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Abstract 

Background: Patients and their caregivers who seek care in an Emergency Department (ED) 

may ultimately choose to leave without being seen by a physician. This occurrence is labeled 

“left without being seen” (LWBS) and can account for up to 15% of all patients who come to an 

ED. Patients who LWBS do not receive the care they sought in the ED and may experience 

clinical deterioration related to delayed diagnosis or treatment. 

Objective: To describe a LWBS cohort and identify key LWBS attributes in a Canadian 

pediatric emergency department through thorough machine learning analysis. This prediction is 

intended to be used in practice to prevent adverse outcomes related to LWBS. This study focuses 

on the Pediatric Emergency Department at IWK Health in Halifax, Nova Scotia, Canada. 

Methods: This was a single-centre, retrospective analysis of administrative ED data from April 

1, 2017, to March 31, 2020, from IWK Health Emergency Department in Halifax, Nova Scotia. 

Triage record data including 101,266 observations of children aged 16 and younger who visited 

the IWK Emergency Department during a three-year period were used. Several classification 

machine learning algorithms including Logistic Regression, Decision Tree Classifier, Random 

Forest Classifier, K-Nearest Neighbors, and Extreme Gradient Boosting were used to predict 

patients at high-risk for LWBS. SMOTE was used to handle the class imbalance and improve the 

performance of the machine learning algorithms. Feature importance was used on the best-

performing model to identify the features that are associated with LWBS. 

Results: The highest-performing model utilized SMOTE balancing and the XGBoost 

classification algorithm. Using this model, and data from our partner hospital, an easy-to-follow 

set of rules were developed for identifying patients at risk of LWBS in real time. 

Conclusions: Results show the feasibility of predictive analytics in identifying LWBS patients. 

This can support proactive decision-making about those patients who are at risk of LWBS. 

 

 

 

 

 

 

 

 

  



vii 

List of Abbreviations Used 

• CTAS: Canadian Triage Acuity Scale 

• ED: Emergency Department 

• EDWIN: Emergency Department Work Index 

• EHR: Electronic Health Record 

• FSA: Forward Sortation Area 

• ICD10: International Classification of Diseases, Tenth Revision 

• KNN: K – Nearest Neighbours 

• LWBS: Left Without Being Seen 

• ML: Machine Learning 

• NACRS: National Ambulatory Care Reporting System 

• NEDOCS: National Emergency Department Overcrowding Scale 

• RFC: Random Forest Classifier 

• RN: Registered Nurse 

• ROC AUC: Area Under the Receiver Operating Characteristic Curve 

• SHAP: SHapley Additive exPlanations 

• SMOTE: Synthetic Minority Oversampling TEchnique 

• SVR: Support Vector Machine 

• XGBoost: eXtreme Gradient Boosted algorithm 

 

  



viii 

Acknowledgments  

 

I would like to express my gratitude to the following individuals and organizations for their 

support and assistance throughout my research: 

First and foremost, I would like to thank my thesis advisors, Dr. Peter Vanberkel and Dr. Majid 

Taghavi for their guidance, support, and patience throughout the entire process.  

I would also like to thank the members contributing to this work, Dr. Katrina Hurley and Eleanor 

Fitzpatrick, for their clinical insightfs and feedback, which have helped to shape my research in 

important ways. 

Additionally, I am grateful to the IWK for providing the resources that have enabled me to 

conduct this research. 

Finally, I would like to express my appreciation to my family and friends for their support and 

encouragement throughout this journey! Especially my family, Diane, Adam and Isabel. 

Thank you all for your contributions to this thesis.



1 

 

 

Chapter 1: Introduction 
 

Patients who seek care in an Emergency Department (ED) may choose to leave without being 

seen by a physician. This occurrence is labelled “left without being seen” (LWBS)  and is 

reported in the literature as ranging anywhere from 1.2% to 20.3% [1]. Patients who LWBS may 

experience an adverse outcome [2]. It has been reported that 11% of adult patients who LWBS 

require hospitalization within the next week [3]. Recent publications that investigate LWBS have 

focused on internal hospital factors, patient characteristics, and outcome. Despite the 

investigation of LWBS occurrences, there are limited studies that research this phenomenon in 

the pediatric population. 

IWK Health (IWK) in Halifax, Nova Scotia, is a women's and children’s hospital that services a 

catchment area of 1 million people. The IWK Emergency Department (ED) provides care to ill 

and injured children and youth until their 16th birthday and is classified as an ED Level 1, 

meaning it covers all aspects of pediatric trauma care, from injury prevention to acute care to 

rehabilitation [4]. It is the only Level 1 Pediatric Trauma Centre in Canada, east of Quebec. 

There is motivation from lead clinicians at the IWK ED to gain a more thorough understanding 

of the LWBS profile present at their institution and to find ways to identify potential LWBS 

patients in real time. 

Most papers in LWBS literature have worked on patient flow metrics such as length of stay, 

waiting time, and the volume of LWBS. These papers can be separated into three dominant 

categories: 
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 • External (factors that correspond to patients) 

 • Internal (factors that relate to procedures or staffing)  

• Combination (examining both external and internal factors)  

The foundation of external factors LWBS research was completed by Bullard [5], who examined 

the effects of population growth on LWBS rates over three years. Bullard concluded that while 

the population grew exponentially in some areas, ED capacity did not incline at the same rate, 

leading to higher levels of LWBS. It has been shown that LWBS is well correlated to the 

National Emergency Department Overcrowding Scale (NEDOCS) [6]. Emergency Department 

Work Index (EDWIN) score has also been investigated for correlation with LWBS frequency, 

where a strong correlation and discriminatory power for the volume of LWBS in an ED was 

found [7]. This body of work demonstrates the importance of considering ED load and work 

when investigating LWBS, as it has repeatedly been shown to be an important factor in LWBS 

rates.  

External factors have also been studied with respect to patient presentation and diagnoses. In a 

pediatric context, behavioural health presentations in the ED system were associated with higher 

length of stay (LOS) and LWBS rates. They stated that the presence of behavioural health leads 

to ED slowdown and increased bed-hold hours, and associated LWBS [8].  

Hospital staffing is considered an external factor in LWBS research. For example, a comparison 

between wait times and LWBS rates between triage systems using nurses and unlicensed 

assistive personnel concluded that nurses provide higher quality service, lower wait times, and a 

decreased LWBS frequency [9]. It has also been found that short staffing of nurses led to higher 
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opportunity costs (as represented by LWBS patients) than the cost of increased nurse presence in 

the ED [10]. In a pediatric context, Gaucher [11] found that the presence of nurse counsellors in 

the ED led to decreased return visits within 48 hours.  

Many papers that focus on a combination of external and internal factors use surveys to identify 

what would lead a patient to LWBS. McNamara [12] concluded that waiting time was the 

primary response from respondents when questioned about factors that lead them to leave the 

ED. It has been concluded that the majority of patients in their study had access to other 

clinicians elsewhere and highlighted the importance of triage techniques and attention to patient 

presentation at triage [13]. Table 1 summarizes the literature on LWBS factors. 

Table 1. Literature summary for LWBS factor 

Paper Conclusion 

[6] LWBS correlated with the National Emergency Department 

Overcrowding Scale (NEDOCS) 

[7] Occupancy rates and emergency department work index scores 

correlated with LWBS 

[8] Behavioral health census and bed hold hours were significantly 

associated with increased LOS and LWBS rates 

[9] Wait time decreased and the number of patients who LWBS 

decreased when nurses performed triage when compared to 

unlicensed assistive personnel 

[8] Short staffing of nurses led to higher opportunity costs (as 

represented by LWBS patients) than the cost of increased nurse 

presence in the ED 

[10] Nurse counsellors in the ED led to decreased return visits within 

48 hours. 

[11] Of patients who LWBS, those who receive counseling by a nurse 

had less return visits in the following 48h. 
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Table 1. Literature summary for LWBS Factor 

Paper Conclusion 

[12] Waiting time was the primary response from respondents when 

questioned about factors that lead them to leave the ED 

[13] Most LWBS had a physician and could obtain care elsewhere 

 

As factors that relate to LWBS occurrences (internal, external, combination) are widely 

investigated, the prediction of LWBS has not been as thoroughly explored in the literature. One 

such work is a model by Sheraton [14] that utilizes ED records to develop LWBS profiles with 

machine learning. The authors used exploratory analysis and model creation to predict LWBS on 

a dataset that contained over 32 million ED records over one year. Sheraton evaluated the ‘main 

effects with interaction ’model to have a concordance of 63.4% and a discordance of 29.8%. 

Significant interactions were found with ages below 18 years and chronic conditions and ages 

above 64 years and chronic conditions. A Random Forest Classifier model was able to predict 

LWBS with a misclassification rate of 0.013. Primary insurance was the most important 

predictor, which renders this model less relevant in a Canadian context. Operational variables, 

such as wait time, duration of stay, or ED load, which are known to be factors associated with 

LWBS [1, 15-18], were not included in the creation of this model. While the model performs 

well, it was applied to a small portion (1.25%) of the available data. In another work focused on 

LWBS prediction, Casey [19] explored adult patients at risk of LWBS using machine learning on 

three years of data and 217, 250 ED encounters in a US urban setting. Gradient boosting 

methodology was used on electronic triage records, resulting in a model accuracy of 79% and 
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sensitivity of 89%. As in Sheraton’s work [14], a prominent predictor was insurance type/status. 

Table 2 summarizes the literature on predictive work for LWBS. 

Table 2.  Literature summary for predicting LWBS 

Paper Approach / Method Conclusion 

[14] Over one year, 32,680,232 hospital-

based ED visits with 466,047 incidences 

of leaving without being seen were 

included. Multivariable logistic 

regression was used to find significant 

predictors and their interactions. A 

random forest algorithm was used to 

determine the order of importance of 

factors.  

Positive predictors for leaving 

without being seen were male sex, 

low acuity, and high annual visits. 

Negative predictors were Medicare 

or private insurance, weekend visit, 

age extremes (<18 years and >65 

years), and higher income. 

[19] Three years of data spanning 217,150 

encounters for 113,400 patients. 

XGBoost model achieved an AUC of 

0.92 with good calibration, 79% 

accuracy, 89% sensitivity, and 79% 

specificity. 

The most important features 

included time of day, acuity, 

insurance type/status, chief 

complaint, utilization history, and 

medications 

 

It is evident that there is limited research on the subject of predictive modelling for LWBS 

occurrences in EDs. There are few investigations that centre predicting LWBS in Canada. 

Studies that built predictive models in the United States concluded that primary health insurance 

was an important feature. As this lacks relevance in Canada, it is possible that the profile of a 

LWBS patient may contain underreported attributes, where health insurance as a deterrent could 

result in decreased ED usage by populations that could be represented in a Canadian dataset. 

Another missing component is pediatric-focused work, where most examples of predictive 

analysis in EDs related to all ages or adults only. 
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In reviewing LWBS literature few instances of researchers attempting to predict LWBS, 

especially for pediatric situations, were found. Site-specific interventions for LWBS reduction, 

including staffing changes and protocol implementation that were developed for single 

institutions, were common. For the purposes of this research, the review of literature helped to 

identify factors which are prominent for LWBS rates at the IWK to proceed to further changes. 

Appendix A highlights the gaps in the literature that this work targets. 

The objective of this work is to gain an understanding of the LWBS patient profile at IWK 

Health, and find ways to identify potential LWBS patients. This thesis includes two studies in 

partnership with IWK Health in Halifax, Nova Scotia, Canada to understand the LWBS 

phenomena in a pediatric setting. Study 1 is a brief paper for a clinical audience with the 

objective to describe a LWBS cohort and identify key LWBS attributes in a Canadian pediatric 

context through thorough machine learning analysis. Study 2 expands on Study 1 and includes a 

descriptive analysis of the data set, presentation of the machine learning models, as well as a 

guide that has been created for the IWK ED using the machine learning algorithms that were 

implemented. Both study manuscripts are under review at peer reviewed journals.  The 

manuscripts are presented herein verbatim and contain an introduction, review of relevant 

literature, methodology, and discussion including limitations.  

Before presenting these two studies, Chapter 2 includes an overview of the general methodology, 

data set, and descriptive analysis results pertaining to the work presented in Study 1 and Study 2. 

Chapter 3 contains Study 1, and Chapter 4 contains Study 2. Chapter 5 concludes both Study 1 

and Study 2 by summarizing notable findings, contributions to current knowledge, and general 

limitations of the work. 
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Chapter 2: Methods & Population Characteristics 

Machine Learning has become a popular technique in its applications to clinical data [20]. For 

example, lab results or patient vitals can be translated to numerical values that lend themselves 

naturally to classification or clustering techniques. Administrative data can provide a rich patient 

picture, however high frequency of categorical, natural language, and human data entry present 

higher levels of effort to prepare the data for machine learning modelling. 

 In general, machine learning can be divided into three main components [21]: 

• Data Preparation 

• Data Exploration 

• Model Creation 

Data preparation involves cleaning the data set for the most accurate result. This can include 

removing duplicate data, imputing or removing data that is missing, or reformatting data to 

conform to a standard. Data exploration provides points of interest for future modelling, and 

allows for a deeper understanding of underlying trends that exist in the data. Finally, model 

creation involves selecting appropriate statistical learning techniques to accomplish the desired 

objective of the model itself. 

In this chapter, the methods for approaching the data preparation, data exploration, and model 

creation that are used in  Study 1 and Study 2 are overviewed. 
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2.1 Data Preparation 

IWK Health provided data for all Emergency Department records between April 1, 2017, and 

March 31, 2020. In total, there were 101,266 patient records where 5,799 were identified as 

LWBS. Patient information is collected upon triage in the ED by a Registered Nurse (RN) and 

registration clerk, and includes information provided by the patient, such as demographic 

information (name, birthday, address, etc.), automated contextual information (date, time at 

triage, provider assigned, etc.), and information provided by the RN (CTAS, etc.). 

Table 3. Key dataset fields and information 

Key Fields Interpretation Limitations 

Triage Date and Time Time stamp that records the 

first entry point to the system. 

All patients who are recorded 

in the system are triaged.  

Patients who do enter the ED 

and do not get triaged are not 

recorded as being present in the 

system. This could account for 

some loss of LWBS recording. 

Disposition Date and Time Time stamp recorded when 

the patient status is updated.  

When a patient leaves, they 

may not alert staff in the ED. In 

this instance the disposition will 

be updated when the departure 

is noticed. 

Disposition Code which encompasses 

patient visit in the system with 

their exit status. 

Disposition codes are not 

consistent among years. 

 

Figure 1 shows the evolution of a specific electronic patient record field over time, ‘Disposition 

Code’. This is the field that is indicative of patient status resulting in an LWBS flag. The codes 

in figure one are described as follows: 62 – Left at his/her own risk post-initial treatment; 63 – 

Left after triage; 64 – Left after initial assessment; 03 – Patient left at own risk following 
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registration & triage. Further assessment did not occur; 04 – Patient left at own risk following 

registration, triage & further assessment. Treatment did not occur; 05 – Patient left at own risk 

following registration, triage, assessment by service provider & initiation. From this Figure it can 

be seen that various administrative changes have occurred in the timeframe of this project, 

therefore it can be concluded that extracting certain information (such as vital LWBS) is not 

straightforward and requires some subject matter expertise. 

 

FIGURE 1. LWBS DISPOSITION CODE BREAKDOWN 

To prepare data to be used by machine learning models, several steps including data cleaning, 

data visualization, and descriptive analysis were completed for the data set. As described in this 

section, the data was cleaned for inconsistencies and reworked for uniformity. Visualizations and 

new fields were created that combined information from multiple fields. 

Patients with postal codes outside of Nova Scotia were removed. Several features were removed 

due to redundancy/single value repetition, for example, “Residence Code” (redundant), 

“Provider Service” (for LWBS patients 94% ‘11001 Registered Nurse’; for All Patients 97% 
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‘00127 Pediatric Emergency Medicine’), and “Mode of Visit” (99% ‘1 Visit (face-to-face)). To 

perform modelling on categorical variables, label encoding was used to generate numerical 

alternatives. Some erroneous data were removed and replaced with an imputation (such as 

automatically populated timestamps containing the UNIX epoch).  

 

 

 

 

 

 

 

An example of this would be default timestamps being replaced with the most common value, 

such as a 90-minute waiting period for a missing ‘Disposition Date Time’. In all, 2% (2,009) of 

records were removed before analysis. After these steps, the final data set used for our analysis 

contains 16 features including 3 engineered features. These features can be seen in Table 4. 

The engineered fields present in the final data set are “Time in System”, “Load” and “Driving 

Time”. “Time in System” represents the best approximation to patient time in the system as is 

available in this data set. It was derived from the difference between two original features: 

“Triage Date Time” (as arrival time), and “Disposition Date Time” (as departure time). The 

limitation to this calculation is that disposition time for LWBS is updated as triage nurses are 

FIGURE 2. FORWARD SORTATION AREA (FSA)'S OF NOVA SCOTIA 
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made aware of an early departure, which may lead to a delay in the disposition time being 

updated. “Load” is calculated similarly. Load is defined as the number of patients in the system. 

Using “Triage Date & Time” as a new arrival instance, and “Disposition Date Time” as a 

departure instance, the number of patients in the ED is updated (increased for each arrival and 

decreased for a departure) at each discrete instance.  

To determine the Driving Time for each patient to get to the hospital, distances were first 

calculated from the hospital to the patient’s Forward Sortation Area (FSA) which is the first 

three digits in one’s postal code [22]. To determine the driving duration from each FSA to the 

IWK, we used the Statistics Canada (StatCan) data set to create the geometry of each FSA using 

ArcGIS software. The generated polygons representing Nova Scotia’s 77 FSAs are shown in 

Figure 2. Then, the Latitude/Longitude Centroid of FSA polygons was used for calculating 

driving distance and duration using Google Maps API with average traffic [23]. 

Table 4. Features of the Final Dataset 

Feature Name 
Description 

Triage Level CTAS 1 to CTAS 5 

Triage Month 1 to 12 

Triage Week 1 to 52 

Triage Day 1 to 365 

Triage Hour 1 to 24 

Triage Minute 1 to 60 

Triage Day of Week 1 to 7 

Gender 0 - Female; 1 - Male 

Age 0 to 19 
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Table 4. Features of the Final Dataset 

Feature Name Description 

Time in System Time in system in minutes 

Access to Primary HC 
1 - Family Physician; 2 - Other; 3 - None; 9 - 

Unknown/Unavailable 

Visit Payor 

1 - Provincial or territorial; 2 - WCB, WSIB; 3 

- Oth prov or territory; 6 - Other federal 

government; 7 - Canadian resident, self-pay; 8 

- Oth country resident, self-pay 

Referred From 

1 - Self/Family; 2 - Inpatient Service; 3 - 

Ambulatory Care Service; 4 - Private Practice; 

5 - Drug Dependency Service; 6 - Community 

Health Service; 7 - Residential Care Facility; 8 

- Legal Service; 9 - Educational Agency; 10 - 

Home Care; 98 - Other; 99 - Unknown 

Load Number of patients in the ED 

Driving Time Driving time from  

Main Problem (MRDX) ICD10 code 

 

2.2 Descriptive Analysis 
 

This section handles the exploratory data analysis performed on the cleaned data set. 

In the dataset, around 6% of all patients that visited the IWK ED were classified as LWBS. Hsia 

et. al. [24] reported that LWBS rates range from 0% to 20.3%, with a median percentage of 

2.6%. In the largest sample of its kind, Sheraton et al. [14] reported a LWBS rate of 1.27% from 

a 2016 sample of 32,680,232 hospital-based ED visits (466,047 LWBS incidences). 
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FIGURE 3. DISTRIBUTION OF CTAS LEVELS IN ED VISITS VERSUS LWBS RATE FOR CTAS LEVELS 

To explore if patients with higher triage levels are more likely to LWBS, the distribution of the 

general population is compared to the LWBS population in Figure 3. The IWK ED uses the 

Canadian Triage Acuity Score (CTAS). CTAS is categorized as 1: Resuscitation, 2: Emergent, 3: 

Urgent, 4: Less Urgent, and 5: Non-Urgent. 

From Figure 3, we see that most LWBS patients are CTAS levels 2, 3, and 4 and as a proportion, 

there are very few levels 1 and 5. Figure 5 shows the rate of LWBS for each CTAS. The rate was 

lowest in CTAS 1 and 2 and highest at CTAS 5. The high rate for CTAS 5 shown in Figure 3 

(right) and the low proportion of CTAS 5 shown in Figure 3 (left) are caused by the low volume 

of CTAS 5 patients. 

There were no occurrences of CTAS Level 1 patients who LWBS likely due to their high acuity 

and the need for immediate care. CTAS 3 patients who LWBS are at low risk of harm but are at 

higher risk to return to the ED [18]. Identifying what types of patients become LWBS, especially 

those who are more acute is critical as they may experience an adverse event [2]. The literature 

also demonstrates that CTAS 3 patients who LWBS are at less risk of harm but are at higher risk 

to return to the ED [25].  
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The ED characteristics are further explored by the day of the week (Figures 4 and 5) and time of 

day. Across the dataset, Mondays were the busiest and had the highest rate of LWBS at 7.95% 

(10,441 visits, 830 LWBS). Saturdays were the least busy and had the lowest rate of 

 

 

 

 

 

 

LWBS at 4.54% (9,003 visits, 409 LWBS). This is consistent with the literature [14], where 

patients had lower LWBS instances occurring on weekends.  

 

 

  

  

  

 

Similar to days of the week, time of day was explored (Figures 6 and 7). For this calculation, the 

triage date and time stamps were treated as entries to the system. It was observed that peak load 
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occurs around 10:00 AM before dropping and then rising again between 4:00 PM and 8:00 PM. 

LWBS occurrences also increased with ED load but lagged behind. 

Crowding and different metrics of load in the ED have been investigated repeatedly in the 

LWBS literature. Weiss et al. [6] demonstrated that LWBS correlated with the National 

Emergency Department Overcrowding Scale (NEDOCS), while Kulstad et al. [7] found that the 

Emergency Department Work Index (EDWIN) score correlated positively with LWBS, and had 

excellent discriminatory power for the number of patients who LWBS. Vieth and Rhodes [26] 

found that increased crowding in the ED lead to increased LWBS rates and patient 

dissatisfaction. IWK ED patients are more likely to LWBS when the load exceeded the average 

level. In our study, the average load in the ED was 11 patients, and the average load when a 

patient was identified as LWBS was 19 patients (Figure 8) 



16 

 

 

 

Figure 9 demonstrates the percent LWBS by driving duration, by FSA. Each point on this chart 

demonstrates a patient from that FSA. There may be other interaction effects that are associated  
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with driving distance, as there is no visually evident trend or distribution. An interesting example 

of this is above 250 minutes of driving time, where there is a range of 0% to 11% LWBS being 

observed. There is also a cluster in the 6%-7% range which is reflective of the overall proportion 

of LWBS in the dataset. It is visually possible to see a slight negative relationship within some of 

the data, however further analysis will need to be completed to understand the interaction effects 

of this observation. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Model Selection 
 

Classification models can help in the determination of what class an observed sample belongs to. 

In this study, LWBS is the target class that a selected model is aiming to predict. Determining 

strong features associated with LWBS patients at the IWK ED is also a desired outcome of 

model creation. The classification models presented in Study 1 and Study 2 are selections of 

relevant and popular supervised classification techniques. Supervised learning is relevant to this 

work as there are historical examples of patients being labelled as LWBS that can guide 

(‘supervise’) the development of the models for training. 
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Several supervised classification models were used to predict whether a patient record is likely to 

be labeled as LWBS or otherwise and compared to determine their efficacy. Numerous 

classification algorithms have been developed, each with its own strengths and limitations. The 

choice of algorithm depends on the characteristics of the dataset and the problem being 

addressed. The model selection stage was refined in three stages across the course of this work. 

Using the Scikit-learn library for Python, the models that were chosen as candidates were: 

• Logistic Regression 

• Decision Tree Classifier 

• Random Forest Classifier 

•  K Nearest Neighbours 

• XGBoost Classifier 

In some cases, it may be necessary to train multiple models using different algorithms and 

hyperparameters to choose the best-performing model. This approach is motivated by the fact 

that different models may perform better on different parts of the dataset, and selecting the best 

model at the outset of the study is difficult. Model selection is typically performed by evaluating 

the performance of each model on a holdout dataset, and the model with the best generalization 

performance is selected. 

Logistic regression is a linear classifier that is commonly used when the relationship between the 

features and the response variable is expected to be linear or close to linear. Decision tree 

classifier is a simple and interpretable algorithm that is suitable for datasets with easily 

interpretable relationships between the features and the response variable. These selections are 

supported by the descriptive analysis where there are strong relationships to LWBS present 

within certain individual factors (CTAS level, for example). Random forest classifier is a 
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decision-tree-based algorithm that is well-suited for handling non-linear and complex 

relationships between the features and the response variable. K-nearest neighbor (KNN) is a 

distance-based algorithm that is suitable for datasets where the relationships between the features 

and the response variable are not well understood. 

XGBoost is an implementation of gradient boosting that has emerged as a popular algorithm for 

classification tasks. It combines the results of multiple weak models to create a strong model that 

can make accurate predictions. In XGBoost, each new model is trained on the residual errors of 

the previous model, with a focus on the samples that were most difficult to predict. This iterative 

process helps to improve the overall performance of the model, reduce overfitting, and increase 

the accuracy of the classification task. XGBoost is a powerful algorithm that can handle both 

numerical and categorical data, and it can be used for both regression and classification tasks. Its 

speed, scalability, and ability to handle complex datasets with high dimensionality make it a 

popular choice for data scientists [42]. 

2.4 Model Performance 

Model performance is a crucial aspect of any machine learning task, and it becomes even more 

critical in cases where the dataset is imbalanced. In such cases, standard metrics such as accuracy 

might not be sufficient to evaluate the model's performance adequately. The dataset as outlined 

in Section 2.2 contains only 6% of the target class, which presents a heavy class imbalance. A 

naïve model that makes a blanket prediction of 0 (non-LWBS) would perform with 94% 

accuracy. Therefore, it is necessary to use another metric to evaluate performance. 

Recall (Equation 1) is a metric that measures the proportion of actual positive samples that the 

model correctly identified. A high recall score for the minority class implies that the model is 
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effectively identifying instances of this class, even if it means tolerating a higher number of false 

positives. This is especially relevant in an LWBS scenario, where false negatives represent the 

highest cost: true LWBS patients that were missed and not identified by the model. Other 

performance metrics that are calculated in this document are seen in Equations 2 through 4. For 

feature importance, the F-score was calculated and can be seen in Equation 5. The feature 

importance plot seen in Chapter 3 (Figure 10) displays the F-score for each feature by 

considering the number of times a feature is used to split the data across all trees in the model, 

weighted by the gain in performance (i.e., reduction in the objective function) achieved by each 

split. The F-scores are then normalized so that they sum to 1, and the resulting values are used to 

create the feature importance plot (Figure 10). 

EQUATION 1 - RECALL EQUATION 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

EQUATION 2 - PRECISION EQUATION 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

EQUATION 3 – ACCURACY EQUATION 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 

EQUATION 4 - F SCORE EQUATION 

𝐹 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

For reliable estimates of model performance, cross validation was used. K-fold cross-validation 

partitions the data into k equally sized subsets or folds, here k is equal to 10. The model is 

trained on k-1 folds and tested on the remaining fold. This process is repeated k times, with each 
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fold serving as the test set once. This way, the model's performance can be estimated using the 

average score across all k test sets, reducing the variance of the performance estimates. 

Imbalanced data can require additional augmentation. Synthetic Minority Over-sampling 

Technique (SMOTE) is a popular method for addressing class imbalance. It creates synthetic 

samples for the minority class by generating new instances that are similar to the existing 

minority class samples. The first step is to select the minority class samples that need to be 

oversampled. Then, SMOTE selects a sample from the minority class and finds its k-nearest 

neighbors. The synthetic samples are generated by linearly interpolating between the selected 

sample and its k-nearest neighbors. The number of synthetic samples to be generated can be 

adjusted by setting the oversampling ratio. After generating the synthetic samples, the resulting 

dataset can be used to train a machine learning model. This technique has been shown to 

improve the performance of various classifiers when dealing with imbalanced datasets. 

Model refinement was also done using parameter hypertuning. Hyperparameters are parameters 

that are set before training the model, such as regularization strength, learning rate, and number 

of trees, which can have a significant impact on the model's performance. This refinement was 

performed using a grid search for all models. Grid search involves exhaustively searching over 

all possible combinations of hyperparameters in the search space. Bayesian optimization uses a 

probabilistic model to iteratively sample hyperparameters that are likely to perform well, based 

on the previous evaluations of the model. After selecting the optimization technique, the next 

step is to evaluate the performance of the model for each combination of hyperparameters. This 

was done using 5 fold cross-validation, where the data is split into training and validation sets 

and the model is trained and evaluated multiple times with different hyperparameters. Finally, 



22 

 

 

the optimal set of hyperparameters is selected based on the validation performance and used to 

train a final model on the entire dataset. 

For logistic regression, regularization strength (i.e., the penalty parameter) is a key 

hyperparameter that controls the trade-off between model complexity and overfitting. Similarly, 

for Random Forest Classifier (RFC) and Decision Tree Classifier (DTC), important 

hyperparameters include the number of trees, maximum depth, and minimum number of samples 

required to split an internal node. For K-Nearest Neighbors (KNN), the most important 

hyperparameter is the number of neighbors used for classification. Finally, for XGBoost, a 

popular boosting algorithm, hyperparameters such as the learning rate, the number of trees, the 

maximum depth, and the subsampling rate can have a significant impact on the model's 

performance. Table 5 shows the first iteration modeling as described in Chapter 4. 

Table 5. Hypertuning Results From First Iteration 

Model Parameter Values Best 

Logistic 

Regression 

C log(100) to 

log(0.001) 

100 

Random Forest 

Classifier 

N Estimators 

 

1 through 1500 

 

100 

 

Decision Tree 

Classifier 

Max Depth 1 through 20 4 

K-Nearest 

Neighbours 

N Neighbours 1 through 20 17 
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All models were trained and tested in an 80/20 train test split. For data that was balanced, original testing 

sets (non-balanced) were used. Details of the refinement stages, model evaluation, other model 

tunings, and results are outlined in Chapters 3 and 4. 
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Abstract 

Purpose: To describe a LWBS cohort and identify key LWBS attributes in a Canadian pediatric 

emergency department through thorough machine learning analysis.  

Methods: This was a single-centre, retrospective analysis of administrative ED data from April 1, 

2017, to March 31, 2020, from IWK Health Emergency Department in Halifax, Nova Scotia. 

Variables included: visit disposition; CTAS; triage month, week, day, hour, minute, and day of 

the week; gender; age; postal code; access to primary care provider; visit payor; referral source; 

arrival by ambulance; most responsible diagnosis (ICD10); length of stay in minutes; driving 

distance in minutes; and ED patient load. Descriptive analysis was used to characterise the 

population. Machine learning modelling was refined iteratively. Dataset balancing and gradient 

boosting were performed. Model performance was reported using the recall metric. 

Results: The dataset included 101266 ED visits where 5800 LWBS (5.7%). The highest 

performing machine learning model with 16 patient attributes was able to identify LWBS 

patients with a recall metric of 95%. The most influential features in this model were ED patient 

load, length of stay (minutes since triage), and driving distance (driving minutes from home 

address to the ED). 

Conclusion: The application of machine learning to administrative ED data successfully 

produced a model with excellent recall to predict LWBS patients in a Canadian pediatric ED. 

Further studies are needed to externally validate the model and prospectively evaluate its 

predictive potential. 
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Clinician Capsule 

Table 6. Clinician Capsule (Study 1) 

What is known about this topic? 

Up to 17% of patients leave without being seen (LWBS) by a physician in an Emergency 

Department.  

What did this study ask? 

Can machine learning modelling create effective models for predicting LWBS using 

historical data? 

What did this study find? 

Our machine learning models had excellent recall using data obtained during triage and 

registration to predict patients that LWBS. 

Why does this study matter to clinicians? 

This study uses novel methodology and data that would allow it to be applied and 

evaluated prospectively to predict LWBS. 

 

3.1 Introduction 

The mismatch between patient load and Emergency Department (ED) resources for provision of 

timely care have led to increased numbers of patients who leave the ED without being assessed 

by a physician (LWBS). Reported proportions of LWBS vary from 1.2% [1] to 16.6% [27]. One 
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Canadian study found that 2% of children that LWBS experienced an unfavourable outcome 

[28]. 

Recent findings with respect to LWBS have found ED crowding was a significant factor, along 

with younger age, lower acuity and arriving for assessment in the evening and overnight hours 

[1, 29]. 

There is little research on predictive modelling for LWBS in pediatric EDs. A machine learning 

model with over 32 million ED records for patients older than one year of age was developed by 

Sheraton et al to explore LWBS [14]. The modelling did not account for operational variables 

such as wait time, length of stay, or crowding. Although it performed well, it was trained on a 

small proportion (1.25%) of the total available data. Casey [14] used machine learning on three 

years of adult ED patient data from 217,250 encounters in an urban setting. They used gradient 

boosting methodology on electronic triage records, resulting in a recall metric of 89%. Both 

these American models found insurance type and status to be prominent predictors.  

The objective of this study was to describe a LWBS cohort and identify key LWBS attributes in 

a Canadian pediatric context through thorough machine learning analysis.  

3.2 Methods 

3.2.1 Study Design and Time Period 

Single-centre, retrospective analysis of administrative ED data from April 1, 2017 to March 31, 

2020.   



28 

 

 

3.2.2 Study Setting 

IWK Health is a tertiary care Pediatric Emergency Department in Halifax, Nova Scotia with an 

annual census of approximately 35,000. 

3.2.3 Dataset 

Data were provided in Microsoft Excel by Decision Support Services at IWK Health from the 

institution’s National Ambulatory Care Reporting System (NACRS) dataset. Data were cleaned 

for inconsistencies and reworked for uniformity. Patients with postal codes outside of Nova 

Scotia were removed. The following variables were included: visit disposition; CTAS level; 

triage month, week, day, hour, minute, and day of the week; gender; age; postal code; access to 

primary care provider; visit payor; referral source; arrival by ambulance; and most responsible 

diagnosis (ICD10). Three additional variables were derived: length of stay in minutes (difference 

between triage date and time and disposition date and time), driving distance in minutes (using 

Forward Sortation Area), and ED load (total number of patients in the ED including those who 

are waiting to be seen). 

3.2.4 Data Analysis and Machine Learning Modelling 

Descriptive analysis was used to characterize the population. Machine learning is a type of 

artificial intelligence that uses historical data to learn and become more accurate at predicting 

outcomes. Our machine learning modelling was refined iteratively in three stages. First, four 

relevant classification methods (Logistic Regression, Decision Tree Classifier, Random Forest 

Classifier, K Nearest Neighbours) were chosen to evaluate base performance. Next, the data set 

was balanced using Synthetic Minority Oversampling Technique (SMOTE), and the same four 
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models were re-applied. SMOTE was applied due to imbalance of the minority class since only 

5.7% of the sample population LWBS. SMOTE generates members of the minority class to 

augment learning for machine learning modelling. Finally, a powerful gradient-boosted 

algorithm, XGBoost, was used for the classification of both balanced and unbalanced datasets. 

These were performed using the Scikit-learn library for Python. 

Evaluation for the machine learning models was made using recall to demonstrate how well the 

model predicted patients classified as LWBS. Recall is a metric that quantifies the number of 

correct positive predictions made of all positive predictions that could have been made - hence it 

includes the cases where the disposition was LWBS, and the model predicted otherwise. For 

imbalanced learning, recall is used to indicate coverage of the minority class [30]. Model 

features are ranked by F-Score, which represents the number of times a feature has been split on 

in the model. 

3.3 Results 

In total, the dataset included 101266 ED visits and 5800 LWBS (5.7%).  In all, 2009 (2%) 

records were removed from the analysis due to missing or inconsistent data. 

Lower acuity CTAS patients had higher proportions of LWBS. While there were very few 

occurrences of CTAS 5 (1093 CTAS 5 visits), these had the highest proportion of LWBS (124, 

11.4%). There were no occurrences of CTAS 1 patients who LWBS (597 CTAS 1 visits, 0% 

LWBS). Across the dataset, Mondays were the busiest day of the week (10441 visits) and had 

the highest proportion of LWBS (830 visits, 7.95%). Saturdays were the least busy (9003 visits) 

and had the lowest proportion of LWBS (409 visits, 4.54%). Peak hours for new patient arrivals 
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occurred from 0900-1100 (24399 visits, 24.1% of total visits) and 1700-2000 (17478 visits, 

17.3% of total visits). Peak arrival time for patients who subsequently LWBS was 1900-2000 

(1049, 18.1% total visits). The age breakdown of LWBS in the ED was as follows: <11 months 

678 visits (12%), 1-2 years 1620 visits (0.28%), 3-4 years old (15%), 5-11 years 1705 visits 

(29%), and >11 years old (18%). 

There was no association between driving distance and the likelihood of LWBS on initial visual 

analysis. For example, patients in areas with greater than 250 minutes of driving had an LWBS 

range from 0% to 11%.   

The mean ED patient load was 11 patients; the average load when a patient LWBS was 19 

patients.  

The best-performing model from each iteration can be seen in Table 7. The highest recall metric 

for the best-performing model was 95% for the balanced XGBoost classification model meaning 

1 False Negative (patient who LWBS where the model predicted otherwise) to 20 True Positives 

(the model correctly predicted that the patient LWBS). The feature importance calculated 

(ranked by F-Score) listed ED patient load as the most influential factor (F-score 558) in the 

model, followed by triage hour of day (F-score 417), driving minutes (F-score 416), and length 

of stay (F-score 407).  
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Table 7.  Best-performing models over four iterations (all balanced using SMOTE) 

Model Recall Metric 

Logistic Regression 71% 

Decision Tree Classifier 27% 

Random Forest Classifier 18% 

K Nearest Neighbours Classifier 42% 

XGBoost 95% 

 

3.4 Discussion 

The highest performing model (recall metric 95%) utilized SMOTE balancing and the XGBoost 

classification algorithm. While the data used to build this model is drawn from a single ED, the 

LWBS rates (5.7%) and patterns are typical of those reported in pediatric studies [1, 11, 28]. The 

size and completeness of our dataset, and the thoroughness of iterative modelling  contribute to 

the strength of this work. Our analysis provides a foundation for larger datasets, particularly 

those with similar attributes (e.g., pediatric, Canadian), and shows that machine learning could 

be used to enhance prediction of LWBS with a high recall metric. 

ED patient load and waiting time are factors well-understood to be associated with LWBS [6, 7, 

31], and load was the most influential factor in our highest performing model. While our model 

used administrative data, future models could incorporate richer data to capture changes in 

staffing (clinical and non-clinical), processes of care such as room turnover and physical capacity 
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to examine how these influence LWBS. The capacity to predict outcomes through machine 

learning would allow EDs to effectively allocate efforts and resources for the greatest impact on 

patients and families. 

Limitations 

Limitations relate primarily to the limitations of a historical administrative dataset from a single 

institution: patients who leave before triage are not captured; departure time for LWBS is often 

not captured since many patients and families leave without advising a health care provider about 

their decision to leave the ED affecting both calculated length of stay and ED patient load, and 

driving time was derived from the patient’s home address which may not reflect the address from 

which they arrived in the ED or the address to which they travelled after departing the ED. 

Future work will focus on validating the model using broader datasets and prospectively 

applying this model in conjunction with an intervention to reduce LWBS in our ED. 

In conclusion, the application of machine learning to administrative ED data successfully 

produced a model with excellent recall to predict LWBS patients in a Canadian pediatric ED. 

Further studies are needed to externally validate the model and prospectively evaluate its 

predictive potential. 
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Abstract 

Background: Patients and their caregivers who seek care in an Emergency Department (ED) may 

ultimately choose to leave without being seen by a physician. This occurrence is labeled “left 

without being seen” (LWBS) and can account for up to 15% of all patients who come to an ED. 

Patients who LWBS do not receive the care they sought in the ED and may experience clinical 

deterioration related to delayed diagnosis or treatment. 

Objective: In this paper, we test machine learning methods to identify which patients are more 

likely to become LWBS patients. This prediction is intended to be used in practice to prevent 

adverse outcomes related to LWBS. This paper focuses on the Pediatric Emergency Department 

at the IWK Health in Halifax, Nova Scotia, Canada. 

Methods: We used triage records data including 101,266 observations of children aged 16 and 

younger who visited the IWK Emergency Department during a three-year period. We utilized 

several classification machine learning algorithms including Logistic Regression, Decision Tree 

Classifier, Random Forest Classifier, K-Nearest Neighbors, and Extreme Gradient Boosting to 

predict high-risk LWBS patients. We used SMOTE to handle the class imbalance in our data set 

and evaluated the performance of the machine learning algorithms. We used feature importance 

on the best-performing model to identify the features that are associated with LWBS. 

Results: The highest-performing model utilized SMOTE balancing and the XGBoost 

classification algorithm. Using this model, and data from our partner hospital, an easy-to-follow 

set of rules are developed for identifying patients at risk of LWBS in real time. 
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Conclusions: Our results show the feasibility of predictive analytics in identifying LWBS 

patients. This can support proactive decision-making about those patients who are at risk of 

LWBS. 

4.1 Introduction 

An Emergency Department (ED) patient may decide to leave without being seen by a physician 

or other advanced care provider. Such occurrences are labeled “left without being seen” (LWBS) 

and often reflect an imbalance between ED resources and patient load. The reported frequency of 

LWBS can vary significantly in the literature from 1.2% [1] to 16.6% [27]. Patients who LWBS 

may experience an adverse outcome [2]. It has been reported that 11% of adult patients who 

LWBS require hospitalization within the next week [3]. A Canadian pediatric study found that 

2% of children that LWBS experienced an unfavorable outcome [28]. Recent publications that 

investigate LWBS have focused on internal hospital factors, patient characteristics, and 

outcomes. Despite the research on LWBS occurrences, few studies investigate this phenomenon 

in the pediatric population. 

In this study, we partnered with IWK Health in Halifax, Nova Scotia, Canada to understand the 

LWBS phenomena in a pediatric setting by utilizing administrative data and performing 

descriptive and predictive analytics on it. There is motivation from lead clinicians at the IWK ED 

to gain understanding of the LWBS patient profile at their institution and find ways to identify 

potential LWBS patients before departure. The IWK ED provides care to ill and injured children 

and youth until their 16th birthday. It is the only Level 1 Pediatric Trauma Centre in Canada, east 

of Quebec. Level 1 Trauma Centres provide care for all aspects of trauma from injury prevention 

to acute care to rehabilitation [4]. 
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The rest of this paper is organized as follows. Section 2 introduces relevant literature on 

healthcare data and predictive modeling, machine learning in ED applications, and the 

applications of machine learning in studying LWBS. In Section 3, we describe the data set and 

how it has been cleaned and prepared to be used by the machine learning algorithms. This 

section is concluded with a descriptive analysis of the data set. In Section 4, we present the 

machine learning models used to examine the predictability of LWBS and identify the most 

important features in our data set. Section 5 presents a guide that has been created for the IWK 

ED using the machine learning algorithms that we implemented. Section 6 concludes the paper 

with a discussion. 

4.2 Literature Review 

In this section, we review literature relevant to our study. Section 2.1 reviews some predictive 

models developed by using healthcare administrative data. Section 2.2 considers machine 

learning and ED applications, and Section 2.3 focuses on machine learning with application to 

the LWBS problem. 

4.2.1. Administrative healthcare data and predictive modeling 

As machine learning intensifies in the healthcare sector, many applications focus on clinical data 

that results in predictions towards clinical outcomes. Using administrative records can present 

difficulties as it tends to be categorical and uses natural language, which becomes harder to 

standardize or clean for future use. However, as administrative data may provide a rounder 

patient picture, its use is still incorporated in the literature for the prediction of clinical and 

administrative outcomes. 
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Gradient-boosted trees are a popular method for developing usable models with administrative 

health data. This method works by iterating over decision trees and minimizing the loss function. 

Examples of this method can be seen in predicting postpartum complications [32], predicting 72-

hour and 9-day return ED visits [25], prediction of critical care and hospitalization among adults 

and children [7], prediction of death by suicide within 90 days of an ED visit for para-suicide 

[33], and by ranking patients by analyzing registration information [34]. Zhang et al. [35] state 

that gradient-boosted decision trees perform better than other methods such as the traditional 

least-squares method, ridge regression, Lasso regression, Elastic Net Regression, Support Vector 

Regression (SVR), and K-Nearest Neighbors (KNN) algorithms. 

Machine learning adds utility by improving clinical metrics. Lindberg et al. [36] show that 

bagging, random forest, and gradient boosting all improve on the Morse Fall Scale for predicting 

hospitalized patients at risk of falling. Goto et al. [15] surpass the clinical threshold for children 

during ED triage by incorporating a gradient-boosting method. Using an administrative data set, 

Desautels et al. [16] uses 8 machine learning algorithms to predict sepsis in an Intensive Care 

Unit. Sun et al. [17] use routine administrative data to predict the likelihood of hospital 

admission based on information available at the time of triage. However, Hong et al. [18] found 

that the addition of historical patient data significantly outperforms administrative data alone in 

predicting hospital admission from the ED. 

4.2.2 Machine learning in ED applications 

Predictive and machine learning techniques are being used in the ED set- ting to improve care 

and increase understanding of current systems, and electronic health records (EHR) are being 

used to facilitate these investigations. Raita et al. [37] use routinely available triage data to 
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predict ultimate critical care and hospitalization in an eight-year sample set. Using lasso 

regression, random forest, gradient-boosted decision tree, and deep neural network, the authors 

found all models to outperform the conventional approach. Goto et al. [15] uses the same 

predictive methodology in a pediatric subsample, finding that all models developed lead to the 

higher discriminatory ability of under-triaging critically ill pediatric patients against the 

conventional clinical approach. These works are limited by their dataset selection and 

elimination of nearly 10% of records due to incomplete data. 

Sanderson et al. [35] uses Canadian ED and patient historical administrative records over a 

seven-year period to predict death by suicide within 90 days of an ED visit for parasuicide. The 

resulting gradient-boosted model achieved high discrimination and was an example of thorough 

ML methodology in an ED context. Hong et al. [25] predicted 72-hour and 9-day return ED 

visits based on a combination of clinical and administrative data which im- proved on the 

baseline administrative-only predictions. Hoot [38] created a tool that provides accurate 

forecasting of output and crowding measures up to 8 hours in the future, which are known 

factors associated with LWBS. Similarly, Gartner and Padman [39] predicted waiting times in 

both the waiting room and treatment room and found actual wait time, clinical attributes, and the 

service environment to be the most important attributes in their model. 

There are some examples of using predictive analytics for ED patient flow. Kuo et al. [40] 

applied stepwise multiple linear regression, artificial neural networks, support vector machines, 

and Gradient-boosted trees to build real- time ED wait time predictions. This work utilized 

routine triage data and ED metrics to develop successful models that all outperformed the 
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baseline. Timestamp information was used in feature engineering to understand the flow of 

patients in the ED. 

4.2.3 Machine Learning and LWBS 

There have been limited studies that attempt to predict LWBS patients. An exception is a model 

by Sheraton et al. [14] that utilizes more than 32 million ED records over one year to develop 

LWBS profiles with machine learning. The authors carried out the investigation using 

exploratory analysis (development of descriptive statistics for LWBS, bi-variate and multivariate 

logistic regression to evaluate patient and hospital characteristics against LWBS disposition, and 

forward step-wise regression to identify significant interactions), and model creation (multiple 

logistic regression, including main effects with interactions models, and Random Forest 

Classifier (RFC) on a small subset of observations). Sheraton evaluated the main effects with the 

interaction model to have a concordance of 63.4% and a discordance of 29.8%. Significant 

interactions were found with age less than 18 years and chronic conditions and age more than 64 

years and chronic conditions. The RFC was able to predict LWBS with a misclassification rate of 

0.013. The most important predictor was primary insurance, which is not relevant in a Canadian 

context. Their model does not account for operational variables, such as wait time, duration of 

stay, or ED load, which are known to be factors associated with LWBS [2, 5, 6, 9, 7, 12]. While 

the model performs well, it is applied to a small portion (1.25%) of the available data. 

Similarly, Casey et al. [19] explored adult patients at risk of LWBS using machine learning on 

three years of data and 217,250 ED encounters in an urban US setting. Gradient-boosted trees 

prediction model was used on electronic health records used at triage, resulting in a model 

accuracy of 79% and sensitivity of 89%. Like [14], a prominent predictor was insurance 
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type/status. The authors propose a method to integrate model results into the ED work stream, 

which remains to be prospectively validated. Other relevant machine learning techniques well-

suited to administrative and ad- ministrative healthcare data are not attempted in these studies, 

leaving an opportunity to explore more thorough models for LWBS prediction. 

4.2.4 Literature Review Findings 

From our review of the literature, we note that machine learning is used in healthcare and ED 

applications, but little has been done with respect to predictive modeling for LWBS in the ED. 

The studies noted above lack thorough- ness in machine learning methodology and execution 

and could benefit from increased model variety as represented in other works surrounding 

administrative data in healthcare [14, 19]. There is a need to explore these models in a Canadian 

context, since predominant predictors in existing American studies relate to type and status of 

health insurance. Finally, most examples of predictive analysis in EDs relate to adults or “all 

ages” leaving a gap in the application of these models in pediatrics. 

This paper works to fill these gaps by applying machine learning techniques to predict LWBS 

and identify LWBS factors in a Canadian pediatric context. It will also aim to provide 

relationships and descriptive analysis of the presence of LWBS occurrences at IWK Health in 

Halifax, Nova Scotia. 

4.3 Data Set 

The data was provided by Decision Support Services at IWK Health from the institution’s 

National Ambulatory Care Reporting System (NACRS) data set. This includes data for all ED 

records between April 1, 2017, and March 31, 2020. In total, there were 101,266 patient records 

where 5,799 were identified as LWBS. Patient information was collected upon triage in the ED 
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by a Registered Nurse (RN) and included information given by the patient, such as their 

identifiable information (name, birth date, address, etc.), automatic contextual information (date, 

time at triage, provider assigned, etc.), and information provided by the RN (clinical data). Table 

7 demonstrates the baseline characteristics of all patients who LWBS and those who were seen 

by a physician in the ED. Details on how we prepared the data to be used by the machine 

learning models as well as a descriptive analysis of the data can be found in Appendix A. 

4.4 Machine Learning Models 

The two main goals of applying Machine Learning techniques to this data set are to identify the 

strength of key features associated with LWBS in the ED and to predict whether an individual 

patient record is likely to be as- signed LWBS. Several supervised classification models were 

used to predict whether a patient record is likely to be labeled as LWBS or otherwise and 

compared to determine their efficacy. 

The machine learning modeling was refined iteratively in three stages. First, four relevant and 

popular classification methods (Logistic Regression, Decision Tree Classifier, Random Forest 

Classifier, and K-Nearest Neighbors) evaluate base performance. Next, the data set was balanced 

using Synthetic Minority Oversampling Technique (SMOTE) [41], and the same four models 

were applied. Finally, the Extreme Gradient-Boosting algorithm, XGBoost, was used for the 

classification of both the balanced and unbalanced datasets. All these methods were performed 

using the Scikit-learn library for Python. 

Evaluation for the base models and all subsequent models was made on the performance of the 

recall metric, which demonstrates how well the positive (LWBS) class is predicted. The recall 

metric was chosen as the metric of interest because it assigns the highest cost for False Negatives 



42 

 

 

(true LWBS that the model predicts as remaining in the system). True False Negatives are 

problematic in our setting and therefore we chose a metric to minimize them. When the data set 

has an imbalance among classes, recall is used to indicate coverage of the minority class [30]. 

4.4.1 First Iteration: Unbalanced Data Set 

We used the features presented in Section 3 to implement four machine learning algorithms: 

Logistic Regression, Decision Tree Classifier, Random Forest Classifier, and K-Nearest 

Neighbors. The data set was randomly split into 80% training samples and 20% testing samples.  

All of the machine 

TABLE 8. CHARACTERISTICS OF ALL PATIENTS (LWBS OR NOT) IN THE ED FROM APRIL 1ST 

2017 AND MARCH 31ST 2020 

Characteristic All Other Patients (%),  

n = 95468 

Patients who LWBS (%),  

n = 5800 

Age Category   

 <11 months 14,583 (0.15) 678 (0.12) 

 1-2 years old 21,942 (0.23) 1,620 (0.28) 

 3-4 years old 13,243 (0.14) 873 (0.15) 

 5-11 years old 28,418 (0.30) 1,705 (0.29) 

 >11 years old 17,282 (0.18) 924 (0.16) 

CTAS Level   

 CTAS 1 596 (0.01) 0 (0.00) 

 CTAS 2 19,288 (0.20) 159 (0.03) 

 CTAS 3 35,493 (0.37) 1,816 (0.31) 

 CTAS 4 39,148 (0.41) 3,676 (0.63) 

 CTAS 5 943 (0.01) 149 (0.03) 



43 

 

 

   

Table 8. Characteristics Of All Patients (Lwbs Or Not) In The Ed From April 1st 2017 

And March 31st 2020 

Characteristic All Other Patients (%),  

n = 95468 

Patients who LWBS (%),  

n = 5800 

Referral by Physician 5,312 (0.06) 249 (0.04) 

Patients living near hospital 

(<5km) 

3,179 (0.03) 329 (0.06) 

Arrival by ambulance 4,703 (0.05) 85 (0.01) 

   

Season   

 Winter 27,115 (0.28) 1,698 (0.29) 

 Spring 25,353 (0.27) 2,090 (0.36) 

 Summer 20,745 (0.22) 950 (0.17) 

 Fall 22,255 (0.23) 1,062 (0.18) 

Sex   

 Female 44,782 (0.47) 2,799 (0.48) 

 Male 50,686 (0.53) 3,001 (0.52) 

   

Day of Week    

 Weekend 27,425 (0.29) 1,391 (0.24) 

 Week day 68,043 (0.71) 4,409 (0.76) 

   

Time of Day   

 Daytime (8am - 4pm) 48,241 (0.50) 2,519 (0.44) 

 Evening (4pm - 12am) 37,805 (0.40) 3,026 (0.52) 
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Table 8. Characteristics Of All Patients (Lwbs Or Not) In The Ed From April 1st 2017 

And March 31st 2020 

Characteristic All Other Patients (%),  

n = 95468 

Patients who LWBS (%),  

n = 5800 

 Overnight (12am - 

8am) 

9,422 (0.10) 255 (0.04) 

 

 

learning algorithms were trained using stratified 10-fold cross-validation to prevent over-fitting 

and to find the optimal hyper-parameter values. Hyper- parameter tuning was performed using 

the Grid search method. We created a combination profile for hyper-parameter values for each 

algorithm. The algorithm’s performance was then assessed under each profile using the 10-fold 

cross-validated area under the curve (AUC), and the one producing the highest result was 

chosen. Table 9 shows the results from hyper-parameter tuning. 

Table 9. Hyper-Parameter Tuning Results 

Model Name Hyperparameter Value 

Logistic Regression C 100 

Decision Tree Classifier Max depth 4 

Random Forest Classifier N estimators 100 

K Nearest Neighbours N neighbours 17 

 

Table 10 presents various predictive performance measures of the base models. The training and 

testing scores for all models are high, however, the data set has a minority class imbalance. This 

means that a naive model (predicting the majority class for every sample) would produce a score 

of 94%, the proportion of the majority class. This means that despite the high training and testing 

score, the predictions are not sound. As stated, these models are being evaluated based on the 
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recall metric. The highest recall metric for the base models is 0.214 for the Decision Tree 

Classifier. This can be interpreted as 10 predicted False Negatives to 3 True Positives. This ratio 

is not of practical value for our application. 

4.4.2 Second Iteration: Balanced Data Set  

To improve the results of the first iteration, the same data set used in the previous iteration was 

balanced using SMOTE and the imbalanced-learn Python library. SMOTE was chosen as a 

balancing method as it does not duplicate existing rows, rather it imputes data points inside the 

minority class that are slightly different. This technique uses the K-Nearest Neighbors to 

augment the minority class and improve prediction quality. The same training and validation 

methods from the first iteration were used. The results of the second iteration can be seen in 

Table 11. 

Table 10. Performance Metrics For The First Iteration: Unbalanced Data Set 

Classifiers Training 

Score 

Testing 

Score 

True 

Positive 

False 

Positive 

True 

Negative 

False 

Negative 
Precision Recall 

Logistic 

Regression 0.94315 0.94275 29 27 19040 1131 0.51785 0.025 

Decision 

Tree 

Classifier 
1.00000 0.89790 248 1153 17914 912 0.17701 0.21379 

Random 

Forest 

Classifier 
0.99997 0.94571 111 49 19018 1049 0.69375 0.09690 
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Table 10. Performance Metrics for the First Iteration: Unbalanced Data Set 

Classifiers 
Training 

Score 

Testing 

Score 

True 

Positive 

False 

Positive 

True 

Negative 

False 

Negative 
Precision Recall 

K Nearest 

Neighbours 

Classifier 
0.94712 0.93938 36 102 18965 1124 0.260870 0.031034 

 

 

Table 11. Performance metrics for the second iteration: balanced data set 

Classifiers Training 

Score 

Testing 

Score 

True 

Positive 

False 

Positive 

True 

Negative 

False 

Negative 
Precision Recall 

Logistic 

Regression 
0.723505 0.706383 828 5607 13460 332 0.128671 0.713793 

Decision 

Tree 

Classifier 

1.000000 0.886093 313 1457 17610 847 0.176836 0.269828 

Random 

Forest 

Classifier 

1.000000 0.939339 207 274 18793 953 0.430353 0.178448 

K Nearest 

Neighbour

s Classifier 

0.926987 0.770801 485 3961 15106 675 0.109087 0.418103 
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The results of the second iteration show lowered accuracy but far fewer False Negative than the 

base results displayed in Table 10. After balancing the data and using the balanced training sets, 

the recall metric was much improved compared to the first iteration across all models. The 

Logistic Regression model showed a recall metric of 0.714, which can be expressed as this 

model predicting 2 False Negative for every 5 True Positive. 

4.4.3 Third Iteration: Using XGBoost 

Even though balancing the data set in the second iteration improved our results, we tried to 

improve the performance metrics (especially recall) even further. For that purpose, we decided to 

use the eXtreme Gradient Boosting (XGBoost) method. XGBoost is powerful and reduces 

processing time in comparison to other models, which could benefit a real-time application for 

repeated modeling. XGBoost has been a popular and effective method of 

 

 

 

 

 

 

 

 

 

 

 

creating accurate models [42]. XGBoost was applied to the unbalanced and balanced data set 

along with stratified 10-fold cross-validation. This model produced a recall metric of 0.948, 

FIGURE 10. FEATURE IMPORTANCE FOR THE XGBOOST MODEL 
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which improved the performance of balanced logistic regression modeling from the previous 

iteration of modeling (recall of 0.714). This result can be expressed as 20 True Positive 

predictions for every 1 False Negative. This ratio was acceptable to our clinical partners. 

To investigate the functionality of the XGBoost model, feature importance can be pulled to 

determine what features present in the data set provide the highest prediction value. This 

provides insight into what the model is weighing as important features in an individual patient 

being predicted as LWBS. 

Figure 10 shows the feature importance of the balanced XGBoost model. The features are ranked 

by F-Score, which represents the number of times a feature has been split in the model. Load is 

the metric with the highest F-Score, followed by triage hour, driving distance, and time spent in 

the ED. From the descriptive analysis, we know that Load is largely correlated with triage hour, 

explaining why triage hour is elevated as an important feature. 

4.5 Applications for IWK ED 

The XGBoost model applied to the balanced data set proved to be the best-performing model for 

our study. The direct application of the method to day-to-day operations was limited as it 

required ED employees to collect and/or calculate sixteen features for every patient. For these 

reasons, an easy-to-follow guide that could be used in a case setting is a desirable outcome of the 

predictive modeling that was performed on the data set. 

4.5.1 Guide Creation 

To strike a balance between the accuracy of results and implementation effort, we developed a 

reduced version of the balanced XGBoost model. For this purpose, we only used the most 



49 

 

 

influential features (presented in Figure 10) which were Load (patients currently in the system), 

driving distance (minutes driving from FSA centroid to the ED), and time in system (minutes 

from triage to change in disposition status). For completeness and ease of patient segregation, 

Triage Level (CTAS), was also added to the model. This new model, called the Guide model, 

utilizes the XGBoost algorithm with SMOTE balanced data, 80/20 data split, and stratified 10-

fold cross-validation with the four features defined above. The result of this model was the 

second-highest performing of all models tested, with a recall of 0.730. 

The Guide model was then used to predict LWBS for a range of feature values representing 

typical patients. An implementable guide is then derived from the results of these predictions. 

The range of feature values representing typical patients is overviewed in Table 12. 

Table 12.  Feature spread of sample patients 

Feature Minimum Value Maximum Value Step 

Triage Level (CTAS) 1 5 1 

Time in System 

(minutes) 

0 1,600 10 

Driving Time 

(minutes) 

0 340 5 

Load (# patients in 

ED system) 

1 47 1 

 

All possible combinations of sample patients were generated from the traits highlighted in Table 

12. The table shows the minimum, maximum, and step of each feature. The minimum and 

maximum represent the boundaries of what was found in the original data set. The step 

represents how much a feature is increased for each new value. For example, a subset of sample 



50 

 

 

patients with a CTAS value of 5 would contain a patient with all values of the Time in System 

between 0 and 1600 by an interval of 5 minutes, minutes while holding all else constant. This is 

repeated for every value of every feature. 

The XGBoost Classification model with limited features was executed on these sample patients, 

along with the assignment of SHapley Additive exPla- nations (SHAP) values for each feature in 

a sample patient. These SHAP values are model specific and provide insight to feature 

contributions at all instances of the generated sample population. XGBoost and SHAP values 

have been used to evaluate feature contribution and model evaluation in relatable contexts [43]. 

Ultimately, each combination of features yielded a prediction vector (SHAP value) for each 

feature, a total SHAP value summation across features, and the prediction assigned to the sample 

patient. To create an interpretable guide, thresholds, where prediction outcomes become positive, 

were transcribed into a set of rules. 

4.5.2 Results 

Several thresholds were identified that indicated when a patient was likely to LWBS based on 

the state of the system (Load) and the patient (time since triage, driving distance, CTAS). The 

most notable threshold was that it was possible to divide the patient groups into three distinct 

groups: driving time less than 20 minutes (short), driving time between 20 minutes and 50 

minutes (medium), and driving time longer than 50 minutes (long). For each of these groups, the 

time since initial triage and the corresponding number of patients in the system lead to the guide 

model predicting an LWBS disposition. It is observed that patients with shorter driving times 

have a lower tolerance for waiting with increased load. This is externally validated through 

anecdotal institutional accounts where patients who commit to driving for longer distances are 
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more likely to seek physician consultation. The below steps outline the guide that has been 

developed: 

Step 1: Identify CTAS level.  

Step 2: Categorize driving time: 

• Short: Less than 20 minutes 

• Medium: 20 – 50 minutes 

• Long: more than 50 minutes  

Step 3: Calculate time since patient triage. 

Step 4: Count the number of patients in the system (Load). 

Step 5: Use the provided table to determine if patient is likely to LWBS. If the load meets or 

exceeds the threshold within the time since patient triage, the patient is more likely to LWBS. 

Table 13 shows the guide rules for CTAS 3 patients as derived from the prediction model. The 

data required to apply and interpret these guides are readily available to ED staff allowing the 

guide to be used directly without information technology support or software development. The 

guide operates first by identifying what the CTAS score of the patient is (CTAS 1 – CTAS 5). 

Then, the driving time from the patient’s home address - categorized as short (< 20 minutes), 

medium (20 – 50 minutes), or long (> 50 minutes)- is identified. The final piece of patient 

information required is how long the patient has been in the system (time since triage). With this 

information, the appropriate tables can be selected, and the likelihood of LWBS can be identified 
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in conjunction with the current ED load. If the load exceeds the value in the table, the patient in 

question is likely to LWBS. 

4.6 Discussion 

The main findings of this work involve the prediction of LWBS likelihood with good recall (how 

well the positive class is predicted) using thorough machine-learning techniques on 

administrative data. The highest-performing model utilized SMOTE balancing and the XGBoost 

classification algorithm with a recall metric of 0.948. This model is institution-specific but 

provides a foundation for other data sets to be analyzed, especially those with similar attributes 

(pediatric, Canadian). In addition, demand patterns and rates of LWBS at the IWK ED are 

typical and representative of the pediatric population. Finally, our analysis showed the 

predictability of LWBS through machine learning algorithms. 

We also expand on the research on predictive modeling for LWBS in EDs. Notably, we 

approached the modeling from a mathematical perspective expanding on the medical perspective 

taken by others [14, 19]. An especially practical result from this work is the extension to a 

relatively 

Table 13. Guide table for finding the likelihood of LWBS 

Driving Time Time since patient triage 

(minutes) 

Load (Number of Patients in 

system) 

Short driving time  

(less than 20 minutes) 

<29 5 + 

 30 - 39 10 + 

 40 -239 16 + 
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Table 13. Guide table for finding the likelihood of LWBS 

Driving Time Time since patient triage 

(minutes) 

Load (Number of Patients in 

system) 

Short driving time  

(less than 20 minutes) 

240 - 399 21 + 

 400 + 27 + 

Medium driving time  

(20 to 50 minutes) 

<29  8 + 

30 - 39 13 + 

40 -239 21 + 

240+ 27+ 

Long driving time (more 

than 50 minutes) 

<29 13 + 

30+ 19 + 

 

 

high-performing guide model using only the most influential features: load (number of patients 

in the system), time (minutes since triage), CTAS, and driving distance (minutes). The model 

used to develop this guide achieved the second-highest recall (0.730) with only four features. 

The guide provides an easy-to-follow set of rules for identifying patients at risk of LWBS. 

The models created in this work have face validity and correlate with relevant literature. Load 

and its variations are hospital factors well-understood to be associated with LWBS [5, 6, 7, 12], 

and load was the most influential factor both by F-Score in the XGBoost feature selection. The 

size and completeness of the data set and thoroughness of iterative modeling all contribute to the 

strength of this work. 

Limitations in this work include some assumptions in the engineered features. The data set does 

not contain any field which would indicate that they are arriving at the ED from a location other 
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than their home address, such as a school or relative’s address. Future work in this area may 

benefit from asking patients from where they are arriving and where they intend to go afterward. 

Another limitation is the timestamp ‘Disposition Time’ of LWBS patients since it relies on a 

triage nurse making note of the patient’s departure. For patients who LWBS, this timestamp 

could be artificially lengthened if the triage nurse is not aware of a departure. For the effect on 

the features, if disposition time is delayed, the calculation of load would be inflated by one at the 

time of LWBS departure and a LWBS patient could be recorded as being present longer than 

they were. However, disposition time was not a field that was observed as consistently an outlier 

or unpopulated in the data set. Therefore, it is believed that more accurate disposition timestamps 

would result in further refinement but would not alter the results of subsequent modeling. 

In conclusion, this investigation focused on the pediatric Emergency Department at IWK Health 

in Halifax, Nova Scotia. Using triage records, a guide for ED intervention was proposed after an 

analysis of descriptive analytics and machine learning methods, including class balancing 

techniques and feature importance tools. This work can serve as the foundation for further work 

in pediatric LWBS and predictive analytics for LWBS, including internal validation through the 

guide model application at IWK Health ED. 
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Summary Table 
 

 

TABLE 14. SUMMARY TABLE FOR STUDY 2 

What was already known on the topic? 

Patients who leave the ED without being seen by a physician are at the risk of clinical 

deterioration 

LWBS patients can account for up to 15% of all ED visits. 

Little is known about the effectiveness of machine learning algorithms in predicting 

LWBS patients at the time of their admission to the ED. 

What this study added to our knowledge? 

Our study showed the feasibility of using predictive analytics to identify the patients 

who are at risk of becoming LWBS. 

Our study showed that using machine learning, the factors associated with LWBS can 

be identified. 

Knowing the factors associated with LWBS can result in developing guides for 

hospitals to help them be proactive with LWBS patients. 
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Chapter 5 : Conclusion 

5.1 Discussion 

The main findings of this work involve the prediction of LWBS likelihood with good recall (how 

well the positive class is predicted) using thorough machine-learning techniques on 

administrative data. The highest-performing model utilized SMOTE balancing and the XGBoost 

classification algorithm with a recall metric of 0.948. This model parameters are institution-

specific but provides a foundation for other datasets to be analyzed, especially those with similar 

attributes (e.g. pediatric, Canadian). In addition, demand patterns and rates of LWBS rates 

(5.7%) at the IWK ED are typical and representative of the pediatric population [1, 27, 28]. 

Finally, our analysis showed the predictability of LWBS through machine learning algorithms. 

ED patient load and waiting time are factors known to be associated with LWBS [6, 7, 31], and 

load was the most influential factor in our highest-performing model. While our model used 

administrative data, future models could incorporate richer data to capture changes in staffing 

(clinical and non-clinical), and processes of care such as room turnover and physical capacity to 

examine how these influence LWBS. The capacity to predict outcomes through machine learning 

would allow EDs to effectively allocate efforts and resources for the greatest impact on patients 

and families. 

We also expand on the research on predictive modeling for LWBS in EDs. Notably, we 

approached the modeling from a mathematical perspective expanding on the medical perspective 

taken by others [14, 19]. An especially practical result from this work is the extension to a 

relatively high-performing guide model using only the most influential features: load (number of 
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patients in the system), time (minutes since triage), CTAS, and driving distance (minutes). The 

model used to develop this guide achieved the second-highest recall (0.730) with only four 

features. These four features represented the four high-importance features by F-Score in the 

highest performing model. Limiting feature complexity allows for the possibility of real-time 

guidance that was derived from the highest performing model features. The guide provides an 

easy-to-follow set of rules for identifying patients at risk of LWBS. 

The models created in this work have face validity and correlate with relevant literature. Load 

and its variations are hospital factors well-understood to be associated with LWBS [5, 6, 7, 12], 

and load was the most influential factor both by F-Score in the XGBoost feature selection. The 

size and completeness of the dataset and thoroughness of iterative modeling all contribute to the 

strength of this work. 

5.2 Clinical Implications 

The administrative predictive modeling presented in this thesis have important clinical 

implications for healthcare organizations that wish to leverage data analytics to improve 

operations and clinical outcomes. In order to build increasingly accurate predictive models, 

healthcare organizations must have access to high-quality data that is consistent and complete. 

For the IWK, the implication here is that the move to EHRs is paramount to the furthering of this 

work. This allows for up to date and maintained models that preserve as much information as 

possible.  

This work utilizes patient triage records to build descriptive and predictive analytics. After using 

said administrative extensively: several takeaways are relevant for discussion. Firstly, the need 

for digitize triage records. The current process at the IWK includes a triage nurses recording 
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triage/registration information on paper, before it is collected by a coder and inputted into a 

spreadsheet format. This results in the ability for human error to interact with the data: forgetting 

to fill in a field on paper, or a code not being able to interpret handwriting, can easily result in 

information loss between patient and predictive analyst. Next, there is a desire for fields that are 

not currently capturesd in the administrative data. These can include but are not limited to: 

location priod to arrival (other than home address), number of family members present at triage, 

location after ED (if leaving to seek care elsewhere). A final example is that of patients in the 

waiting room that are visible to the patient at triage, differering from our definition of load where 

only patients yet to depart an initial waiting area are counted. These examples represent context 

at presentation that is lost when dealing with retrospective administrative data, and presents areas 

for data enrichment that have the potential to significantly imporve administrative data modelling 

for healthcare. 

Administrative predictive modeling can help healthcare organizations improve patient outcomes 

and optimize resource utilization by identifying patients who are at risk of developing 

complications or adverse events, such as the LWBS phenomenon in this work. Organizations can 

proactively intervene and provide targeted preventive care, such as hotspotting in the ED to 

improve patient outcomes. Hotspotting is the process of identifying high-cost patients in a 

system. When a patient is predicted as being likely to leave, interventions guided by clinical 

experts can be performed in an attempt to reduce ED utilization [45]. These could include but are 

not limited to: checking in with a patient in a waiting room situation, ensuring that they are a 

good candidate for the ED, or offering wait time estimates. 
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Resource scheduling can also be improved when more is understood about the dynamics of 

patient population under investigation, in this case LWBS. Levraging desciptive and predictive 

analytics for the patient population in the ED, forecasting future demand for ED services can be 

clarified, allowing healthcare organizations can optimize staffing levels, reduce wait times, and 

improve patient access to care. Predictive analytics can also be used to identify high-demand 

periods and allocate resources accordingly, reducing bottlenecks and improving patient flow. 

 

5.3  Limitations 

Limitations relate primarily to the limitations of a historical administrative dataset from a single 

institution; patients who leave before triage are not captured; the exact departure time for LWBS 

is often not captured since many patients and families leave without advising a health care 

provider about their decision to leave the ED affecting both calculated length of stay and ED 

patient load; and driving time was derived from the patient’s home address which may not reflect 

the address from which they arrived in the ED or the address to which they travelled after 

departing the ED. Future work in this area may benefit from asking patients from where they are 

arriving and where they intend to go afterward as well as focusing on validating the model using 

broader datasets and prospectively applying this model in conjunction with an intervention to 

reduce LWBS in our ED. 

5.4 Conclusion 
 

In conclusion, this work showed the feasibility of using predictive analytics to identify patients 

who are at risk of LWBS. Where there are limited studies that attempt to answer this question, 

predictive models with high recall were developed using administrative data. Knowing the 
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factors associated with LWBS can result in developing guides for hospitals to help them be 

proactive with LWBS patients. The guide model developed with four features of strong 

importance in the highest performing model allowed for the concept of a real-time guide for 

predicting LWBS patients to be developed. 

This investigation focused on the pediatric Emergency Department at IWK Health located in 

Halifax, Nova Scotia. Using triage records, a guide for ED intervention was proposed after an 

analysis of descriptive analytics and machine learning methods, including class balancing 

techniques and feature importance tools. This work can serve as the foundation for further work 

in pediatric LWBS and predictive analytics for LWBS, including internal validation through the 

application at IWK Health.  
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Appendix A 
Variation of ‘Concept matrix ’[44] and ‘Framework for Rigorously Identifying Research Gaps in 

Qualitative Literature Reviews ’[45] 

Sources Concept Gaps 

Author

, Year 

Name LW

BS 

Predic

tive 

Analyt

ics 

Administ

rative 

Data – 

sole input 

Clinic

al 

Outco

mes 

Emerge

ncy 

Depart

ment 

Pedia

tric 

Hosp

ital 

Proce

ss 

Thoro

ugh 

model

ling 

Num

ber 

of 

Gaps 

Casey 

2017 

Synthetic 

minority 

oversamp

ling 

technique 

for 

multiclas

s 

imbalanc

e 

problems 

X X X X X     X 2 
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Sherat

on 

2020 

Patients 

leaving 

without 

being 

seen from 

the 

emergenc

y 

departme

nt: A 

predictio

n model 

using 

machine 

learning 

on a 

nationwi

de 

database 

X X X X X       3 

Bourge

ois 

2008 

“Left 

Without 

Being 

Seen”: A 

National 

Profile of 

Children 

Who 

Leave the 

Emergen

cy 

Departme

nt Before 

Evaluatio

n 

X   X   X X X   3 
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Kuo 

2020 

An 

Integrate

d 

Approach 

of 

Machine 

Learning 

and 

Systems 

Thinking 

for 

Waiting 

Time 

Predictio

n in an 

Emergen

cy 

Departme

nt 

  X X X X     X 3 

Conrad 

2018 

The 

Impact of 

Behavior

al Health 

Patients 

on a 

Pediatric 

Emergen

cy 

Departme

nt's 

Length of 

Stay and 

Left 

Without 

Being 

Seen 

X   X   X X X   3 
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Sander

son 

2020 

Predictin

g death 

by 

suicide 

following 

an 

emergenc

y 

departme

nt visit 

for 

parasuici

de with 

administr

ative 

health 

care 

system 

data and 

machine 

learning 

  X X   X     X 4 
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Lindbe

rg 

2020 

Identifica

tion of 

important 

factors in 

an 

inpatient 

fall risk 

predictio

n model 

to 

improve 

the 

quality of 

care 

using 

EHR and 

electronic 

administr

ative 

data: A 

machine-

learning 

approach 

  X X X       X 4 

Raita 

2017 

Emergen

cy 

departme

nt triage 

predictio

n of 

clinical 

outcomes 

using 

machine 

learning 

models 

  X   X X     X 4 
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Polevo

i 2005 

Factors 

associate

d with 

patients 

who 

leave 

without 

being 

seen 

X   X   X   X   4 

Theilin

g 2019 

Impactin

g 

Emergen

cy 

Departme

nt Left 

Without 

Being 

Seen 

Rates 

Through 

Physician 

Resourci

ng 

X   X   X   X   4 



71 

 

 

Li 

2019 

Patients 

Who 

Leave the 

Emergen

cy 

Departme

nt 

Without 

Being 

Seen and 

Their 

Follow-

Up 

Behavior: 

A 

Retrospe

ctive 

Descripti

ve 

Analysis 

X     X X   X   4 

Luo 

2019 

Using 

machine-

learning 

methods 

to 

support 

health-

care 

professio

nals in 

making 

admissio

n 

decisions 

  X X X       X 4 
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Zhang 

2019 

Health 

Data 

Driven 

on 

Continuo

us Blood 

Pressure 

Predictio

n Based 

on 

Gradient 

Boosting 

Decision 

Tree 

Algorith

m 

  X X X       X 4 

Sun 

2011 

Predictin

g 

Hospital 

Admissio

ns at 

Emergen

cy 

Departme

nt Triage 

Using 

Routine 

Administ

rative 

Data 

    X X X   X   4 
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Hoot 

2009 

Forecasti

ng 

Emergen

cy 

Departme

nt 

Crowdin

g: A 

Prospecti

ve, Real-

time 

Evaluatio

n 

    X X X   X   4 

Pham 

2009 

National 

study of 

patient, 

visit, and 

hospital 

characteri

stics 

associate

d with 

leaving 

an 

emergenc

y 

departme

nt 

without 

being 

seen: 

predictin

g LWBS 

X   X   X   X   4 
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Parekh 

2013 

Who 

leaves the 

emergenc

y 

departme

nt 

without 

being 

seen? A 

public 

hospital 

experienc

e in 

Georgeto

wn, 

Guyana 

X   X   X   X   4 
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Weiss 

2005 

LWBS 

proportio

ns are 

used as 

quality 

control 

indicators 

and this 

study 

determin

ed the 

LWBS 

proportio

n at a 

public 

hospital 

in a 

developin

g country 

and some 

of the 

patient 

characteri

stics 

associate

d with 

LWBS 

X   X   X   X   4 
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Kulsta

d 2010 

Occupan

cy rates 

and 

emergenc

y 

departme

nt work 

index 

scores 

correlate 

with 

leaving 

without 

being 

seen 

X   X   X   X   4 

Paulso

n 2004 

A 

comparis

on of 

wait 

times and 

patients 

leaving 

without 

being 

seen 

when 

licensed 

nurses 

versus 

unlicense

d 

assistive 

personnel 

perform 

triage 

X   X   X   X   4 
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Vashi 

2019 

Applying 

Lean 

Principle

s to 

Reduce 

Wait 

Times in 

a VA 

Emergen

cy 

Departme

nt 

X   X   X   X   4 

McNa

mara 

1995 

Patients 

leaving 

the ED 

without 

being 

seen by a 

physician

: is same-

day 

follow-up 

indicated

? 

X   X   X   X   4 

Betts 

2016 

Predictin

g 

common 

maternal 

postpartu

m 

complicat

ions: 

leveragin

g health 

administr

ative data 

and 

machine 

learning 

  X X X         5 
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Goto 

2018 

Machine 

Learning

–Based 

Predictio

n of 

Clinical 

Outcome

s for 

Children 

During 

Emergen

cy 

Departme

nt Triage 

  X     X X     5 

Al-

Stouhi 

2015 

Transfer 

learning 

for class 

imbalanc

e 

problems 

with 

inadequat

e data 

  X X         X 5 

Gartne

r 2018 

Machine 

learning 

for 

healthcar

e 

behaviou

ral OR: 

Addressi

ng 

waiting 

time 

perceptio

ns in 

emergenc

y care 

  X     X   X   5 
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Hong 

2019 

Predictin

g 72-hour 

and 9-day 

return to 

the 

emergenc

y 

departme

nt using 

machine 

learning 

  X     X       6 

Hong 

2018 

Predictin

g hospital 

admissio

n at 

emergenc

y 

departme

nt triage 

using 

machine 

learning 

  X   X         6 

Desaut

els 

2016 

Predictio

n of 

Sepsis in 

the 

Intensive 

Care Unit 

With 

Minimal 

Electroni

c Health 

Record 

Data: A 

Machine 

Learning 

Approach 

  X   X         6 
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Calster 

2018 

Reportin

g and 

Interpreti

ng 

Decision 

Curve 

Analysis: 

A Guide 

for 

Investigat

ors 

  X   X         6 
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TABLE 15. FRAMEWORK FOR RIGOROUSLY IDENTIFYING RESEARCH GAPS IN QUALITATIVE 

LITERATURE REVIEWS 

Category Sub-category Definition 

Rigorous 

Modelling 
 The reason for existence of the research 

gap 

 Model Creation and 

Selection 

There is a lack of appropriate models that 

were created to address the research 

question(s)  

 Appropriate reference 

models 

Models are not compared to an 

appropriate reference (i.e. LR, clinical 

baseline, null classifier) 

 Validation technique There is an absence of internal validity of 

models/absence of cross-validation 

technique. 

Context   

 Pediatric focus Papers focus on all ages/adults 

Scope   

 Institutional focus Papers combine many institutions and do 

not discriminate institutional factors 

 Regional focus Regional factors dominate results from 

modelling 
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