature extraction therefore, we will give a brief desgiion of feature selection
methods.

Feature Selection

There are di erent techniques that help in identifying the gtimal feature subset in
the dataset to improve the performance of the ML models [26Di erent techniques
used for feature selection are:

" Univariate Method: This method uses statistical tests to irdr the relationship
between features [28].

" Feature Importance: In this method, feature importance is amputed, and
based on that features are selected [28].

" Correlation Matrix: In this method, the correlation between di erent features
and the correlation of features with the target variable is sed to select the
feature subset [28].

2.3 Statistical Parameters

Statistics is a branch of mathematics that facilitates the isualization and compre-
hension of data. A thorough understanding of data is esseatifor obtaining credible
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results and performing reliable analysis. Several paranees are employed to achieve
this understanding, some of which are discussed below:

2.3.1 Standard Deviation

Standard Deviation is a measure of dispersion of values frommmean value in a
dataset. This in turn helps identify the variability in a dataset [29]. The mathemat-

ical representation of the standard deviation is given belo

Vi
u

g
N _

(xi )2 (2.3)
1

Here, is Standard Deviation, N is Total data points, is Mean of the data points,
and x; is Individual data point

2.3.2 Absolute Di erence of Mean and Median

Here, the absolute di erence between mean and median is congd in a dataset.
The mathematical representation is as follows:

absdiff _-mean.median = jmean(X) median(X)j (2.4)

2.3.3 Skewness

Skewness quanti es the asymmetry of a feature's probabijitdistribution. Distribu-
tion can be deemed symmetric if it is evenly distributed arawd the mean. However,
when the distribution strays from that to extend towards ridit or left it is referred
to as right-skewed or left-skewed [30]. The mathematicalpeesentation of Skewness

is given below:
N X Xj 3

"N DN 2)

Here, S is Skewness, is Standard Deviation, N is Total data points, is Mean of

S (2.5)

the data points, andx; is Individual data point

2.3.4 Kurtosis

Kurtosis is a measure of the data points residing in the tailsf a distribution. The
higher the value of Kurtosis, the more data points reside inhe tail, and the lower
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the value corresponds to fewer data points in the tail sectid30]. The mathematical
representation of Kurtosis is given below:

_ N(N +1) Xy 4 3(N 1)
(N 1)(N 2N 3) (N 2)(N 3)

K (2.6)

i=1
Here, K is Kurtosis, is Standard Deviation, N is Total data points, is Mean of
the data points, andx; is Individual data point

2.4 Machine Learning and di erent Classi ers

ML is a technological paradigm where machines acquire thepability to perform

tasks without being explicitly programmed to do so. This is ehieved through the
analysis of large datasets and the application of pattern cegnition techniques [31].
Based on the dataset properties there can be multiple teclyuies that can be applied:

" Supervised Machine Learning
" Unsupervised Machine Learning
" Semi-Supervised Machine Learning

These approaches used di erent classi ers to make the pretions. Below we brie y
explain the classi ers used in our research work.

" Decision Tree (DT): DT is a hierarchical approach to data praiction. It pre-
dicts the value of a target variable by deriving simple dedmn rules from the
features of the data [32].

Random Forest (RF): A RF is an ensemble learning method that ostructs
multiple decision tree classi ers on various sub-sampled the dataset and
employs averaging to enhance predictive accuracy and mdig over- tting
[33].

Naive Bayes (NB): NB methods constitute a collection of supersed learning
algorithms that leverage Bayes' theorem, incorporating #\naive" assumption
that all features are conditionally independent of each o#r given the class
variable [34].
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" Gradient Boost (GB) GB is an iterative classier that takes the prediction
from multiple base learners to devise the nal prediction. tluses the concept
of gradient descent and minimizes the loss function in the mdel. At each
iteration, the algorithm computes the gradient of the lossunction with respect
to the model's predictions and ts a new model to this gradien[35].

Extreme Gradient Boost (XGB): XGB is a distributed Gradient Boost Decision
Tree (GBDT) ML technique. XGB performs parallel processingon Decision
Trees which makes it highly scalable [36].

2.5 Performance Metrics

Performance Metrics are di erent markers used to measuredtperformance of an ML
approach. It helps the user make sense of how reliable the argd results are, how
e ciently a particular approach performs for a given datasg¢ comparison of di erent
approaches, etc. There are di erent kinds of performance itnes providing di erent
insights into the performance of a model. In the following s&ons, we discuss the
performance metrics we have used:

2.5.1 Confusion Matrix

Confusion Matrix is a matrix constructed based on the combation of correct and
incorrect predictions made by the classier [37]. Fig.2 illustrated a confusion
matrix. Below we discuss various combinations produced asesult of classi cation:

True Positive (TP): The classi er correctly predicts the paitive outcome [38].
" True Negative (TN): The classi er correctly predicts the negave outcome [38].

False Positive (FP): The model incorrectly identi ed a negawve outcome as a
positive outcome [38].

" False Negative (FN): The model incorrectly identi ed a positie outcome as a
negative outcome [38].
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Figure 2.2: Confusion Matrix

2.5.2 Accuracy

Accuracy is a measure of total true predictions i.e. TP and TN to that of overall

predictions [38]. It is mathematically represented as:

TP+ TN
TP+TN+ FP+ FN

Accuracy = (2.7)

2.5.3 Precision

Precision is a ratio of correct positive predictions w.r.t all positive predictions made

by the model [38]. It is mathematically represented as:

TP
P 180N = ————— 2.
recision TP L FP (2.8)

2.5.4 Recall or Sensitivity

Recall quantifies the fraction of correctly identified positive predictions out of all

actual positive instances in the dataset [37]. It is mathematically represented as:

TP
RBCG” = T’P—}——M (29)
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255 F1-Score

F1-Score is used to evaluate the entire model. It is the harmi@mmean of Precision
and Recall [38]. It is mathematically represented as:
2 Precision Recall

F1 Score= — 2.10
Precision + Recall ( )




Chapter 3

Literature Review

3.1 Security threats in ICS

With the advancement in the internet and technology, there hebeen an increase in
cyber attacks as well. Now the attack paradigm has somewhatited from people to
infrastructures, it poses a threat to the very functioning bsociety and the nation as
a whole. In this section, we discuss some of the cyber attadkat have taken place
on ICS. The complexity of the attacks has grown over the yeatsaving a crippling
e ect on society. Below are documented attacks that have haened since 2010.
Stuxnet is a computer worm-based attack that happened in 201 This attack was
aimed at damaging the nuclear power centrifuges in Iran. It & created to specif-
ically target the SCADA systems [3]. Night Dragon is an attackltat happened on
gas, oil, and petrochemical industries in 2011. The attadisepenetrated the systems
to get access to con dential documents and les [7].

Duqu is a malware-based attack that exploited the zero-dayulnerability in Mi-
crosoft Word in 2011. This attack targeted the control systas in SCADA systems
[7]. Shamoon - Saudi Aramco and RasGas refers to the attack tHaappened on
Saudi Aramaco, the largest energy company in the world, and R&as, the second
largest Liqui ed Natural Gas (LNG) company in 2012. The attackwas implemented
using a Malware called Shamoon that removed data from infext devices [7], [39].
Target Store attack in 2013 targeted the HVAC control system the target stores.
The attackers used malicious credit card stealing softwate steal credit card in-
formation of customers at Targets' chain of stores. Close t60 million customers
were a ected in this incident [40]. New York Dam is an attack tlat happened on
Bowman Dam in 2013. Here the attackers got access to the SCADAsssm which
was under status monitoring only at the time [3]. Havex is a malare that targeted
speci cally SCADA systems in 2013. Godzilla Attack in 2014 B, [3] was a malware
based attack that impacted various ICS. German Steel Mill #ack happened in 2014

16
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on a steel plant in Germany. The hackers acquired access tcethteel plant via its
business network. They tempered with the control system reking in the furnace
not shutting down the way it should have. As a result of this, tk company faced a
huge loss [39], [3].

BlackEnergy was a malware-based attack in 2014. Its targetas Ukraines electrical
system which found its mark leading to a blackout in variousraas. It also a ected
the HMI in SCADA systems [40]. The Ukraine Power Grid attack happned in 2015.
The attackers used BlackEnergy3 malware on SCADA systems (g to a power
shut-o in 30 substations leaving nearly a quarter million Ukanians in the dark [7],
[3], [40]. \Kemuri" Water Company was an attack that happend on the SCADA
system of a water company in 2016. The name of the water comganas kept con-
dential and named \Kemuri" for reference purposes. In thisattack, the attackers
targeted the water district valve and ow controls a ecting the chemicals going into
the water. This attack was disclosed by Verizon Security Sdions [40]. Operation
Ghoul was a spear-phishing and malware-based attack that py@ened in 2016. The
attackers here targeted various computer systems in the SCAMetwork [3].
CRASHOVERRIDE was a malware-based attack that happened in 201 This attack
was speci cally targeting the power grids resulting in the d-energization of substa-
tions [40]. Dragony 2.0 was a phishing and malware-basedtatk that happened in
2017. It targeted the software used to send commands to engrguipment leading
to compromised equipment in various energy companies [7]ritdn (Trisis) was a
malware-based attack that happened in 2017. It targeted thsafety system of Tri-
conex Safety Instrumented System (SIS) of a petrochemicampany in Saudi Arabia
[41]. SamSam was a ransomware attack that happened in 2018targeted the De-
partment of transportation in Atlanta leading to website ouages, blocked tickets,
ticket processing, etc [40]. Saipem Company in Italy is an and Gas company. It
was a ected by a malware attack in 2018 [7]. Iran APT33 (El n) Attack was a mal-
ware and spear-phishing attack that happened in 2019. It acted various ICSs such
as aviation, energy, etc [42]. Norsk Hydro Attack was a ransomavwe(LockerGoga)
attack that happened in 2019. It targeted the ICS for Aluminummanufacturing
in Norway [43]. Oldsmar Water Treatment Plant attack is an unathorized remote
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access that happened in 2021. The attack happened at a watesdtment facility in
Florida, USA. The hacker attempted to alter the chemical levels the water supply
leading to what could have been a life-threatening situatio[44].

Colonial Pipeline attack was a ransomware(Darkside) attkahat happened in 2021.
The attack a ected the Fuel Supply chain of east USA by disrupons in fuel supply
leading to a shortage of fuel [45]. JBS S.A. is the worlds' largfemeat processing
company that faced a ransomware (REvil) attack in 2021. Thettack targeted the
meat production facilities leading to disruption in the glbal food supply chain. The
attack disrupted meat production facilities in the USA, Canad, and Australia, im-
pacting the global food supply chain [46]. Table.1 shows the attacks that have
happened from 2010-2021 on ICSs.



Table 3.1: Details of attacks launched on ICS from 2010-2021

ICS/SCADA System

A ected Population/

Ref Name of Attack Year Location Attack Vector
Targeted Industry
Siemens Step7 software Malware introduced via . .
[3] Stuxnet 2010 | Iran . ) Nuclear enrichment facilities
on PLCs infected USB drives
Global Various systems in oil, gas, Spear-phishing and remote Oil, gas, and petrochemical
[7] Night Dragon 2011 o y- ) ) g pearp g ) g ) P
(primarily USA) petrochemical industries access tools industries
Malware exploiting zero-da)
[7] Duqu 2011 | Global SCADA systems - p. .g y Various industries
vulnerability in Microsoft Word
South Houston Water SCADA system of water _ . )
[39], [3] 2011 USA (Texas) Default password exploitation Municipal water services
Treatment Plant Hack treatment plant
. . Ras Gas a Liqui ed . Service disruption
[71, [39] Shamoon 2012 Saudi Arabia Malware (Disttrack)
Natural Gas (LNG) company and data loss
Various systems in o )
[3] Auto Manufacturer Hack 2012 USA ) Spear-phishing and malware Auto manufacturing
auto manufacturing
HVAC control systems Malware targeting Retail (Target stores,
[40] Target Store Attack 2013 | USA ) . ] B
in retail stores point-of-sale systems 70 million customers)
SCADA system of .
[3] New York Dam 2013 USA (New York) Unauthorized remote access Water management
Bowman Dam
) ) . Malware distributed via watering ) ) )
[39], [3] Havex 2013 | Various countries Various SCADA systems o ) Various industries
hole attacks and phishing emails
[47] Godzilla Attack 2014 | USA Various ICS systems Malware Various industries
. . Spear-phishing emails .
[39], [3] German Steel Mill Attack 2014 | Germany Industrial control systems Steel production
and malware
Malware (BlackEner: Power distribution
[40] BlackEnergy 2014 Ukraine Electrical and Power grids ( 9y)
and remote access tools (230,000 customers)
Malware (BlackEner
[7], [3], [40] | BlackEnergy3 2015 Ukraine Electrical and Power grids ( 9y) Shut-o of 30 substations
and remote access tools
[40] Kemuri 2016 Global Water Company Not made public Water company facilities

6T



Industrial, engineering,

. United Arab Computer systems in Spear-phishing and
[3] Operation Ghoul 2016 ) P y pearp g manufacturing, and
Emirates (UAE) SCADA network malware-based attack )
transportation sectors.
Electric power Malware speci call
[40] Industroyer/CrashOverride 2016 Ukraine ] p. ) P y . Power distribution
transmission networks designed for power grid systems
United States Phishing and malware- Data in the form of sensitive
[7] Dragony 2.0 2017 Energy sector ) ) )
and Europe based attack information compromised
Safety instrumented systems Malware targeting Schneider
[41] Triton/Trisis 2017 | Saudi Arabia ty ) ] Y ] g g Petrochemical industry
(SIS) in industrial plants Electric's Triconex SIS
. Website outages, blocked
[40] SamSam 2018 USA (Atlanta) Department of transportation Ransomware ) _ ]
tickets, ticket processing
. . Signi cant disruption by
[7] Saipem Company 2018 Italy Oil and Gas company Malware attack o
wiping data
L Malware and spear- Operation disruption and
[42] APT33 (El n) Attack 2019 Iran Aviation Sector o
phishing attack data loss
Aluminum manufacturing Operation disruption and
[43] LockerGoga 2019 Norway ) Ransomware )
industry les being encrypted
. SCADA system of water Unauthorized remote access . )
[44] Oldsmar Water Treatment 2021 USA (Florida) ] ) Municipal water services
treatment plant via TeamViewer
Disruptions in fuel suppl
[45] Colonial Pipeline attack 2021 USA Fuel supply chain Ransomware (Darkside) -p PPy
leading to a shortage of fuel.
. USA, Canada, )
[46] Revil attack 2021 Food supply chain Ransomware Impacted JBS S.A.

and Australia
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3.2 Use of Machine Learning in IDS for ICS

As shown in the previous section, the advent of technology améliance on machines
has brought about a new array of cyber attacks. This paradigrof cyber attacks
has motivated researchers to try and combat such attacks witthe use of ML in
IDSs. Below are some of the works carried out using ML in IDSH&CSs. Various
supervised learning techniques have been used to detect aksin SCADA systems
using various publicly available datasets.Guamei et al. 32 have worked on detect-
ing attacks on smart grids. The researchers have reduced tfeature space using
correlation-based feature selection (CFS). The reduced faee set is then used in an
Instance-Based Learning (IBL) algorithm which classi es armal and cyber-attacks
followed by a 10-fold cross-validation. Alimi et al. [48] earched the use of ML in
detecting intrusions in a power system network. They have ad ve ML classi ers
i.e. K-nearest neighbors (kNN), DT, NB, RF, and AdaBoost on a simated voltage
dataset. According to their ndings, they found AdaBoost to peform the best in
terms of accuracy and KNN to perform the best in terms of Trainig time.
Upadhyay et al. [49] have used ML classi ers in the attack detgion in Smart Grids.
They have used a novel feature selection algorithm called &tient Boosting Fea-
ture Selection (GBFS) using the Weighted Feature Importanc€WFI) extraction
technique before the actual classi cation. They have focad on using di erent DT-
based classi ers for detection and accessing them on varsoperformance parameters
such as accuracy and execution time. Alimi et al. [6] createdhgbrid approach using
a Support Vector Machine and a Multilayer Perceptron Neural Btwork (SVMNN)
algorithm. They tested out their hybrid algorithm on the power system networks
dataset attaining an increased performance to other scheme

Arora et al. [50] have explored the performance of di erent Miclassi ers such as RF,
Support Vector Machine (SVM), DT, Arti cial Neural Networks (ANN), K-Nearest
Neighbors (KNN) and NB for detecting an attack on ICSs using a SCADAttack
dataset. According to their research, RF performs the best amng the classiers
used. Turkoz et al. [51] have worked on improving anomaly dettion with the use
of the SVM classi er. They have created a Generalized Suppdvector Data Descrip-
tion (GSVDD) which uses a hypersphere for class separationhd@y also introduced
a generalized Bayesian framework which highlights the réilanship between modes
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rather than just using the prior information.

Alhaidari et al. [52] improves the SCADA system framework agast Distributed

Denial of Service (DDoS) using ML classi ers. The research done using J48, NB,
and RF on the KDDCup'99 dataset. Based on their ndings, RF aiained a near-
perfect accuracy becoming the best performer in the collemt. Robles et al. [53]
research work was based on proposing a real-time anomalyugion detection system
for water supply systems. They have created a novel datasebin conducting the
attacks on the testbed. They have used ve ML classi ers to dect these attacks:
K-Nearest Neighbour, SVM, DT, NB, and Multilayer Perceptron. Ttey have judged
the performance of classi ers based on online and o ine traing which concluded
KNN and SVM as best performers.

Shitharth et al. [54] researched on detecting and classifg intrusion in the SCADA

system based on optimization. The researchers have propddatrusion Weighted

Particle-based Cuckoo Search Optimization (IWP-CSO) and Hiarchical Neuron Ar-

chitecture based Neural Network (HNA-NN) techniques. Here IWP-CSO gbrithm

is used to select the best attributes which are then classtdeusing the HNA-NN

algorithm on the ADFA-LD dataset.

3.3 Related Work based on Gas Pipeline systems

As discussed in the last section about the emergence of ML in3B tailored for ICSs
we can conclude that ML can prove pivotal for creating and e ¢ently using the IDSs.
This section speci cally targets the use of ML in IDS based othe SCADA system
Gas-Pipleine dataset. Below are the research works donengsithe Gas-Pipeline
dataset. Table3.2 shows the details of the attacks mentioned below.

Khan et al. [55] performed a binary and multi-class classiation on the subset of the
Gas Pipeline dataset i.e. Command, Function, and Responsatdsets. They used
classi cation algorithms such as NB, PART, and RF to classifylte attacks. Accord-
ing to their acquired results, the researchers concludedahRF classi er performed
the best.

Demertzis et al. [56] performed Spiking One Class Anomaly stion Framework
using a novel One Class Classi cation algorithm. This franveork was evaluated on
three distinct datasets: an electrical, water tower, and gapipeline dataset. They
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demonstrated that the eSNN (evolving Spiking Neural Network)lgorithm performed
superior to SVM and CD/CPE (Combining Density and Class Probhility Estima-
tion) in the obtained results.

Tammy et al. [57] have used four supervised learning techoies on the "10% Ran-
dom Sample Gas Pipeline Dataset" to detect attacks on SCADA stems. In their
experimentation, they have used NB, SVM, Trees J48, and RF ML metk. Accord-
ing to their work, RF has performed the best out of all howeverit also takes the
longest time to execute.

Perez et al. [58] have worked on using ML for IDS in ICSs. For ¢lir research, they
have used the gas pipeline system dataset. They have used dtirgiep process that
involves using four techniques for data estimation as welsanormalization of the
dataset followed by the use of two ML classi ers namely RF and\@/1. Based on
their ndings RF performed better than SVM.

Khan et al. [4] have worked towards improving anomaly deteicin for an ICS by
exploiting the communication patterns in ICS environments Their methodology
includes extensive pre-processing and feature selectiam the dataset using Prin-
cipal Component Analysis (PCA), Canonical Correlation Analys (CCA), and In-
dependent Component Analysis (ICA) before prediction. Theyealeloped a hybrid
model that balances the dataset through an edited neareseighbor rule in K-Nearest
Neighbors (KNN). They also construct a signature database ugira Bloom Iter dur-
ing periods devoid of abnormalities.

Prisco et al. [59] employed ML techniques to detect attacksnoSCADA systems,
speci cally utilizing the One-Class Support Vector Machies (OCSVM) algorithm.
This method involves training with only normal data to idenify anomalies, followed
by cross-validation. Data pre-processing and normalizath were performed using
the Radial Basis Function (RBF) kernel. Their ndings indicae a complete identi -
cation of attack data. Additionally, their approach demonstated superior response
times compared to other existing methods.

Al-Asiri et al. [60] examined Intrusion Detection Systems (IB) utilizing physical
metrics within SCADA systems. Their case study employed a ggspeline dataset
to assess the impact of incorporating physical metrics intan IDS. They utilized
the DT classi er in their analysis. Their ndings indicate that integrating physical
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metrics with additional parameters enhances detection capilities, whereas relying
solely on network tra ¢ data may not produce similarly e ective results.
Paramkusem et al. [61] conducted a study on the classi caticand detection of ma-
licious command and response packets within SCADA networksilizing a Big Data
framework. They employed the k-means clustering algorithno analyze packet his-
tory and attribute di erences. Additionally, they utilized the RF classi er to detect
attacks, achieving improved results compared to previousork.” Choubineh et al.
[21] used cost-sensitive learning and Fisher's discrimirtaanalysis (FDA) for dimen-
sionality reduction followed by ve classi ers namely: HoedingTree, RandomTree,
OneR, NB, and BayesNet. In their work they have tried to addresthe issue of class
imbalance found in SCADA system datasets.



Table 3.2: Research Work done using Machine Learning for attk detection in Gas Pipeline dataset.

o , Feature
Ref. | Normalization | Clustering . Models Dataset Research Gaps
Selection
e e e e
[58] Mean Standard No Not Done SVM, RF Entire Gas ) i
Deviation Feature space. Broader range o
Pipeline Dataset ML algorithms can be explored.
The running time of the model isn't
Clustered dataset: taken into account. Use of entire
) . Nawe Bayes, Command, Feature space. No normalization
[55] Not Mentioned Yes Not Mentioned PART, RF Response, performed on datasets. Scope for
Function increasing accuracy in Command
and Response dataset.
1. Current-Previous ggttgze?as Pipeline The running time of the model isn't
61] No Yes value B RE Attribute Di erence taken into account. No normalization
2. k-means(k=2) performed on datasets. Broader range
. Dataset, 2-means .
algorithm of ML algorithms can be explored.
Dataset
No normalization performed on datasets.
10% Random Sample No Feature Selection methods
[57] No No No RF, SVM, NB, J48 Gas Pipeline Dataset| employed. The running time of the
model isn't taken into account.
. KNN, RF L .
Yes using . . L The running time of the model isn't
[4] Yes, Standardization Yes PCA, CCA, AdaBoost, Net . Entire Gas Pipeline taken into account. Other Feature
(MLP), Quadratic Dataset . .
and ICA S . Selection techniques can be explored.
Discriminant Analysis
Yes, Min-Max One-Class Support _ o No Feature Selgcnon methods erpplloyed.
. ; Entire Gas Pipeline | The response time of the model isn't
[59] Normalization, No No Vector Machines .
Dataset taken into account. Broader range of
RBF kernel (OCSVM) :
ML algorithms can be explored.
No normalization performed on datasets.
Entire Gas Pipeline No Feature Selection methods employed.
[60] No No No DT, 10-fold Cross Dataset P The response time of the model isn't
validation taken into account. Broader range of
ML algorithms can be explored.
OCC-eSNN, _ o No Feature Selgcnon methods er_nplf)yed.
Entire Gas Pipeline | The response time of the model isn't
[56] Yes No No OCC-SVM, .
Dataset taken into account. Broader range of
OCC-CDI/CPE -
ML algorithms can be explored.
Hoe dingTree . .
. ’ . Lo The response time of the model isn't
[21] No No Yes, using FDA RandomTree, Entire Gas Pipeline taken into account. Broader range of

and Cost Matrix

OneR, NaiveBayes,
and BayesNet

Dataset

ML algorithms can be explored.

T4
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Research Gaps, Novelty, & Proposed work

As shown in the previous sections there has been work done gsi@as-Pipeline

Dataset created by [22] in IDS for ICSs. However, there are t@n shortcomings in

the present e orts:

A

Many ML-based IDSs use entire datasets, resulting in lengtlresponse times
and the inclusion of irrelevant features. Feature selectiotechniques are un-
derutilized in addressing this issue.

The performance of Feature Selection techniques can be iraped further by
using a feature ranking mechanism. However, that also remaian unexplored
area.

In the event of a cyber-attack fast detection leading to a fagesponse is an
integral component for any IDS. Yet response time optimizain is often over-
looked in ML classi ers.

To the best of our knowledge, we have found just one researchriwpertaining
to the use of clusters devised from the gas pipeline dataset.

Publicly available datasets often su er from imbalance, ippacting model per-
formance.

To address these issues, we focused on reducing the respdinse of ML classi ers

using two feature ranking approaches based on the work domg23] to hierarchically

arrange the features as well as reduce the dataset dimensity by using the Fea-

ture Selection methods. In our work, we have introduced a nelvFeature Selection

algorithm called Selective Promising Feature Selection ($8) and compared it with
the Forward Feature Selection (FFS) algorithm used by [20]. Wealidated classi er
performance using 10-fold cross-validation to select the@tomal performer based on

total execution time, accuracy, F1 score, and other performae metrics. Through

this research, we make the following contributions:

1.

We devised a methodology capable of distinguishing attascenarios from nor-
mal operations while simultaneously enhancing performamenetrics.
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2. We assessed two ranking mechanisms, namely the Statigti®arameter (SP)
approach and the Weighted Feature Importance (WFI) method, gpied to
three clusters of the Gas Pipeline dataset, both with and whibut preprocessing.
This assessment yielded a hierarchically organized set eafures, ranked by
their signi cance within the dataset.

3. We introduced an innovative Feature Selection algorithpthe Selective Promis-
ing Feature Selection (SPFS), which selectively retains gnthose features that
enhance classi er performance. This novel algorithm was hehmarked against
the Forward Feature Selection (FFS) algorithm using multipleML classi ers
on three clusters of the Gas Pipeline datasets, to identifyne most e ective

feature selection methodology.

4. We conducted a comparative analysis of various ML classrs in each phase
to ascertain the optimal combination for anomaly detectionThe study incor-
porated 10-fold Cross-Validation to further substantiateour ndings.

5. In our work, we have utilized the three clusters of the Gasipeline dataset,

which has been previously employed in only one other resdargork.

As our primary objective is to reduce the response time in IDSsr ICSs we have
experimented with the clusters of gas pipeline dataset as has the whole dataset to
understand the time complexity of the classi ers w.r.t. thedataset in consideration.
Therefore, in our work to narrow down the dimensions of the daset we opted for
two methods:

1. Using the deduced clusters [61] from original dataset.

2. Narrowing down the dimensions further with the help of Featre Ranking and
Feature Selection algorithms. Therefore, the dataset haghrank in both rows

as well as columns.

There are several bene ts to using the dataset clusters as pgsed to the entire

dataset such as:

" Focused Analysis: Analyzing the clusters allow a more focusadderstanding
of the structure of gas pipeline. Hence, the predictions cdre more targeted

and speci c.
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" Enhanced Anomaly Detection: It is easier to identify the lod&ed patterns in

clusters hence, even a slight deviation from normal behavioan be captured
which might get overlooked in a bigger dataset.

Improved Data Management: As our primary target is to reducehte response
time in an IDS, smaller datasets aid towards that goal. It atws for faster
processing, lesser computational resources as well as petelent computation
on the clusters rather than using a huge dataset.

Enhanced Monitoring and Control: As each cluster pertains tgpeci ¢ moni-
toring and control strategies inside the pipeline. Therefe, they provide a very
precise view of how things should proceed ideally. The segaéon of di erent
control parameters makes it easier to monitor them.

With our research we aim to address the following questions:

A

Research Question 1: The impact of pre-processing, featusmking, and fea-

ture selection on ML classi er performance.
Research Question 2: Accuracy of the current approach in éeting anomalies.

Research Question 3: The advantages of our proposed methadsnpared to

existing techniques.

Research Question 4: Based on the comparative analysis, Wi the best
approach to be followed for IDS targeting time-sensitive @h performance-

sensitive systems?



Chapter 4

Methodology

The research gaps identi ed in the previous sections helpess deduce that a new
e cient way of handling cyber-attacks for ClI is minimizing the response time by
using ML. Therefore, in this section, we discuss the overatiethodology, proposed
ranking mechanisms, and proposed feature selection aldgiom.

4.1 Dataset Description

Mississippi State University's in-house SCADA lab features gas pipeline system
utilized for collecting data pertinent to cyber attack resarch, illustrated in Fig 4.1
The system comprises three primary components: sensors amctuators, a com-
munication network, and supervisory control, as depictechiFig 4.1 This segment
provides an overview of the testbed components and outlindee methodologies em-
ployed for dataset acquisition using this testbed. For mordetailed insights, please
refer to [2]. The gas pipeline includes two actuators, a pummd solenoid, and a
pressure sensor. These actuators are responsible for maiming pressure levels reg-
ulated by the supervisory control system. The gas pipelingerates in three primary
system modes: automatic, manual, and o. In automated modewo schemes are
utilized: the pump mode, which toggles the pump to regulaterpssure in the pipe at
the designated set point, and the solenoid mode, where a eélvalve, controlled by
a solenoid, modulates pressure levels. Both the pump andesmbid modes employ a
Proportional-Integral-Derivative (PID) control scheme. In manual mode, operators
are required to manually oversee the pump and solenoid optoas.

The next component is the communication network in which therotocol used is
serial Modbus RTU. Modbus packets include a header and a pagth For Modbus
over a Serial Line, a packet includes a device address, funotcode, payload, and a
cyclic 21 redundancy code (CRC) or linear redundancy codeRC).

The gas pipeline cyber attack database was initially devgled by Tommy Morris

29
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Figure 4.1: Gas Pipeline Testbed [2]

and Wei Gao in 2012 [22]. However, upon examination of the original dataset, signif-
icant flaws were identified, rendering it unsuitable for ML research [2]. Subsequently,
Ian Turnipseed of Mississippi State University compiled a more realistic cyber attack
gas pipeline dataset, known as the "new gas pipeline dataset,” and made it publicly
accessible for the research community. In our study, we utilize the new gas pipeline
dataset.

The “new gas pipeline” dataset is available in two formats: a comma-separated value
(CSV) text file and an Attribute Relationship File Format (ARFF). The ARFF
dataset was specifically formatted to align with Waikato Environment for Knowl-
edge Analysis (WEKA), a tool widely used by researchers worldwide for testing ML
algorithms [62]. Although we do not employ WEKA, we preprocessed the ARFF
dataset to prepare it for training various classification models. Each record or in-
stance in the dataset corresponds to one packet delivered to either the MTU or the
RTU, containing network traffic and payload information. SCADA systems possess
fixed network topologies, and transactions between components are repetitive and
regular, in contrast to the dynamic and irregular nature of I'T network traffic data.
The payload information in the dataset reveals details about the gas pipeline’s state,
settings, and parameters, crucial for detecting anomalies resulting from system mal-
functions or malicious activities by cyber attackers. The dataset comprises a total

of 274,628 instances or rows, with each row containing twenty columns, commonly
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referred to as features. These features are summarized wéhbrief description in

Table 4.1

Feature Id

Feature Symbol

Type

Description

1

address

real

The address of the slave device.
Each slave device in the Modbus it

12)

assigned an 8-bit address to identify
the slave device the master is com

municating to and from.

function

real

The function codes are primarily
used in the gas pipeline to indicate
a read (0x03) and write commands
(Ox16). But there are possibilities
of a total of 256 such commands.
A denial of service attack can be
launched by setting a function code

of 0x08 which corresponds to diag
nostic mode where the device would
be always in listening mode.

length

real

Length of the Modbus frame. This
is xed for each command and re-
sponse frame. Frames that are not
of speci c length can be easily det
tected as attacks.

setpoint

real

This value controls the pressure in
the gas pipeline.

gain

real

Gain parameter of the PID con-
troller.

reset rate

real

Reset rate parameter of the PID

controller.

deadband

real

Deadband parameter of the PID
controller.
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Feature Id

Feature Symbol

Type

Description

8

cycle time

real

Cycle time parameter of the PID
controller.

rate

real

Rate parameter of the PID con-
troller.

10

system mode

£0,1,2

Controls the duty cycle of the sys-
tem. The following modes are valid]
0{ 0, 1{Manual, 2 { Automatic.

11

control scheme

f0,1g

The control scheme in the gas

pipeline determines whether the sys

tem will be controlled by the pump
or by the solenoid. There are twg
schemes: 0 { Pump, 1 { Solenoid.

12

pump

f0,1g

This is the state of the pump when

D

system mode is set to manual. There
are two possible values: 0 { O, 1{
On.

13

solenoid

f0,1g

This represents the state of the
solenoid valve. There are two pos

sible values: 0 { Closed, 1 { Open.

14

pressure

real

The current pressure measurement
from the gas pipeline.

15

crc rate

real

The Cyclic Redundancy Check
(CRC) allows the system to check
errors within a Modbus frame.

16

command response

> f0,1g

This value allows the IDS to learn
about the command and response
frame. Two possible values: 0 { Rer
sponse, 1 { Command.

17

time

real

Timestamp of the instance.

18

binary result

f0,1g

Labels to indicate either attack (1)

or normal (0) instance.
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Feature Id | Feature Symbol | Type | Description

Table 4.1: Description of features from New Gas Pipeline dataset

This section details the derivation, size, number of fields, and output labels for
three clustered datasets derived from an original SCADA system dataset. The origi-
nal dataset, containing 274,628 data instances (rows) and 18 features (columns), was
pre-processed and divided into three sub-datasets based on dataset types: Command
(C), Function (F), and Response (R). Each sub-dataset then underwent further clean-
ing to remove missing values, resulting in the reduced datasets: Command Dataset,
Function Dataset, and Response Dataset.

The following code snippet filters the original dataset based on specific criteria to
create the three clustered datasets: Command, Response, and Function. The code is
structured to filter the dataset according to the type specified by the ‘filetype’ vari-

able. The code block for creating the three sub-datasets is as shown below: In the

if (filetype=='C"):

#inHH Command Data Set Section 3.2, Paramkeusem (2018) #iitt#

data2=data[ (data[ "function']==16) & (data['length']==90)]
elif (filetype=='R"):

#it#t# Response Data Set Section 3.3, Paramkeusem (2018) it

data2=data[ (data[ "function']==3) & (data['length']==46)]
else:

#iHHH Rest of the data #HHHHE

data2=data[~((data[ 'function']==16) & (data['length']==90)) &

~((data[ "function']==3) & (data['length']==46))]

Figure 4.2: Code block for creating the three sub-datasets

first condition, “if (filetype=="C")", the code filters the dataset for command data
by selecting rows where the function code is 16 and the Modbus frame length is 90, as
described in Section 3.2 of [61]. In the second condition, “elif (filetype=="R’)”, the
code filters the dataset for response data by selecting rows where the function code
is 3 and the Modbus frame length is 46, as detailed in Section 3.3 of [61]. Finally,
the else condition captures all remaining data that do not meet the criteria for the
command or response datasets, ensuring that the function dataset includes all other

instances. This approach ensures that the data is accurately segmented according to
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the speci ed criteria for each dataset type. The features d@he processed command,
response, and function datasets are described in more detalow.

Command Dataset Command Dataset was derived by Itering the original datase
for instances where the dataset type is 'C'. According to Seaoh 3.2 of [61], this in-
volved selecting data where the function code equals 16 arfgktModbus frame length
equals 90. Initially, this dataset contained 64,100 rows dr20 columns. After remov-
ing missing values, the dataset size remained 64,100 rows leduced to 17 columns.
Following further cleaning, the nal dataset comprised 64,00 rows and 14 columns.
The input features for this dataset included setpoint, gainresetrate, deadband, cy-
cle time, rate, systemmode, controlscheme, pump, solenoid, pressureeasurement,
crc_rate, and time. The output label for the dataset is binaryresult, and the cleaned
data was saved as NewGasFilteredCommand.csv.

Response Dataset The Response Dataset was derived by Itering the original
dataset for instances where the dataset type is 'R'. As outled in Section 3.3 of
[61], this involved selecting data where the function codegeals 3 and the Mod-
bus frame length equals 46. Initially, this dataset contaed 68,848 rows and 20
columns. After further processing, the dataset size remaithat 68,848 rows but was
reduced to 14 columns. The input features for this datasetdétuded setpoint, gain, re-
setrate, deadband, cycldime, rate, systemmode, controlscheme, pump, solenoid,
pressuremeasurement, craate, and time. The output label for the dataset is bi-
nary_result, and the cleaned data was saved as NewGasFilteredRasgmcsv.
Function Dataset The Function Dataset was derived by excluding data where the
function code equals 16 and length equals 90, and where tha@dtion code equals
3 and length equals 46 (i.e. excluding the command and resgendata). Initially,
this dataset contained 141,680 rows and 20 columns. After fher processing, the
dataset size remained at 141,680 rows but was reduced to 18noms. The input
features for this dataset included address, function, letlg setpoint, gain, resetrate,
deadband, cycletime, rate, systemmode, controlscheme, pump, solenoid, pres-
suremeasurement, craate, command and time. The output label for the dataset is
binary result, and the cleaned data was saved as NewGasFilteredFunatcsv.
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4.2 Proposed Framework

This section will provide you with a basic overview of the methodology used to ad-
dress the research problem in consideration before diving into details. A series of
experiments were performed to identify the best possible parameters and classifiers
to attain an optimized result. We have done our research analysis as three-part ex-
periments. The three experiments are implemented using the Gas Pipeline dataset
as well as the clusters of the Gas Pipeline dataset [61] namely Command, Function,
and Response. Through the experimentation on the Gas Pipeline dataset, we ac-
quired promising ML classifiers that can be used for the three clusters as well. Fig
4.3 shows the list of experiments performed and their respective deliverables. Here
each experiment serves as a stepping stone for the next experiment. The following

provides the experiments and sub experiments performed:

EXPERIMENT 1: Systematic Feature Ranking for Improved Predictive S
Modeling

Evaluating Optimal Machine Learning Classifiers
@-— through Advanced Feature Ranking and Selection
Mechanisms for Gas Pipeline Dataset

Hierarchically arranged Feature sets

s
ifiers

— EXPERIMENT 2: Comparative Analysis of Feature Selection Mechanisms
Across Multiple Classifiers and Ranking Mechanisms

Best Machine Learning cl

) !

Evaluating chosen Machine Learning Classifiers
through Advanced Feature Ranking and Selection
- Mechanisms for the clusters Command,
Function and Response of Gas Pipeline
dataset

Applied on

Best Feature Set

{

EXPERIMENT 3: Evaluating Classifier Performance Using 10-fold Cross-
— Validation on Selected Feature Sets.

R

[ —

Experimentation done to achieve Research
Objectives

Figure 4.3: Experiments performed and their deliverables

1. Systematic feature ranking for improved predictive modeling using SP and
WFL.

2. Comparative analysis of feature selection mechanisms across multiple classifiers

and ranking mechanisms using FFS and SPFS.

3. Evaluating Classifier performance using cross-validation on selected feature sets
using RF, GB, and XGB.
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4. Evaluating optimal ML classifiers for the Gas Pipeline Dataset Analysis using
SP and SPFS algorithm on five ML classifiers namely DT, RF, GB, XGB, and
NB.

5. A comparative analysis of the implementation of the proposed novel approach
SP-SPFES on the gas pipeline dataset against the approach without feature

ranking and feature selection.

6. Evaluating chosen ML Classifiers through advanced feature ranking and selec-
tion mechanisms for the clusters Command, Function, and Response of the Gas

Pipeline dataset.

Experiments represent the overall structure of the research whereas, each experiment
contains a set of steps carried out in a sequential manner consisting of the follow-
ing phases: pre-processing, feature ranking, feature selection, cross-validation, and
prediction. Figure 4.4 provides more details regarding the overall process.

algorithms based on
-—> Pre-Processing ————> Feature Ranking ——>  Feature Selection —\
subset « Categorical Labeling o Statistical Parameters (SP) _.» * Random Forest, Grad%ent Boost 2
¥ « Without Normalization « Weighted Feature Importance ; Random Forest, Gradient Boost, E
 Command « With Normalization (WED) Ry XGBoost E
2
v
S

* Function o Min-Max Normalization P e :
R : ’—)- E

Performance I . . 5
<--- Classification 5

Paramteres
Accuracy « Random Forest
Training Time « Gradient Boost

Precision, Recall, F1Score ¢ XGBoost
FPR, FNR, TPR, TNR

Figure 4.4: Block diagram of the Methodology

4.3 Pre-Processing

To prepare the dataset for further processing we performed the data pre-processing

as follows:

e We separated all the numerical features from the dataset.
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In this phase, the datasets features are ranked according toetir possible signi cance
in the dataset. Through this, we aim to reduce the feature sga by eliminating the

lesser important features. Fig4.7 provides a visualization of the steps taken in
the process of Feature Ranking. The rank of the features istdemined using two

mechanisms:

"~ Statistical Parameters (SP)

" Weighted Feature Importance (WFI)

For each feature in the feature list, we apply SP and WFI to yiela set of features
ranked using the values of the feature in consideration. Thieatures now having
acquired their respective rank speci c to the chosen mechiam are now combined
to provide "CombinedF eature_Rank". In the following sections, we explain the
working of SP and WFI in detail.

4.6.1 Statistical Parameters (SP)

This is the novel method proposed by us for ranking featurey lutilizing numerical
characteristics of the dataset. For our experimentation, &have considered four SP

namely:
" Standard Deviation
" Absolute Di erence
" Skewness
" Kurtosis

Through consideration of multiple such characteristicst devises a ranking amongst
the features in the dataset. The SP used to compute the ovelrahnk as well as the
order of feature arrangement associated with it are shown the Table 4.2

To determine the order in4.2we conducted multiple experiments to ensure optimal
results. Fig 4.8 below provides a block diagram of the experiments carried ou
To understand the e ect of SP on the overall model performamcwe carried out a
three-part experimentation considering di erent scenaas:
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Algorithm 1 Computation of Feature Ranks based on Statistical Parameate

Input : List containing features in a dataseD.

1. Initialize : De ne a Feature set listF [Fi; Fosiii Rl

2. Compute the value of Statistical Parameters as well as resultant Fea -

ture rank : For each featureF; wherei = [1 to n], compute the following

statistical parameters:

(a) Standard Deviation ( )

StdDev_rank(F;) rank( (Fy))
Order StdDev_rank (F;) in ascending order.

(b) Absolute Dierence ()

(©)

AbsDiff _rank(F;) rank(abgmean(F;) median(F;))
Order AbsDiff _rank(F;) in ascending order

Skewness ()
Skewrank(Fi) rank(skewnesgF;))
Order Skew.rank(F;) in descending order

(d) Kurtosis ()

Kurt _rank (F;)  rank(kurtosis (F;))
Order Kurt _rank (F;) in ascending order

3. Compute Overall Rank

P
combinedfeature rank = = [, (rank (statisticalmetrics (F;)))

or

combinedfeature rank =  StdDev.rank(F;) + AbsDiff _rank(F;) +
Skewrank (F;) + Kurt _rank(F;)

4. Output : Reordered feature setFney,  [F3;Fe; i Fnl
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Algorithm 2 Compute Weighted Feature Importance (WFI) using RF classi er
Training data D = f(X1;Vy1); (X2;¥2); :i5; (Xn; Yn )9, Wherex; are feature vectors and;

are labels.

Result: Weighted Feature Importance (WFI) scores for each feae

Step 1: Train Random Forest classi er

Train a Random Forest classi er on the training datasetD. Random Forests are
ensemble learning methods that build multiple decision tes and combine their pre-
dictions to improve accuracy and robustness.

Step 2: Compute feature importance scores

After training, compute the feature importance scores (x;) for each featurex;.
Feature importance in Random Forests is typically measuredy how much each
feature contributes to reducing impurity (e.g., Gini impuity) across all decision
trees in the forest.

Weight vector W = fwy;ws; i, Wy g Wherew; are weights for each featurétep 3:
Calculate Weighted Feature Importance (WFI) scores

Initialize an array WF1 _scoreswith zeros. For each feature;:

1. Multiply the feature importance scorel (xj) by its corresponding weightw;
from the weight vectorW.

2. Store the result in theW F 1| _scoresarray at index i.

Step 4: Rank features based on WFI scores

Sort the WF1 _scoresarray in descending order. The higher the WFI score for a
feature, the more important it is considered to be in prediang the target variable.
WFI scores Array of weighted feature importance scores, sorted in desaling
order
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The FFS algorithm evaluates subsets of the feature list iteraely, in contrast
to the individual feature evaluation approach of SPFS. Figl.12is a owchart of
the steps performed in FFS. FFS is designed to achieve the maximuattainable
accuracy for the subset under consideration. Unlike SPFS, ibds not discard any
features; instead, it continually aggregates previouslekected features into the newly
considered subset for classi er evaluation. The FFS algorith also employs \accu-
racy" as a performance metric to determine the optimal feate set. The steps below
describe the operation of FFS.

N

Input: The rearranged feature set containing features arrged according to
their importance from the previous phase.

Iterative Feature Evaluation Module: Di erent subsets of fatures derived from
the feature list are evaluated iteratively. In each iteratn, the current subset
being taken is added to theFset;. Fset; is now ready to be passed on to the
next step.

Model Training and Testing Module: TheFset; acts as an input for the clas-
si er to compute the accuracy, F1 score, and training time oftte model. The
model uses 80% of the data for training and 20% for testing.

Feature Selection Module: The accuracy attained from theadsi er using the
current feature set is compared against the previously afteed maximum accu-
racy. It records the maximum accuracy attained with the give feature subset.

Output: Set of features that improve the performance of the odel.

An algorithm 3 that explains the series of steps performed in FFS is provided the
end of this section.

4.7.3 ML Algorithms used in Feature Selection

The feature selection works in conjunction with di erent chssi cation algorithms
to determine the credibility of a certain feature. Figure4.13 shows in detail the
classi cation models used for each of the ranking mechanismThe entire Feature
Selection process is carried out as shown in Hgl3 Experiment 2: Comparative
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" WFI-RF: Classi cation using RF based on ranking derived from WFI.

Gradient Boosting (GB)

GB is an ensemble technique used for classi cation as well ssyression problems
in supervised learning. It improves the model performanceybteratively reducing
the loss by using Gradient Descent Optimization [35]. We pfarmed multiple ex-
periments to select the best hyperparameters. The nal hypparameters selected
were nestimators: 50 and randomrstate=42. Based on our earlier experiments, we
performed classi cation using GB only on the feature set acired using WFI i.e.
WFI-GB.

XGBoost (XGB)

XGB is an optimized version of Gradient Boost algorithm. Sice it provides parallel
tree boosting, it is capable of solving ML problems more ac@ately and faster [63].
We performed multiple experiments to select the best hypespameters. The nal
hyperparameters selected were_@stimators: 200 and randonstate=42. Based on
the earlier experimentation, we concluded to use featuretsgenerated by both the
ranking mechanisms (SP, WFI) as inputs for XGB classi cation.Following are the
two experiments performed using the XGB classi er:

" SP-XGB: Classi cation using XGBoost based on ranking dered from SP.

" WFI-XGB: Classi cation using XGBoost based on ranking derivd from WFI.

Dataset RM FS Algo | ML Classier Hyperparameters
sp SPFS, FFS RF n_estimators=50, randomstate=42
SPFS, FFS XGB n_estimators=200, randomstate=42
Command, Function, and Responsge SPFS, FFS RF n_estimators=50, randomstate=42
WFI | SPFS, FFS GB n_estimators=50, randomstate=42
SPFS, FFS XGB n_estimators=200, randomstate=42

Table 4.4: Datasets, Ranking Mechanism, Feature Selectigigorithm, Classi ers,
and Hyperparameters used in Feature Selection Phase.

4.8 Classi cation using Cross-Validation
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Algorithm 3  FFS using SP Ranking and classi cation using Cross-Validatio

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Read the data from the CSV le:
d  pdireadcsvy™NewGasFilteredCommand.P reprocessed:csy

: Replace and remove in nite values with NaN:

d:replace([np:inf; np:inf ];np:nan;inplace= True), o d:dropna()
Convert Labels 'Normal' to 0 and 'Attack’ to 1:

d [Labe o [Label:replacg®?: 0;°1°: 1)

Extract features and Labels:

X di:drop(columns =[Label), y d [Label

Compute and rank the features based on standard deviation )

std_dev X:std(), std_devrank std_dev:rank(ascending= True)
Compute the absolute di erence D) of mean and median of the features:
absdiff _-mean.median np:abgX:mean() X:median()),

absdiff _rank  absdiff _.mean.median:rank(ascending= True)

De ne a function to compute the rank of features based on skewss:
skewness X:apply(skew), skewrank  skew:rank(ascending= False)
De ne a function to compute the rank of features based on kuosis:

kurt  X:apply(kurtosis), kurt _rank  kurt:rank (ascending= True)
Compute combined feature rank as

combfeature rank  std_devrank + absdiff _rank + skew.rank + kurt _rank

Sequential feature selection based on the current accurasybetter
Current subset combined feature rank sorted in ascending order
for each feature in current subsetio
Previous subset current subset, Select one feature to the current subset
Split the data into train and test sets and evaluate a classer
if current accuracy> previous accuracythen
Update previous accuracy, F1 score and Final set current subset
end if
end for
Output the nal selected features: Final set

Select features based on the Final set
Initialize KFold cross-validation with 10 folds
Compute accuracy, precision, recall, F1 score, confusion tng execution time.
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Classi er Ranking Mechanism Hyper Parameters

Random Forest (RF) WFI n_estimators= 200, randomstate=42
SP n_estimators= 200, randomstate=42

Gradient Boost (GB) WFI n_estimators= 200, randomstate=42

Extreme Gradient Boost (XGB) | WFI n_estimators= 200, randomstate=42
SP n_estimators= 200, randomstate=42

Table 4.5: Classi er, Ranking Mechanism, and Hyper Paramete in 10-fold Cross
Validation
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Algorithm 4  SP Ranking using SPFS for Binary classication using Cross-

Validation
1: Read the data from the CSV le.

2: Replace and remove in nite values with NaN:

d:replace([np:inf; np:inf ];np:nan;inplace= True), &  d:dropna()
3: Convert Labels 'Normal' to O and 'Attack’ to 1:
d [Labe o [Label:replacg®P: 0;°1°: 1)
4: Extract features and Labels:X  df:drop(columns=[%abel),y o [Label
5. Compute and rank the features based on standard deviation
std.dev  X:std(), std_devrank std_dev:rank(ascending= True)
6: Compute the absolute di erence D) of mean and median of the features:
absdiff _-mean.median np:abgX:mean() X:median()),
absdiff _rank  absdiff _mean_median:rank(ascending= True)
7. De ne a function to compute the rank of features based on skewss:
skewness X:apply(skew), skewrank  skew:rank(ascending= False)
8: De ne a function to compute the rank of features based on kuosis:
kurt  X:apply(kurtosis), kurt _rank  kurt:rank (ascending= True)
9: Compute combined feature rank and order it in ascending ordas
comhfeature rank  std_devrank + absdiff _rank + skew.rank + kurt_rank
10: Previous accuracy O, Final set [], Current subset comhfeature _rank
11: for each feature in current subsetdo
12: Add one feature to the Final set.
13: Previous subset Finalset, current subset Previous subset
14: Split the data into train and test sets to Train and Evaluate te classi er
15: Compute execution time, accuracy and fl-score

16: if current accuracy> previous accuracythen
17: Update previous accuracy, F1 score

18: else

19: Remove current feature from Final set.
20: end if

21: end for

22: Perform K-Fold cross-validation with 10 folds on the Final Se
23: Compute and output execution time accuracy, precision, rat, F1 score, and
confusion matrix.




Chapter 5

Results and Discussions

5.1 Overview

In this section, we will systematically discuss and analyzée results obtained from

our experimental investigations. As mentioned in the precat sections, our research
encompassed three distinct experiments. Consequently,ethresults are organized
according to the speci c experiments conducted. Sectiots2, 5.4, 5.5, 5.6 present

the results and analyses of Experiments 1 through 3, as wedl gesults acquired from
Gas Pipeline dataset and the Command, Function, and Respanslusters. Section
5.7 synthesizes the outcomes derived from the aggregated dafaath experiments.

5.2 Evaluating Optimal Machine Learning Classi er for Gas Pipeline
Dataset Analysis

Following a comprehensive understanding of the dataset anitial pre-processing
steps, our objective was to identify the most e ective machie learning classi ers for
optimal performance. Here we used the complete Gas Pipelinataiset to determine
the top three performing classi ers for subsequent experents using all three clus-
ters of the gas pipeline dataset. We tried ve machine learng classi ers namely
RF, DT, GB, XGB, and NB using the SP-SPFS approach. Tablé.1 contains the
accuracy and total execution time for all ML classi ers. As sbwn in Fig 5.1 our
ndings indicate that RF, DT, and XGB are the most e ective classi ers, achieving
an accuracy of 98.91% with 16 features, 99.14% with 14 featar and 97.95% using
17 features, respectively on a Non-Normalized dataset. Frorhd results acquired,
it can be deduced that RF, DT as well as XGB perform better whenhie dataset
is not normalized. The graph in Fig5.2 shows the performance of all classi ers for
the non-normalized and normalized gas pipeline dataset. Asférred from the re-
sults above, the tree-based classi ers perform better thahe others. Therefore, we
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parameters based on the ordering of features.

Feature Rank order: Ascending
Statistical Parameter Accuracy (%) Number of Features
Standard Deviation 96.59 14
Absolute Di erence 96.63 15
Skewness 96.56 16
Kurtosis 96.66 16

Table 5.2: Performance of Statistical properties taken onat a time arranged in
Ascending order of value

Feature Rank order: Descending
Statistical Parameter Accuracy (%) Number of Features
Standard Deviation 96.63 16
Absolute Di erence 96.59 16
Skewness 96.63 13
Kurtosis 96.63 13

Table 5.3: Performance of Statistical properties taken onat a time arranged in
Descending order of value

In Table 5.2 and 5.3 we can see that when using Standard Deviation, Absolute
Di erence, and Kurtosis the classi er attains an accuracy 1096.59% using 14 features,
96.63% using 15 features and 96.66% using 16 features respayg. Although for
statistical parameters accuracy is better when features @rranked in descending
order however, it comes at the cost of using more features. Hen we concluded
that Standard Deviation, Absolute Di erence as well as Kurbsis contribute better
results when features are arranged in ascending order sifl_dev.rank, absrank,
and kurt _rank respectively. Whereas, Skewness contributes to better réisuwhen
features are arranged in descending order sikew rank. Table 4.2 summarizes the

order associated with each statistical parameter.

5.4.2 Analysing impact of pairs of statistical parameters

After deducing the best possible ordering associated with aastatistical parame-
ter, we implemented these ndings in this as well as furtherx@eriments. In this
experiment, we considered the statistical parameters in pa as shown in Table4.3.
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a comprehensive analysis and the associated data pertamito the application of
SPFS on Command, Function, and Response datasets.

Command Dataset

As mentioned above, we used tree-based classi ers namely RFGE and GB to
analyze the command dataset. The evaluation was based on feemance metrics
such as accuracy and F1 score, which are critical in assesgingdictive models. The
ensuing Table5.5 presents the detailed results obtained, o ering insightsnto the
e ectiveness of each classi er in predicting the desired tuut for the dataset. This
table presents the two sets of accuracy and fl-score valueséd on the normalization
or non-normalization of the dataset. The values are assocgat with a speci ¢ ranking
mechanism and classi er used.

As seen from the table, the RF classier, when applied with theSP ranking

RM | Classi er Non-Normalized Dataset Normalized Dataset
ACC (%) F1-Score ACC (%) | F1-Score

SP | RF 98.87 0.98 99.21 0.98

XGB 98.29 0.96 98.53 0.97

WFI | RF 98.81 0.97 99.27 0.98

XGB 98.28 0.96 98.1 0.96

GB 91.15 0.77 91.15 0.77

Table 5.5: Performance Metrics for Di erent Ranking Mechaisms and Classi ers
for Command Dataset

mechanism, achieves superior results with an accuracy of®B% and an F1-Score of
0.98 on the non-normalized dataset. Similarly, employingRwith the WFI ranking
mechanism yields even higher performance, achieving an @ecy of 99.27% and
an F1-Score of 0.98, surpassing other con gurations. Additially, it is noteworthy
that in context of normalized dataset the RF classi er exhilis consistent F1-Score
performance across SP implementation, with a minor 0.06 drence in accuracy
observed. Figure5.8illustrates the performance of classi ers in terms of Accuy
and F1-Score as each feature is incrementally added and ewdéd using the SPFS
algorithm on the non-normalized Command dataset. From Figer5.8, it is evident
that there is a signi cant increase in both Accuracy and F1-Sge with the addition
of the rst four features in graphs (a) and (b). However, in grahs (c) and (d), it
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Response Dataset

As mentioned above, we used tree-based classi ers namely RFGE and GB to
analyze the Response dataset. The evaluation was based omfgrenance metrics
such as accuracy and F1 score, which are critical in assesgingdictive models. The
ensuing Table5.7 presents the detailed results obtained, o ering insightsnto the
e ectiveness of each classi er in predicting the desired tuut for the dataset. This
table presents the two sets of accuracy and f1-score valueséd on the normalization
or non-normalization of the dataset. The values are assotzd with a speci c rank-
ing mechanism and classi er used. As seen from the table, thé=Rlassi er, when

RM | Classi er Non-Normalized Dataset Normalized Dataset
ACC (%) F1-Score ACC (%) | F1-Score

SP | RF 98.97 0.98 97.73 0.96

XGB 98.51 0.98 98.62 0.98

WFI | RF 98.96 0.98 97.99 0.97

XGB 98.71 0.98 98.67 0.98

GB 91.05 0.83 71.13 0.09

Table 5.7: Performance Metrics for Di erent Ranking Mechaisms and Classi ers
for Response Dataset

applied with the SP as well as WFI ranking mechanism, achievesgerior results
with an accuracy of 98.97% and 98.96% respectively as wellaasF1-Score of 0.98
on the non-normalized dataset. Also, employing XGB with the Band WFI ranking
mechanism yields an accuracy of 98.62% and 98.67% respetyihand an F1-Score
of 0.98, surpassing other con gurations.

Figure 5.12 shows the performance of classi ers based on Accuracy and Fdof as
each feature is added, and evaluated using the SPFS algoritlum the non-normalized
Response dataset. As inferred from Figu®12 graph (a) reveals a constant increase
in Accuracy with ve features, while the F1-Score stabilizes feer three features.
Graphs (b), (c), and (d) exhibit a signi cant increase in peformance with the addi-
tion of the rst three features. Graph (e) demonstrates thathe approach considered
only two features, resulting in very poor performance. Figer5.13 presents the per-
formance of classi ers based on Accuracy and F1-Score as eé&éshiture is added,
and evaluated using the SPFS algorithm on the normalized Respse dataset. As
inferred from Figure 5.13 graph (a) shows a spike in performance with the rst
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Function Dataset

We employed tree-based classi ers namely RF, XGB, and GB to alyze the Function
dataset using the FFS algorithm. The evaluation was based onn@mance metrics
such as accuracy and F1 score, which are critical in assesgingdictive models. The
ensuing Table5.9 presents the detailed results obtained, o ering insightsnto the
e ectiveness of each classi er in predicting the desired tuut for the dataset. This
table presents the two sets of accuracy and f1-score valueséd on the normalization
or non-normalization of the dataset. The values are assocgat with a speci ¢ ranking
mechanism and classi er used. As illustrated in the table, #n Random Forest (RF)

RM | Classi er Non-Normalized Dataset Normalized Dataset
ACC (%) F1-Score ACC (%) | F1-Score

SP | RF 99.24 0.98 99.56 0.99

XGB 98.9 0.97 98.9 0.97

WFI | RF 99.27 0.98 99.57 0.99

XGB 98.86 0.97 98.91 0.97

GB 95.13 0.83 95.14 0.83

Table 5.9: Performance Metrics for Non-Normalized and Normakd Function
Dataset using FFS

classi er demonstrates exceptional performance when utiéd with both the SP and
WEFI ranking mechanisms, achieving an impressive accuracy d.24% and 99.27%
respectively, alongside an F1-Score of 0.98 on the non-notired Function dataset.
Similarly, for the normalized Function dataset, the RF clasi er, when applied to
the feature sets derived from SP and WFI, performs remarkablyed, attaining an
accuracy of 99.56% and 99.57% with an F1-Score of 0.99. Consady, it can be
inferred that the RF classi er yields the most promising reglts for the Function
dataset. Figure5.16 shows the performance of classi ers based on accuracy and
fl-score as each feature is added, and evaluated using the FH§odthm on the
non-normalized Function dataset. As inferred from Figur&.16 graphs (a) and (b)
reveal a constant increase in Accuracy with three features,hile the fl-score in
(b) is consistently increasing for almost all features. Inrgphs (c) and (d), we can
see an increase in Accuracy for the rst six to seven featureshereas, for the fl1-
score it takes six to seven features for performance to plate Graph (e) shows an
increase in accuracy as features are added but not so promgsincrease in F1-Score.
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present the experimental results for each dataset separigte

5.6.1 Command Dataset

Table 5.11presents the outcomes obtained from applying Cross Validah to the fea-
ture set derived from SPFS for both the non-normalized and noralized Command
datasets across various ranking mechanisms. As depicted iable 5.11, the SP-RF
and WFI-RF approach demonstrates superior performance ovehd others on the
Command dataset. The SP-RF approach utilizes 13 features &zhieve an accuracy
of 98.86% with a training time of 208.92 seconds whereas the WRF approach
uses 11 features in 150.67 seconds to attain an accuracy af78%. However, SP-
RF has better precision, recall, and fl-score in compariséo WFI-RF. Therefore,
it can be inferred that for the non-normalized Command datat, SP-RF performs
better. In contrast, on the normalized Command dataset, WFI-R exhibits supe-
rior performance with an accuracy of 99.27%, a training timef 233.87 seconds, and
employing 12 features. Notably, SP-RF achieves a comparalalecuracy of 99.24%
with signi cantly reduced training time and fewer features Given the emphasis on
time-critical infrastructure in our study, SP-RF emerges & the superior performer.
Table 5.12 presents detailed results following the application of css-validation to

Performance Metrics Command Command _Preprocessed
SP-RF | SP-XGB | WFI-RF WFI-XGB SP-RF | SP-XGB | WFI-RF WFI-XGB
# of Features 13 12 11 12 10 13 12 11
Training time (s) 208.92 14.61 150.67 10.66 179.13 13.53 233.87 11.48
Accuracy (%) 98.86 98.18 98.78 98.18 99.24 98.37 99.27 97.91
Mean Precision 0.994 0.991 0.991 0.991 0.997 0.994 0.998 0.99
Mean Recall 0.958 0.932 0.957 0.932 0.971 0.937 0.972 0.922
Mean F1 Score 0.976 0.961 0.974 0.961 0.984 0.965 0.985 0.954
FPR 0.002 0.003 0.003 0.003 0.001 0.002 0.001 0.003
FNR 0.042 0.068 0.043 0.068 0.029 0.063 0.028 0.078
TPR 0.958 0.932 0.957 0.932 0.971 0.937 0.972 0.922
TNR 0.998 0.997 0.997 0.997 0.999 0.998 0.999 0.997
Feature Selection Time (s)| 4.4768 | 0.9952 3.9931 0.9354 47174 | 0.9757 6.3348 0.8806

Table 5.11: Performance Metrics for Command and Commarféreprocessed using
SPFS

the feature set derived from FFS for both the non-normalized @anormalized Com-
mand datasets across di erent ranking mechanisms. Analysisveals that for the
non-normalized Command dataset, SP-RF and WFI-RF exhibit ckely competitive
performance. SP-RF achieves 98.86% accuracy in 220.91 sdsaising 13 features,
while WFI-RF achieves 98.88% accuracy in 237.66 seconds, alsth 13 features.
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The dierences in other parameters are minimal. Hence, SP-RIS concluded to

outperform WFI-RF in terms of execution time in this scenario.For the normalized

Command dataset, SP-RF achieves an accuracy of 99.32% in .283seconds using
13 features and WFI-RF achieves an accuracy of 99.31% in 252s®¢onds using 13
features as well. The computation time does not di er signcantly as well as the
total features used are constant across both the approachence, it can be deduced
that SP-RF outperforms the other approaches.

Performance Metrics Command Command _Preprocessed

SP-RF | SP-XGB | WFI-RF WFI-XGB SP-RF | SP-XGB | WFI-RF WFI-XGB
# of Features 13 13 13 12 13 13 13 13
Training time (s) 220.91 13.26 237.66 4.92 253.98 12.66 252.24 9.15
Accuracy(%) 98.86 98.36 98.88 98.1 99.32 98.37 99.31 98.67
Mean Precision 0.994 0.993 0.994 0.992 0.998 0.994 0.998 0.991
Mean Recall 0.958 0.937 0.959 0.928 0.973 0.937 0.973 0.965
Mean F1 Score 0.976 0.965 0.976 0.959 0.986 0.965 0.985 0.978
TPR 0.958 0.937 0.959 0.928 0.973 0.937 0.973 0.965
TNR 0.998 0.998 0.998 0.998 0.999 0.998 0.999 0.996
FPR 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.004
FNR 0.042 0.063 0.041 0.072 0.027 0.063 0.027 0.035
Feature Selection Time (s)| 4.505289 0.967567 | 4.712730| 0.924249 | 5.396931] 1.444020| 4.955189| 0.975510

Table 5.12: Performance Metrics for Command and CommarkRreprocessed using
FFS

5.6.2 Function Dataset

Table 5.13summarizes Cross Validation results using SPFS feature séis both non-
normalized and normalized Function datasets across di emé ranking mechanisms.
In the non-normalized dataset, WFI-RF and SP-RF achieve sinal accuracies of
99.37% and 99.36%, respectively, with comparable trainitignes and feature counts.
However, in the normalized dataset, WFI-RF and SP-RF stand out ith 99.61%
and 99.49% accuracy respectively using 14 and 11 featureshwa training time
of 236.79 s and 390.17 s. Tabk 14 presents Cross Validation outcomes using FFS
feature sets for both non-normalized and Normalized Functiadatasets across various
ranking mechanisms. In the non-normalized dataset, SP-Rfmd WFI-RF perform
equally well, achieving an accuracy of 99.37%. However, WFI-RIEmonstrates lower
training time compared to SP-RF, indicating superior perfanance in this scenario.
In the normalized dataset, both classi ers achieve similaresults except for training
time, where WFI-RF again outperforms SP-RF.
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Performance Metrics Function Function _Preprocessed

SP-RF | SP-XGB | WFI-RF | WFI-XGB SP-RF | SP-XGB | WFI-RF | WFI-XGB
# of Features 15 14 15 13 11 12 14 13
Training time(s) 294.34 23.71 290.27 24.63 390.17 20.43 236.79 23.92
Accuracy(%) 99.36 94.08 99.37 98.74 99.49 98.16 99.61 98.74
Mean Precision 0.991 0.936 0.991 0.987 0.99 0.979 0.992 0.989
Mean Recall 0.971 0.699 0.972 0.938 0.98 0.912 0.985 0.937
Mean F1 Score 0.981 0.8 0.981 0.962 0.985 0.944 0.988 0.962
FPR 0.981 0.01 0.002 0.002 0.002 0.004 0.002 0.002
FNR 0.029 0.301 0.028 0.062 0.02 0.088 0.015 0.063
TPR 0.971 0.699 0.972 0.938 0.98 0.912 0.985 0.937
TNR 0.998 0.997 0.998 0.998 0.998 0.996 0.998 0.998
Feature Selection Time (s)| 7.284817 2.031957 | 7.244934| 1.901097 | 9.539596| 4.524569| 6.706321| 1.849505

Table 5.13: Performance Metrics for Function and FunctiafPreprocessed using
SPFS

Performance Metrics Function Function _Preprocessed

SP-RF | SP-XGB | WFI-RF | WFI-XGB SP-RF SP-XGB | WFI-RF | WFI-XGB
# of Features 17 17 17 17 16 17 15 16
Training time(s) 294.05 30.76 287.4 23.04 402.39 26.501096| 392.06 17.32
Accuracy(%) 99.37 98.91 99.37 98.91 99.65 98.92 99.66 98.94
Mean Precision 0.991 0.991 0.991 0.991 0.994 0.992 0.995 0.992
Mean Recall 0.972 0.945 0.972 0.945 0.985 0.944 0.985 0.945
Mean F1 Score 0.981 0.967 0.981 0.967 0.990 0.967 0.990 0.968
TPR 0.972 0.945 0.972 0.945 0.985 0.944 0.985 0.945
TNR 0.998 0.998 0.998 0.998 0.999 0.998 0.999 0.998
FPR 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002
FNR 0.028 0.055 0.028 0.055 0.015 0.056 0.015 0.055
Feature Selection Time (s)| 8.442460| 2.116954| 9.470311| 2.209312 | 9.761231422 2.140021| 7.701041| 1.993298

Table 5.14: Performance Metrics for Function and FunctiarfPreprocessed using FFS

5.6.3 Response Dataset

Table 5.15presents the results derived from the application of crosglidation on the
feature set obtained from SPFS for both non-normalized and nmoalized Response
datasets, evaluated across di erent ranking mechanisms. Alyzing the data in Ta-
ble 5.15 the WFI-RF method achieves an accuracy of 98.98% with a traimg time
of 149.43 seconds, utilizing 5 features. Conversely, the-8F method attains a com-
parable accuracy of 98.97% within a reduced training time df17.8 seconds, using
the same number of features. This indicates that SP-RF deévs nearly identical ac-
curacy to WFI-RF but in a shorter duration. For the normalized Response dataset,
the maximum accuracy achieved is 98.67% in 12.48 secondspleying 10 features.
An additional consideration is that the SP-XGB method achiegs a similar accu-
racy with a marginal di erence of 0.05%, utilizing fewer fetares, nearly equivalent
training time, and signi cantly reduced feature selectiortime. Therefore, SP-XGB
is deemed the superior performer when considering variowtors such as feature
space, number of features used, feature selection time,itiag time, and accuracy.
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Table 5.16 presents the results obtained from the application of crosslidation on

Performance Metrics Response Response _Preprocessed

SP-RF | SP-XGB | WFI-RF | WFI-XGB SP-RF | SP-XGB | WFI-RF | WFI-XGB
# of Features 5 10 5 9 8 7 2 10
Training time (s) 117.8 14.84 149.43 12.35 126.4 12.4 396.17 12.48
Accuracy (%) 98.97 98.61 98.98 98.67 97.64 98.62 97.88 98.67
Mean Precision 0.991 0.991 0.991 0.991 0.964 0.99 0.965 0.991
Mean Recall 0.975 0.963 0.975 0.965 0.958 0.964 0.965 0.965
Mean F1 Score 0.983 0.977 0.983 0.978 0.961 0.977 0.965 0.978
FPR 0.004 0.004 0.004 0.004 0.016 0.004 0.015 0.004
FNR 0.025 0.037 0.025 0.035 0.042 0.036 0.035 0.035
TPR 0.975 0.963 0.975 0.965 0.958 0.964 0.965 0.965
TNR 0.996 0.996 0.996 0.996 0.984 0.996 0.985 0.996
Feature Selection Time (s)| 3.3507 1.0822 3.3958 1.0036 3.9804 | 0.9457 9.7439 3.8750

Table 5.15: Performance Metrics for Response and RespaRseprocessed using
SPFS

the feature set derived from FFS for both non-normalized and nmalized Response
datasets, evaluated across various ranking mechanisms. Arzang the data in Table
5.1 it is observed that SP-RF and WFI-RF are closely matched in p&rmance for
the non-normalized Response dataset. WFI-RF achieves an ay of 98.89% with
a training time of 217.23 seconds using 5 features, whereds & attains an accu-
racy of 98.78% with a signi cantly shorter training time of 40.57 seconds using 3
features. The performance across other parameters is veipiar for both methods.
Hence, SP-RF is considered superior due to its use of feweltdieas, shorter training
time, and reduced feature selection time while maintainingpmparable accuracy. For
the normalized Response dataset, WFI-XGB outperforms othempgaroaches, achiev-
ing an accuracy of 98.71% in 8.99 seconds using 12 featuresdifahally, WFI-XGB
demonstrates superiority across other evaluated paramese

Performance Metrics Response Response _Preprocessed

SP- RF | SP- XGB | WFI- RF | WFI- XGB SP- RF | SP- XGB | WFI-RF | WFI-XGB
# of Features 3 11 5 12 4 12 1 12
Training time(s) 140.58 13.7 217.23 8.99 442.57 14.13 1167.44 8.99
Accuracy(%) 98.78 98.55 98.89 98.71 97.71 98.63 97.90 98.71
Mean Precision 0.989 0.990 0.990 0.991 0.964 0.991 0.966 0.991
Mean Recall 0.971 0.961 0.973 0.966 0.960 0.963 0.965 0.966
Mean F1 Score 0.980 0.976 0.981 0.978 0.962 0.977 0.965 0.978
TPR 0.971 0.961 0.973 0.966 0.960 0.963 0.965 0.966
TNR 0.995 0.996 0.996 0.996 0.984 0.996 0.985 0.996
FPR 0.005 0.004 0.004 0.004 0.016 0.004 0.015 0.004
FNR 0.029 0.039 0.027 0.034 0.040 0.037 0.035 0.034
Feature Selection Time (s) 4.826 1.079 5.602 1.038 5.806 1.174 12.534 1.059

Table 5.16: Performance Metrics for Response and Respaiseprocessed using FFS
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5.7 Final Results after comparative analysis

Based on the data collected and the inferences drawn, thiscden emphasizes the
most appropriate approach for all datasets, considering maing mechanisms and
feature selection algorithms. The selection is based on pareters such as total ex-
ecution time, the number of features selected, and F1-Scoreig 5.20and Fig 5.21
show the accuracy attained through cross-validation acresll datasets and ranking
mechanisms using FFS and SPFS respectively. The intensity ofetlshading corre-
lates with accuracy, darker regions indicate higher accura Similarly, Fig 5.22and
Fig 5.23illustrate the total execution time required for each apprach measured in
seconds using FFS and SPFS respectively, with darker areas figing shorter exe-
cution times. The total execution time is de ned as:

Total Execution Time = Pre-Processing Time + Feature Ranking Time + Feature
Selection Time + 10-fold Cross-Validation time

As observed from Fig5.20 Fig 5.21 Fig 5.22 and Fig 5.23it is evident that the
normalization of the Command and Function datasets enhangsgerformance. Con-
versely, for the Response dataset, superior results weretasbed without normal-
ization. Furthermore, the highest-performing methods witin the FFS framework
marginally outperform those of SPFS in terms of accuracy. Hower, considering
total execution time, SPFS demonstrates a clear superioritgver FFS. Given our
objective to identify methods suitable for time-critical gstems, it can be concluded
that SPFS is the preferable approach in this context.

Now that we have shortlisted the top two performing approactsand the optimal ver-
sion of the dataset(Normalized or Non-Normalized) we proceeowards selecting the
best approaches for each dataset. Fig24 illustrates the Number of features used,
Total Execution Time, and Accuracy attained for the top two peforming methods
for both FFS and SPFS. As observed from Fi§.24 using the SP and WFI ranking
mechanism, the RF classi er with the FFS Feature Selection abgithm achieves the
highest accuracy for the Normalized Command dataset. Howeyés drawback is the
extensive execution time, necessitating 13 features, whits the highest among the
methods considered, rendering it unsuitable for time-cidal applications. Notably,
with the SP ranking mechanism, the RF classi er using the SPF8&lgorithm as the
feature selection technique achieves the shortest exeoutitime while maintaining
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is critical; ranking using the SP ranking mechanism, feater selection using SPFS,

and classi cation using RF should be performed.

CRITICAL INFRASTRUCTURE APPLICATIONS

FES Without-Preprocessing With Preprocessing

Best Method | Features | F1-Score | Execution Time Best Method | Features | F1-Score | Total Time
Command SP, RF 13 0.98 225.53 SP, RF 13 0.99 259.53
Function SP, RF 17 0.98 302.87 SP, RF 16 0.99 412.67
Response WFI, RF 5 0.98 233.18 WFI-XGB 12 0.98 10.61
SPFS Without-Preprocessing With Preprocessing

Best Method Features | F1-Score | Execution Time Best Method Features | F1-Score | Total Time
Command SP, RF 13 0.98 21351 SP, RF 10 0.98 184
Function SP, RF 15 0.98 302 WFI, RF 14 0.99 263.62
Response SP, RF 5 0.98 121.27 SP, XGB 7 0.98 13.51

Best approach for highly available systems (response time is critica 1): With Pre-processing-SP-SPFS-XGB
Best approach for sensitive systems (data is critical): With Pre-proce ssing-SP-SPFS-RF

Table 5.17: Comparison of di erent methods for Critical Infastructure Applications
on Command, Function, and Response dataset

Table 5.18 shows the comparison of our approach with the state-of-theat re-
search conducted. Our approach yields better performancer fclusters Command
and Response in contrast to the work done by [55] and attaingnaost similar accu-
racy for the Function cluster. Also, for the gas pipeline datet we have compared
our results with [55], [59], [61], [60], [56], and [21] who Y&worked on Binary clas-
si cation for IDS.



Table 5.18: Comparison with the state-of-the-art approaas

Exec
Preprocessing FS Feature Best Model, . .
Ref o Accuracy F1-Score Precision Recall Time
(Y/N) (Y/N) Count Classi cation
(YIN)
Random Forest, C: 97.73% C: 0.977 C: 0.977
[55] No No All (17) Clusters and F: 99.97% F: 1 F 1 NA No
Multiclass R: 97.73% R: 0.977 R: 0.977
Yes, Ensemble
k-means Not Models,
[61] No ) ) ) 98.39% 0.983 0.984 0.983 No
algorithm Mentioned Binary and
(k=2) Multiclass
Yes, Yes, PCA, Not Proposed Approach,
[4] o ) ] 97% 0.95 0.98 0.92 No
Standardization CCA, and ICA Mentioned Multiclass
Yes, Min-Max One-Class Support
[59] Normalization, No All (17) Vector Machines 99.13% NA NA NA No
RBF kernel (OCSVM), Binary
Decision Tree,
[60] No No All (17) Binary, Multiclass, 97.50% 0.975 0.975 0.975 No
and Specic
OCC-eSNN,
[56] Yes No All (17) _ 98.82% 0.988 0.988 0.988 No
Binary
Yes,FDA and Random Forest,
[21] No ] 17 ) 97.80% 0.949 NA NA No
Cost matrix Binary
No 17 Random Forest 99.1% 0.986 0.991 0.981 4110.03 s
o v 14 SP-SPFS-DT 99.22% 0.982 0.986 0.978 24.43 s
ur es,
. 10 SP-SPFS-RF C:99.24% 0.984 0.997 0.971 179.13 s
Work Min-Max Yes
11 WFI-SPFS-RF F: 99.61% 0.988 0.99 0.98 239.79 s
5 SP-SPFS-RF R: 98.97% 0.983 0.991 0.975 1178 s
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Chapter 6

Future Work

While signi cant strides have been made in securing gas pipe systems through
the application of ML techniques, challenges related to daset imbalance persist,
warranting further investigation. Addressing this imbalare could reveal whether
the performance of the selected approaches can be enhancethér. It would be
prudent to explore whether balancing the dataset leads to rasurable improvements
in accuracy and detection e ciency. Additionally, investigating the potential of al-
ternative ML methodologies, including Deep Learning techques, within the distinct
clusters of the gas pipeline dataset could o er valuable imgts for attack detection
in ICSs.

Our novel approach also presents an opportunity to extendstapplication beyond
binary classi cation to multi-class classi cation within the Gas Pipeline dataset, po-
tentially broadening its utility in complex scenarios. Moeover, the integration of
other feature selection techniques with our proposed feawranking mechanisms
could further evaluate the e ectiveness of di erent approehes in detecting cyber-
attacks within Critical Infrastructures (CIs).

To enhance the scalability and robustness of our methodolggt is crucial to test it
against more complex datasets derived from other Industti€ontrol Systems (ICSs).
Such testing would assess the approach's adaptability anctacy across diverse op-
erational contexts. Furthermore, evaluating the applicaiity of our approach in
real-time scenarios is essential to ensure its practicaleeance and reliability in dy-
namic environments.

Our approach also holds promise for global applications. Bgxtending its use to
other gas pipeline systems worldwide, facilitated througla cloud interface or an
advanced data pipeline, we could enable continuous monitog and timely updates
of the classi ers. This would ensure that the system remainagile and responsive,
consistently adapting to new data and evolving threats in @&-time.
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Chapter 7

Conclusion

Our innovative methodology, SP-SPFS, signi cantly diminibes the overall response
time, rendering it exceptionally well-suited for real-tine applications within Crit-
ical Infrastructures (CIs) including but not limited to gas pipeline systems. This
reduction in response time is instrumental in enabling therpmpt identi cation of
cyber-attacks, thereby facilitating a more immediate and ective response. Conse-
quently, this ensures the continuous and secure operatioh ©Is, safeguarding their
functionality against potential threats. The robustness bour approach lies not only
in its speed but also in its adaptability, making it a criticd tool in the ongoing e ort
to protect vital infrastructure.

Building on this foundation, our work speci cally focuses o identifying and evaluat-
ing various approaches that e ectively reduce response tarwithin an IDS tailored
for the gas pipeline SCADA dataset and its three distinct clusrs namely Command,
Function, and Response. By conducting a comparative analgf multiple ML clas-
si ers, feature ranking mechanisms, and feature selecti@hgorithms, we determined
the optimal combinations for di erent systems|those that are time-sensitive and
those that are performance-sensitive.

We evaluated the performance of ve ML classi ers|DT, RF, GB, XGB, and NB
on the Gas Pipeline dataset with and without feature selean. Our ndings indi-
cate that RF, GB, and XGB outperformed the others and are suitale for further
evaluation based on the analysis done using the Gas Pipelidataset. Our ndings
indicate that:

" Using the SP-SPFS-DT approach on a non-normalized gas pip&idataset we
attained an accuracy of 99.22% in 24.43s using 14 features.

" On a non-normalized gas pipeline dataset with no feature rlimg and feature
selection we observed that the RF classi er attained an accacy of 99.1% in
4110.03s using 17 features.
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The feature ranking and feature selection signi cantly redce the total execution time
of anomaly detection as well as increase the overall accwa€or the three clusters:
Command, Function, and Response we used our two feature ramdx mechanisms,
SP and WFI to establish the hierarchical arrangement of feates. We then com-
pared the performance across feature sets generated witlesle ranking mechanisms
using feature selection algorithms, speci cally FFS and ouravel algorithm SPFS.
Our results show that the SP and WFI approach with RF o ers the bst accuracy,
while the SP approach with XGB provides a good balance of acewy and reduced
response time. To validate our results, we employed 10-faidoss-validation.

From the 10-fold cross-validation results, we observed thpre-processing the Com-
mand and Function datasets yields better performance, wherethe Response dataset
performs better without pre-processing. The following peents the results deduced:

" In reference to the Command dataset, the SP-SPFS-RF methodrdenstrated
superior performance, achieving an accuracy of 99.24% witli179.13 seconds,
utilizing 10 features.

In reference to the Function dataset, the WFI-SPFS-RF approackielded the
best results acquiring an accuracy of 99.61% in 236.79s sy features.

" In reference to the Response dataset, the SP-SPFS-XGB prosgithe best
performance in terms of execution time taking 12.4s to attaian accuracy of
98.62% using 7 features. The SP-SPFS-RF approach provideet thest results
attaining an accuracy of 98.97% in 117.8s using 5 featuresheldi erence in the
accuracy attained is not signi cant in comparison to execudn time. Hence,
for the Response dataset, SP-SPFS-XGB is the optimal apprdac

Our study highlights that for Cls where rapid response timesi paramount, the SP-
SPFS-XGB approach with a pre-processed dataset o ers suparperformance. Con-
versely, for performance-sensitive systems where maimtizig data integrity is critical,
the SP-SPFS-RF approach, also with a pre-processed datagatyves to be more ef-
fective. These insights reinforce the adaptability and e acy of our methodology
across various operational scenarios within Cls.
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