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ABSTRACT

The @lab is a group dedicated to the research and development of electronic texties for
architectural applicatiopsthis thesis presents the structural analyses peidorine the
author to improve the@lalb s p r dAlseircltded arethree investigations performed

by the authorthat pertain to smart material applications in responsive architecture and
textles. The first investigation evaluated the feasibiity of using piezoelectric materials
to harvest power from humawdt traffic; overal, it was determined to not be feasible.
The second investigation experimentaly tested how six p#esnef shape memory
alloy spring actuators affect their reaction times and stroke; all six paranfected

the reaction tmesandor stroke The third investigation experimentally tested how three
parameters of superelastc SMA springs influence their stifness and resonant
frequencies; overall, it was found that traditional spring mechanics can be used tb predic

their behavior prviding theinternal stress does not reach the upper plateau stress.

Xhvii



LIST OF ABBREVIATIONS AND SYMBOLS USED

Abbreviations Description

@lab ArchiTextile Lab
1D Onedimensional
2D Two-dimensional
3D Threedimensional
ABS Acrylonitrile-butadie nestyrene
AC Alternating Current
ACI Advanced Cerametrics, Inc.
ACOA Atlantic Canada Opportunites Agency
Ag Siver
AGS Automatic Generating System
Al Aluminum
AM Transformation Austentte to Martensite Transformation
BaTiOs Barium Titanate
BixTes Bismuth Telluride
C Carbon
CA California
CFL Compact Fluorescent
CFC Carbon Fibre Composite
Cl Clamped
Co Cobatt
COH Cost of Harvesting
Cr Chromium
CS CrossSectional Stiffness
CTl Chromatic Technologies, Inc.
Cu Copper
DC Direct Current

Xiviii



DSC
&

EAP
ECG, EKG
EDG
EEG
EL
EMG
ER
Fcr

LCD
LED
Li

xlix

Differential Scanning Calorimeter
Electron
Electroactive Polymer
Electrocardiograph
Electrodermograph
Electroencephalograph
Electroluminescent
Electromyograph
Electrorheological
Fuly covered and regrouped
Iron
Finte Element Analysis
Fast Fourier Transform
Hydrogen
Hydro Sulfuric Acid
Human Powered LED

Halfax Regional Municipality

Heat, Ventilation, and Air Conditioning

Single Charged lon
Infrared
Indium Tin Oxide
East Japan Raiway Company
Potassium
Lanthanum
Liquid Crystals
Liquid Crystal Display
Light Emitting Diode
Lithium



LVDT
MA Transformation

Me

MEMS
MIT
Mn
MR
MS

Na
Nb
Ni
NiMH
NiTi
NRC
NSCAD
NTT

OLED

Pb
PC
pce
PCM
PDLC
PE
pH
PLZT

Linear Variable Differential Transducer
Martensite to Austenite Transformation
Metal Atom
Microelectromechanical Systems
Massachusetts Institute of Technology
Manganese
Magnetorheological
Material Stiffness
Nitrogen
Sodium
Niobium
Nickel
Nickel Metal Hydride
Nickel Titanium
Noise Reduction coefficient
Nova Scotia College for Art and Design
Nippon Telegraph and Telephone
Oxygen
Organic Light Emitting Diode
Polarization Direction
Lead
Polycarbonate
Partially covered electrode
Phase Change Material
Polymer Dispersed Liquid Crystals
Piezoelectric
Potential of Hydrogen

Lead Lanthanum Zirconate Titanate



PMN:PT
PS
PVDF
PZT
PZT 4
PZT 5H
RBG
Sb
SCE
SE
SIM
SMA
SONAR
SP
SS

SSHI
SSHRC

Ti

UTS
uv
UVA

VAR
VIM
WO;
WS
Zr

Lead Manganese Niobate:iLead Titanate
Particle Suspension
Polyinylidene Fluoride
Lead Zirconate Titanate
Hard PZT
Soft PZT
Red Blue-Green
Antimony
Synchronous Charge Extraction
Superelastic
Stressinduced Martensite
Shape Memory Alloy
Sound NavigationRanging
Suspended Particles
Simply-supported

Synchronized Switch Harvesting using a
Inductor

Social Science and Humanities Researt
Council
Titanium

Time-Temperature Transformation Diagra
Ultimate Tensie Strength
Ultraviolet
Ultravioletalpha
Vanadium
Vacuum Arc Melting
Vacuum Induction Melting
Tungsten Trioxide
Total Wire Stiffness

Zircon



Symbok Usedin

Chapters 1 to 3 Description Units
B Magnetic Flux Density, Induction Field T
C Magnetorheological carrier flud constant -

c Speed of light 3.0x 16 m/s
D Piezomagnetic constant m/A
E Electromagnetic Wave Amplitude

E Electric Field Vim
F Frequency Hz
h Height m
H Magnetic Field Strength Alm

i, j, K, L, m,n Direction indices -

k Magnetic Coupling Coefficient -

Kp Pyroelectric Sensttivity Constant C/K
L, | Length m
M Electrorestrictive Coefficient nf/V?
NA Numerical Aperture -

Ne Cladding index of refraction -
fer Effective Refractiv(ca: oIrnétlex of Bragg Grating i

Nk Fibre index of refraction -

n Incident index of refraction -

P Pressure Pa
P Induced Polarization F*V/m?
P Point Load N

Q Flow Rate /s
Q The Polarization Electrostriction Coefficient — ni*/F2v?
Q.q Charge C

S Maximum Velocity of a linearvelocity s

distribution



Compliance Tensor under constant magnet
field

Time
Temperature
Visible Transmission
Width
Shear Strain Rate

Strain
The Permittivity of a vacuum

Relative Dielectric Constant
Viscosity
Plastic Viscosity
Incident Angle
Maximum Incident Angle
Reflected Angle
Maximum Reflected Angle
Critical Angle
Refracted Angle
Bragg Grating Period

Bragg wave
Permeability of Free Space
Permeabllity Tensor under constant stress

Stress

Shear Stress

Dynamic Shear Yield Stress as a function ¢
electric or magnetic yield strength

Phase

Radial frequency

Pal

(8 .854 x 10
12 F/m)

Pa*s
Pa*s
rad or deg
rad or deg
rad or deg
rad or deg
rad or deg
rad or deg
m

m
4 ¥
H/m
H/m
Pa

Pa

Pa

(rad or
degrees)

rad/s



Symbok Usedin
Chapter 4
A

a (subscript)
A (subscript)
ab (subscript)
b (subscript)
B (subscript)
bc (subscript)
c
c
C (subscript)

C (subscript)

Ci, &

Fo
Fs
G
G (subscript)
I
I (subscript)

Ibox

Description

Area
Belonging to Section A
Pertaining to ply A
Belonging to AB overlap
Belonging to Section B
Pertaining to ply B
Belonging to BC overlap

Maximum Distance from
Bending Axis
Cosine

Belonging to Section C

Pertaining to the
circumferential direction
Boundary Condition
Coefficients
Drag Coefficient

Compressive Strength along
the fibre direction
Compressive Strength along
the transverse direction

Diameter

Modulus of Elasticity
Flexibility Matrix
Drag Force
Safety Factor Matrix
Modulus of Rigidity

Pertaining to the global
composite properties
Bending Moment of Inertia

Signifies Inner

Mass Moment of Inertia of a
box

v

Units

Pa

Pa

Pa

Pat

Pa



L (subscript)

M
0 (subscript)
P
R
M
I

S

Sux

v(X)

X (subscript)

y (subscript)

Mass Momentof Inertia

Mass Moment of Inertia of a
tube
Composite Stiffness Matrix

Length along »axis

Pertaining to the longitudinal
direction
Moment

Signifies Outer
Point Load
Radius of Curvature
Inner radius of a tube
Outer radius of a tube
Sine

Tensile Strength along the
fibre direction
Tensile Strength along the
transverse direction
Shear Strength

Transformation Matrix
Simulated Tension
Torque
Velocity
Deflection with respect to the
X-axis
Pertaining to the -axis
Pertaining to the -axis
Angular Acceleration
Slope

Cable angle with reference to
panel 6s f¢
Cable angle with reference t
the xaxis
Poissonos

Y

Pa

N*m

3 3 3 Z

rad/$

Degrees

Degrees



Co

Symbok Used
in Chapter 5

1 (subscript)
15 (subscript)
3 (subscript)

31 (subscript)

33 (subscript)
5 (subscript)
A
a
A B
Acs
AP
As
b
C

D (superscript)

Density
Stress

Shear Stress

Description

direction

Area of Section

Stifness Tensor

Capacitance

Piezoelectric

vi
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f Applied force N
f(x) Function of x
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G Modulus of Rigidity Pa
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R
Rs
Rs
S
S
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t
ts
u
Uc
Ue

Ym
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Zeq
Z

Radius of thepiezoelectric layer on a piezoelectric dis
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Load Resistance
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Piezoelectric Series Resistance
Compliance Tensor
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Thickness
Substrate Layer Thickness
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Voltage
Volume
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Load Reactance
Source Reactance
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pressure load
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Equivalent Impedance
Load Impedance
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m

a Deflection
Uo Free Displacement m
)4 Dielectric permittivity F/m
U Strain -
1o Dielectric permittivity of a vacuum (8'1825;'/”):)10
Chve Average Strain -
¥ Relative Dielectric Permittivity -
3 Poissonbs Ratio -
G Stress Pa
0 (supe Constant Mechanical Stress, Mechanically Free -
33 Internal stress experience in the poling direction Pa
i Maximum stress in a simply supported plate from a Pa
pressure load
Umax Maximum Stress Pa
U Shear Stress Pa
¥ Angular Frequency rad/s
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Chapters 6 and 7
0 (subscript)

Initial Value

A (supersc_rlpt or Pertaining to the Austenite Phase -
subscript)
Acs Crosssectional Area nt
A Finishing Temperature of Martensite to Austenite K
f Transformation
8 Stressinduced Finishing Temperature of Martensite
A¢ : : K
Austenite Transformation
AU Shear Stresthduced Finishing Temperature of K
f Martensite to Austenite Transformation
AM (subscript) Pertaining to the austenite to martensite transforma -
Starting Temperature of Martensite to Austenite
As . K
Transformation



Ad

Aw

Ca
Ca
Cwm

Cwm

Dett
dT
dx
do
ds

dU
iz‘conv
Ain
Aout
Alrad

At

Fat

Stressinduced Starting Temperature of Martensite

Austenite Transformation
Shear Stresthduced Startip Temperature of
Martensite to Austenite Transformation

Wireds Surface
Stress Infuence Coefficient
Specific Heat Capacity
Spring Factor
Austenitic Specific Heat Capacity

Austenite Stress Influenc€oefficie nt
Martensitic Specific Heat Capacity
Martensite Stress Influence Coefficient
Effective Modulus of Elasticity
Wire Diameter
Spring Diameter
Effective Spring Diameter
Derivative of Temperature
Derivative of x
Derivative of Shear Strain
Derivative of Martensite Fraction
Derivative of Shear Stress
Modulus of Elasticity
Convection Energy Rate
Energy Generation Rate
Input Energy Rate
Output Energy Rate
Radiation Energy Rate
Energy Storage Rate
Force

Force at which Stredseduced Martensite has

Ixi

K

K

"
Pa/K
JI(kg*K)
JI(kg*K)
Pa/K
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Pa/K

Pa
Pa
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Jis
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completely turned back into Austenite

Force at which Stredsduced Martensite begins to N
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= Force at which the alloy has completely changed i N
Mf Stressinduced Martensite
Force at which Stredsduced Martensite begins to
FMS fo N
rm
fn Springmass Resonant Frequency Hz
£0 Springmass Resonant Frequency for a supeielas Hy
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Frec Recovery Force N
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G Modulus of Rigidity Pa
g Gravitational Acceleration 9.8 m/$
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I Current A
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k Stifiness N/m
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MU Shear Stresthduced Finishing Temperature of K
f Austenite to Martensite Transformation
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Radius of Wire
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Critical Radius
Electrical Resistance
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Time
Start Temperature
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CHAPTER 1. INTRODUCTIO N

1.1 OVERALL OBJECTIVES

Responsive technology can be defned as systems that instincégpignd to external

stimuli in a programmedmanner. Responsive systems aeneraly made of three
components: sensors, processors, and actuatSree ns or s act as the re
somatic nervoussystem; they detect certain triggers or environmental stimuli for the
system to respond to. 8 known as the control system, processors act as the responsive
systembs c ent r thdy analzea and ewluates hes servsony inputs, creating
instructions for an appropriate response. Actuators act &se responsive s
muscles they carry out the programmed response by either acting directly from the
sensorsod inputs or by instructions set by
responsive systems include saving time and money, improving accuracy, and the fact that
they can be mifunctional and reprogrammable. Responsive technology is present in
vitually every field of sciace; in electronics, examplasclude smart phones and MP3

players; in architecture, examples include structural moniotiagnperature sensing for

HVAC sydems, and proximty actvated lighting; in medicineexamples include
electroencephalograph monitoring and artificial limb$ automotive Bgineering,

examples include global positioning systeamgl cruise control.

Smart materials are generaly viewed raaterials that can change one or more of its
properties in reaction to an external stimulus. As smart materials are responsive in their
own right, they e often used in responsiveystems either as sensors, processors,
actuators, or sometimes all thremombined. @ Examples of smart materials used in
responsive technology include shape memory alloys in heat activated heart stents, fibre
optics wused to monitor the structural integrity of bridges and buildings,
magnetorheological fluids used as dampers wdljustable damping coefficients,
piezoelectric sensors that directly act as stedsdricity transducers, liquid crystals used

for electronic display screens, and thermochromic leukodyes on clothes that change

colour with human contact.



Recently there s been an increased interest in e of responsive technology in

architecture and textilesBooks such adichele Addington andDa vi d S Smartd e k 6 s

Materials and Technologies for the Architecture and Design Professions (26@Bxel
Ri t t Ssmard laterials in Architecture, riterior Architecture and Desigr(2007)

showcases mar t materials from an architect s

such as Bran Cu lISsdrtaStractures and Materials (199@nd Wag, Bond,
Weaver , & Adbptivie sStrecturesd Engineering Applications (20@hbwase

smart material from the perspective of a structural engineer and how they can be used on
buildings, bridjes, and modes of transport to not only monitor their structural integrity,
but also inteligently respond to environmental stinquich as wind loading and tremors

In textiles, books likeH . R. Mteltigent Textiies and Clothing (200@&nd Gilsoo

C h o &mwart Clothing: Tdmology and Applications (2009%howcase how smart
materials and other forms of responsive technology can be integrate texties and
clothing along withtheir associated applicat®n Li kewise, Srhaboks
Fibres, Fabrics and Clothing (2001yoes deep into the science of smart materials in
textles, presenting engineering models that integrates the mechanical properties of
textles with the responsive properties of smart materidisnt er t ec hPir ads
Conference, held since 2005, focuses on the evolution of smart fabrics, where the
industry stands today, and the projected next steps in technology impleme(iRaton
International, 2012)

In 2008, Sara Bonnemaison, aarchitecture Pof es s or at Dal housi e

of Architecture, and RobiMuller, a textles Pof es s or at CokgewbArtScot i

and Design(NSCAD), founded the Achtextie Lab (also known as th@lab). Mainly
funded by the Atlantic Inn@tion Fund by the Atldic Canadian Opportunity Agency

and a Research in Creation grably the Social Sciences and Huities Research
Counci, the @lab was established as a centre for the design and development of
electronic textles for architectural dpptions (Bonnemaison, 2008) Although
electronic textles are not necessarily a new phenomenon, they are generaly limited to

the field of wearable fashion; the architextie lab aims to integrate electronic texties onto

pe
and how they can be wused to ada@wisé booka buil
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lar ger scal e applications t o Afocus on t he
(Bonnemaison, Berzowska, Macy, & Muller, 2011) These environments would include

walls, ceiings, and architectural enclosure§he first two pototypes designed and built

by the @lab were an electronic curtain and shoji screen room diider. Using a loom,
electroluminescent wire (EL wire) was woven ing traditional textleto produce a

luminous certain; using traditonal origami paper foldichniques, fiber optic lighting

was integrated into a traditional shoji screen room diider to provide an additional
lighting aesthetic. Both the EL wire and fiber optics are smart materials, an EL wire
responds to an electric current by luminescing fioet optics are designed to carry light

with minimal diffusion.  Although these two projects successfiilyorporated smart

materials into their functional design, they are generally not classified as responsive
systems. Responsive systems require s&nso detect certain environmental stimuli and
actuators to produce a programmed response to said stimuli; the EL wire pasbbpmnd

screen do not have sensothat trigger a reactioas they only dlow a programmed
responseby activating a manual onfowitch Al't hough iitdés debate
switch could count as a sensananual on/off switches are generaly not viewed as

sensors in the responsive technology communitydaving successfully incorporated

smart materials and smart technology ifbrics, the architextie lab would then set out

to create prototypes that are truly responsive to an environmental stimulus; the

environmental stimulus being generated by the user.

As the @lald sprojects have responsive elements amade larger scalegnsuring their

structural integrity, mechanical functionalty, and electrical reliabiity can be quite
chalenging.  Several chalenges include minimizing deflection, optimizing strength to
weight ratios, efficiently integratihg the smart materials andctrelsics into the
prototypeos structure or textile skin, co
well as sensor and actuator selection. Using analytical methods such as traditional static
and dynamic analyses, finte element analysis, and sna&lé soodel testing, one can
better foresee l mpending structur al and me
i ncorporating s madedgn oma imest riotaonhs understand the cscieaceé s

behind their responsiveness, but alswlerstand #ir material properties and constitutive



models to effectively predicttheir responsiveness. As smart materials are still relatively
new and not completely understoodbften times experimental testing is needed in
addition to their predictve model® decide what parameters to use in your responsive
system With a focus on the@lald sesponsiveprojects along with an additional project
performed by undergraduate students that was supervised by the author, this thesis wil
present the stomural analysesused to assess their integrity, the smart materials analyses
used to predict their responsive behaviour, and the experimental testing performed to

evaluate the smart materialsd analyses.

1.2 THESIS LAYOUT

To give thereader an understanding of what smart risdadeare, Chapter 2 wil go over

what is signified by the term smart and wil present several examples of smart materials
highlighting the science behind theiesponsiveness andpplications. Chapter 3 wil

then give the readeam closer look at respams architecture and textiles that respond to

the user, followed bylescriptions othe @lalkdb s r esponsive projects
undertaken by undergraduate students and supervised by the #ngthbduman Powered

LED Jogging Suit Chapter 4 presits the structural analyseedertaken by the author to
evaluate the structural integrity of the responsive structures designed by the architextie
lab. Chapter 5 wil take a closer look at piezoelectric materials and how they can be used
to harvest powe through human foot trafic. For one of tt@lald s priejteect s
Flamenco Backdrop), helical shape memory alloy spring actuators were used as part of its
responsive nature; Chapter 6 presents models for calculating theiorretimes and
strokes a well as the experimental testing performed by the author to valdate or contest
these models. Chapter 7 again focuses on shape memory aloy springs, but in their
superelastic form. Superelastic nitinol springs were proposed by the author to be used on
the HPLED jogging suit as their low stiffness would be well suited for low resonance
frequencies; Chapter 7 presents the mechanical models proposed by the author along with
the experimental testing performed by the author to better siaddr the stiffnessnd
resonancebehavior of superelastic nitinol springs. Finaly, Chapter 8 gives an overall

summary of thehesis, outining its accomplishments and future prospects.

(
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CHAPTER 2. SMART MATERIALS AND SMART
TECHNOLOGY

2.1 SMART MATERIALS: AN OVERVIEW

The term, h@asmabreeedn used quite I|liberally no\
without fully comprehending what it signifies.Smart by definition implies notions of an

informed or knowledgeable response, with associated qualties of alertness and
quickness. In comon usage, there is also frequently an association with shrewdness,
connoting an intuitive or intrinsic respongaddington & Schodek, 2005)Vordenet al.

point out that the words inteligent and smart are often used as ttoaisarket new

products but this is often done with little thought to what this should meéiorden,

Bullough, & Haywood, 2003) Smart phones and smart boards are examples of this kind

of marketing as they can perform manyesoother than their main functon. A smart

phone allows you to at only communicate withsomeong but can act as youday

planner, electronic maiboxvideo game console, cookbook, calculator, and the other
thousands of applications one can download. edUs educational classrooms, smart

boards not only act as white boards, but can projeletos browse the internet, and

essentialy act as an interactive monitor for your computer. These products certainly
sound smartas they can perform multiple dutiegher than their targeted main purpose

but does their smartness adhere to the definition presented earler. The response of a
smart phoneor smart boards indeed quick and informed, but is not intrinsic. Using a

variety of electronic components, emgans and technicians designed smart phones and

smart boards to perform their functions; they do not naturally possesfwibiono.
Nonetheless, marketers as well as the general public have labeled these [smolrgts

despite the fact that they do not inherently possess fireartness As the definition of

smart is quite vague in modern day use, irmpartant to define @& s ma r t materi al ¢
term wil be used consistently throughout this thesiBkin to smart phones andsmart

boards, mny engineers di sagree witdrestheéebaeasés no
material®, but these materialdiave nonetheless adopted this term to desciiesr

exclusivity.



Given the frequent use of the term fAsmart (
has been much debate toward what constitutes a smart material. This debate is ilustrated
through the variety of smart material definitions amalgamatedable 2-1. Although

these defintions vary, they seem to adhere to a common principle in that a smart material

has the abilty to ater one or more of its properties in regadtioan external stimulus.

Table 2-1: Definitions of Smart Materials from various sources

Definition Source
O- AOAOEAI O OEAO OOAIT AT AAQ Quoted by NASA in
conform to them when given a specific stimulus 6 (Addington & Schodek,
2005)

031 AOO | AOAOEAT O AT A 00O (Kroschwitz, 1992)
that sense environmental events, process that
sensory information, and then act on the
AT OEOI T 1 AT 06
O31 AOO T AOGAOEAT O OAODPITA (Reece, 2007)

s s oA s o~ AN

The concept of a smart material is all about
materials that can react to the world within ~ which
they operate and thereby enhance their functionality (Culshaw, 1996)
or survivability . The implication within the term
00i AOO 1 AGAOCEATI 6 EO OEA
possesses the ability to respond to its environment
using deductive rather than instinctive reactions
Functional materials are materials that can perform (Cao, 2007)
certain functions when triggered by environmental
changes, such as stress, electric field, magnetic field,
temperature variations, or when stimulated by
control signals, such as electric or magnetic signals
from a control center
Sometimes materials are called smart because they (Lloyd, 2007)
have unusual properties, but perhaps most often
smart materials are considered to be mater ials
where multi -functionality is a key attribute
Materials and products that have changeable (Ritter, 2007)
properties and are able to reversibly change their
shape or colour in response to physical and/or
chemical influences, e.g.light, temperature or the
application of an electric field

Materials that exhibit coupling between multiple Engineering analysis of
physical domains smart materials (2007)




The external stimulus acting on the smart material can vary from an applied pressure,
light radiation, electric fields, or even moisture for example. The reactions are equally
diverse ranging from shape deformation, electric potential production, cdi@anges,

and light production. Many of the definitions infable 2-1 also catain an environmental
element suggesting that a change in their environment or surroundéhgses said
reaction. One can therefore take advantage of the intrinsic propafrtsart materials

by altering t he mat er i al 6 s(knoewm &si actoatioma n t t o
alowing the materialto detect changes in its respective environment to inform an
observer abougn environmentalatteration (known as sensation). Smart materials have
found a variety of uses in many discipines be it the use ofraaptc nitinol in
orthodontic bracesfber optic sensors to monitor strains in aircrafts, ships, and bridges,
piezoelectric materials to sense, control, and impede structubmbtions, or
electrorheologicalfiuids used for dampers and clutches. Smart materials encompass a
variety of subjects e¢luding materials science (metallurgy, composites), applied
mechanics (vibrations, fracture mechanics, elasticity, aerodynamics), electronics (sensors,
actuators, controls), photonics (fiber optics), manufacturing (processing, microstructure),
and biomimets (strategies adopted by natural structures). Smart materials have also

found multiple uses in architecture and fabrics

Materials are the elements, constituents, or substances of which something is made of,
but what makes a material smaAfhough asmart material has now been identified as a
material that can respond to an external stimulus, what makes rerdiflieom traditional

i d u nrhaterials? For example all metals expandor shrink) when subjected to heat

This metalic property was key ithe invention of thermostats as well as compensating
for thermal shrinkage and expansion in bridgedl metals thus respond to an
environmeral stimulus {ie. heat) through expansion (or sometimes contraction) sy w
arenot al l met &l s Tdhleaskseayf i ed @asmasrmtarmat er i ¢
property change that is absent in most traditional materials. As all metals go through
volume changes through heat applications, this phenomenon is far disimctive

When a smart material resmtsn to an external stimulus, it undergoes a property or

energy transformation that is typically absent rom most materials



There are other traits a mat er Indhkir bool,s t ha\
Smart Materials and TechnologiesMichelle Addington and Daniel Schodek (2005)
provide five key characteristics that all smart materials and technologies exhibit. These
characteristics include: immediacy, transiency, sedictuation, selectivity, and directness
(Addington & Schodek, 2005)These characteristics dictate that a smart material wil

1 Respond in real timekown admmediacy)

1 Respond to more than onaveonmental statekfown aslransiency)

1 Have an internal mechanism responsible for its respersansiton known as
Selfactuation)

1 Respond discretehand predictably Khown asSelectivity)

Have a response that is local to the associated external stirkolen( as
Directness)
Applying these criteria to an actual materibht exhibit unusual phenomenane can
ma k e an assessment towar ds whet her or no
Thermochromic materials are materials that undergo colour changes when thermaly
activated by heat. Thermochromismis generally absenin most materials therefore it
certainly passes the first test towards being designated a smart material, but it must also
possess the five characteristics outlined by Addington and Schodek. Going through the
criteria, one can see that thermochromics:

1 Change colour once pass its transition temperaturemninediacy)

1 Have different colour properties below and above theansition temperature
(Transiency),

1 Wil go througha change in molecular structure in response to thexot@ation
causing the matedi to undergo changesn iabsorptance characteristicsefS
actuation),

1 Predictably changeolour at its assmated transition temperature gl€ctivity)

Undergo colour changes only on locations ttlzae heat activated {fiectness)
As thermochromics possesimmediacy, transiency, sedictuation, selectivity, and

directness they most certainly can be classified fasart,



2.1.1 Smart Materials vs. Smart Technology

This thesis wil also cover some smart technologies as well as smart matéhalsterm,

Ais matretc hnol ogyo i s linked t o mmathales hasmat er |
differences that set itapart A snart material is essentialy a material that can
intrinsically respond to an environmental stimulass a unique fashign a smart
technology however, consists of many components that work together to sense an
environmental stimulusn a unique fashion An example of smart technology would be
fiber optic sensors. Fiber optic sensors consist of a light source, a lght desector
interpretatim system and fibber optic cables to transport and sense the environmental
stimulus. Through the phenomenon of total internal reflectibre fiber optic cables can
sense strain, deflection, and even temperature by altering the input light irsigriese

and intensity. These phase and intensity changes are in turn detected by the light detector
and are translated by the interpretation systenassociateheselight property changes

with the detectedinput stimulus Measurands of the input stimul.g. strain, pressure,
temperature, etc.) are therefore calculated through variations in the transmitted light
properties. Some associate fber optics as smart materials, however, this relationship is
somewhat misleading as the fiber optics themselves do mse send respond to an
environmental stimulus. The fiber optics simply act as a conduit that interprets an
external stimulus into a measurable arrangement. For fber optic sensors to function,
additional hardware i.e. the lght emitter and light detecjorand software (the
interpretation system) are neededA key attribute to smart materials, is that they
independently act as transducers to transform the external stimulus into its associated
response. Piezoelectric materials independently respond ain gtrough producing an
electric potential and vice versa, shape memory aloys independently respond to heat
through shape deformation, and magnetorheological fluids independently respond to
magnetic fields by altering its viscosity properties. As mdm@ntone component is
needed to transform the input stimulus (strain, pressure, temperature, etc.) into a
measurable form (light variation), fiber optics are deemed a smart technology as opposed

to a smart material.



2.1.2 Are Smart Materials N eeded to Make Something Smart?

With smart materials being able to respond to their respective environment, must one
al ways require smart materials to add s m
electronic controls available, there is essentially nothing that a snaderial can do that
traditional electronics cannot. For example, with the abiity to directly transform
mechanical strain into an electric potential, piezoelectric materials are commonly used as
strain, touch, andoressure sensors. Howevéinere aremany other vays to measure

strain, pressureand sense touch which includdrain gauges, potentiometeesyd various

electric switches. Although traditional circuitry tends to be less expensive than
piezoelectric sensors or actks, given a particular g&|Bg piezoelectric materialsan
outweigh traditional circuitry with their intrinsic advantagesWhat sets piezoelectric
materials apart from traditonal electronic sensdms example is that they can be
retroftted so thatno power supply is required The mechani strain caused from the
applied pressure, strainor touch is directly transduced into an electric currenctwin

turn is usedto interpret the sensed acti@nd provide a signal to induce an appropriate
acton With sensors derivedrom traditional circuitry, one must constantly provide a
power supply to detect changes in electrical properties such as resistance, capacitance, or
inductance.  Using piezoelectric materials can decrease the amount of power and
hardware needed in seledt situations. Although one can most certainly use traditional
circuitry instead of smart materials to perform the same function, smart materials can be

advantageous in certagrcumstances

2.1.3 Do Smart Materials Actually Perform |  ntrinsically?

It has been mentioned already that smart materials intrinsically perform their functions.
Although many smart materials naturaly possess their ability to react to their surrounding
environment, most smamaterials are enhanced by mnbetter exploit their samtness.

The use oft h e  wiatrinsibo, can finerefore be somewhat misleading as most smart
materials are synthetically created or altered through the use of appled sciEake.
piezoelectric materials for example. Piezoelectricity is exhibited atgtun materials

such as Rochelealt and quartz; however, theirpiezoelectric propertiegypically cancel
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out in nature as their atomic dipoles are randomly orient€éd align the atomic dipoles

in parallel, a procedur e alktmodpaes pamlel,ithgo | i ng
piezoelectric effect ismaximized in a net direction thus amplifying their voltage output

when stimulated through strain and lkewise enhancing their deformation properties when
electrically stimulated. Shape memory alloysre another example. Using nitinol as an

example, the shape memory efféstonly present in binary NiTi alloys over a very

narrow compositional range based around 50 atomic pelicen§0% nickel and 50%

ttanium.  Wiliam J. Buehler and coworkers atethNaval Ordnance Laboratory
discovered that by adding a slght extra amount of nickel, they could change the
transformation temperature from near 100°C down to below Q@S@nivasan &
McFarland, Smart Structures: Analysis and Design, 20@ijferences of just 0.1 atomic

percent can easily change transformation temperatures by 20°C or (khorgan &

Friend, 2003) For this reasorproduction and processing of NiTi aloys must be very

stricty controlled. Induction melting is often used to produce the final ingot, ensuring
good homogeneity of the alloy, and enabling transformation temperatures to be controlled

to within 5°C (Morgan & Friend, 2003) A shape memora | | oy 6 s cgnalsolgeer t i e s
altered by addg a third impurity. With regards to nitinokhird impurity examples

include iron to provide a lower transiton temperature, copper for theirlesmal
transformation hysteresi@nd improved cyclic stabiity and palladium to increase the
transition temperaturéMorgan & Friend, 2003) Nearly all smart materials have been

altered in some regard to fully exploit their stnass. Although the end product is a
material that independently reacts to an external stimulus and is therefore deemed
intrinsic, the final product was realized through engineering and human ingenuity. It is
quite ironic that the material is given maxtthe credit by labeling t Asmarto when

the labor from engineers, scientists, and technicians that crafted its smartness.

2.2 INPUT RESPONSE CLASSIFICATION

As previously discussed, mart materials have a variety of diverse reactions to
environmental stimul. These responsive actiomsin be categorized as passive, active, or

inteligent. Likewise, smart materials are often directly described as passive, active, and

11



inteligent basedon how they contribute to the overall smart system.is $hction wil

briefly describethese categories

2.2.1 Passive Smart Materials

Passive materials essentially can only sense an external stimulus. Passive smart materials
have the abiity to provide infmation to a smart system with regards to an
environmental stimulus, but cannot appropriately react to the external stioniuts

own Good exaples of passive smart technologge fiber optics. Fie optics have the

abiity to sensedeformation, straj pressure, or temperature, but that is all they can do

for a smart system. Fibre optics can be used to passively detect cracks in buidings for
example, and the information gathered can be interpreteal dyymputer oan engineer to

analyze thebui | di ngods structur al integrity and c
This system eliminates the need for routine maintenance as one wil know in advance
when s required. Passive smart materials could also be used in conjunction with
actuatorsand a control systerto instinctively react to aenvironmental stimulus. For an
example, a fibre optics system can meadws a tall buiding sways fronseisnic

actvity and send this information to a control system which in turn can activate an active
mass driver on the top of the buiding to dampen the seismic vibrations. To sagmnmari
passive smart materialsense an external stimulus, but additiomaldwareis required to

fitingly respond to thestimulus.

2.2.2 Active Smart Materials

Active smart meerials not only can sense an external stimulus, but can react to it as well.
Active materials convert energy from one form (the external stimulus) to another form
(the reaction output). Piezoelectric matisriand shape memory alloys are generaly used
as active smart materials. Piezoelectric materials react to pressure or strain by producing
an electric potential which in turn can be used to genenatelectric signal or even
generate power for microelectronics. Piezoelectric materials also reaan tlectric
current through shape deformatiarihich can be used for mechanical actuatiomm both

of these cases, the piezoelectric matesahses an environmental stimulus and also

12



provides the output reaction. In both of these examples, the piedoelketerial
actively responds to thenvironmental stimulus. Likewise, shape memory alloys respond
to an increase in temperature from the environment through morphing its
programmed shape. The shape deformation in turn can be used for mechamtiahac

The shape memory alloy actively reacts to the input stimulus (heat) with an actuation

mechanism (the shape deformation).

It should be noted, howenethat active smart materialo chot necessarily have to sense

the external stimulus. A control system or energy transducer can be used to link the
environmental stimulus to activate an active smart materighe main attribute to an

actve smart material is its abity to reaa the external stimulus, generaljfrough
actuation. For instancehape memory alys can be heated electricaly and theretaa

be activated by electricty. Say if you had an electric circuit consisting of an electric
power source, a shape memory alloy, and a swildte aim of the circutt is to cause the
shape memgr alloy to deform when the switch is presseWhen the switch is pressed,
electricity wil fow through the shape emory aloy, heat the alloy past its transtion
temperature through resistive heating, and thus activate the tallogeform to its
programred shape. The sensor in this system is the
but the actuator is the shape memory alloy changing shape as a result of the switch being
closed. The shape memory alloy actively responded to the touch, but did not sense th
touch directy. The switch provided the link between the environmental stimulus
(pressure from the touch) and the active smart material (the shape memqry &ltasy
example demonstrates that an actve smart material does not need to sense the

enviroomental Stnulus for activation but nonetheless needs a mechanism to transform

the environmental stimulug a formt h a't enabl es t he material 6s

2.2.3 Intelligent Materials

Inteligent materials are materials that have been programmed to opegstenamual or
pre-programmed manner. In this case, the material itself must act as the sensor, control

system, and actuator. The material must be able to sense the environmental stimulus,
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analyze the environmental stimulus, and appropriately react to twonenental
stimulus based on saidnalysis. In summary the materibitselff must be a smart system,
but the contrbsystem( i n t he aut hor 0 sanabgformatwahoyt ang houl d
electronic components An example of an inteligent material wdube photochromic
glassor plasticfound in modern dagyewear In response to electromagnetic radiation in
the ultraviolet (UV) spectrum induced by sunlight, photochromic materials undergo a
property change that changes the hue of the material to @&nddrkstatebased on the
amount of UV radiation In this system, the photochrominaterialacts as sensor, control
system, and actuator. The photochromic material detects UV radiation from sunlight
(sensor), goes through a property change proportionahedoamount of UV radiation
(control system), and proportionally darkens its Heen the induced property change
(actuator). The photochromic glasthus acts as a smart system through the use of analog
control.

There are several commercial fabrics thet as smart systems using analog control and
can therefore be classified as inteligent materialsvo of thesefsmart fabricé are ant

microbrial fabrics and temperaturegulation fabrics.

Agion®8 s customi zed ant i mi crverbons iala zeslte Icardei o n s
(Agion Technologies, 2006) As the humidity increaseshe environment becomes ideal

for bacteria growth. The siver ions exchange with other positve ions (often sodium)
from the moisture irthe environment, affecting a release of sivefhe amount of siver
released is proportional to ambient moisture levels. The silveurin fights bacterial
microbes throughinhibitng cell division, disrupting cell metabolism, angreventing
respiratim by inhibiting transport functions in the cell wégion Technologies, 2006)
These antmicrobrial fabrics act asa sensor as they detect the presence of ambient
moisture, the control system #sey respond to the amouof ambient moisture through
releasing siver ions in a concentration that is proportional to the amount of moisture, and
as an actuator by releasing the siver ions. As-raatbbrial fabricsact as all the

components of a smart system, they can bdedbas intelligent materials.

14



Temperature regulation fabrics use phase change matgfR&EMs) to regulate
temperature in winter coats by storing and releasing latent Hé@tMs are materials that

can absorb, stoyeand release heat whikne materialalternatesirom its liquid and solid
phases. OutlasP? uses a parafin wax compound which is miemcapsulated into
thousands of miniscule, impenetrable, had shels caled thermoc{@stlast
Technologies, Inc., 2010) These thermocules recycle body heat by absorbing, storing,
distributing, and releasing heat on a continuous basis acting as a temperature buffer. Say
if one wore a coat with temperature regulation fabrics while sking. During the act of
skiing, 0 n@ Praduce exakss heato urhe thermocules would absorb some of
this excess heat effectively cooling the skier in the procé¥ben resting on the chairlift
afterwards, oneods b ody and &tvge ethe athermoceles wo u |l d
release the energstored earlier to warm ughe skier. The thermocules are igesd to

regulate o n e 6 s tobbe ditya comfortableemnperaturethrough recycling latent heat
buildup. Temperature regulation fabrics act as a smart system operatiagsassor
through sensindpody, a control system bgtoring and releasing latent body heat based on

o0 n e 0 s teniperaduge and an actuator by absorbing orreleasing teat oneds body.

2.3 SMART MATERIAL CATEGORIES

Smart materials can be dvided into two categories based on rémation to
environmenth stimuli.  Materials that respond tihe environment by changing one of its
physical properties are appropriately known as profdidyging materials while
materials that respond to the environment through exchanging energyofi®nform to
another are appropriately called eneeyghanging materials. Many energxchanging
materials are bidirectional meaning that the two energy exchanges can occur either way.
An example of reversible energxchanging materials are piezoelectmaterials: they
respond to deformation by producing an electric potential and respond to an electric
potential by deforming. Table 2-2 gives a list of various smarhaterials assorted by their
type. This section aims to introduce the readea teariety of smart materials along with

the science used to predict their behavior.

15



Table 2-2: List of Smart Materials with Corresponding Inputs and Outputs

TYPE OF SMART MATERIAL
Type 1 Property-changing

INPUT

OUTPUT

Thermochromics
Photochromics
Mechanochromics
Chemochromics
Bectrochromics

Liquid Crystals
Suspended Particle
Bectrorheological
Magnetoreheological
Shape Memory Alloys

Temperature Difference
Radiation (Light)
Deformation

Chemical Concentration
Electric Potential Difference
Electric Potential Difference
Electric Potential Difference
Electric Potential Difference
Electric Potential Difference
Temperatire Difference

Colour Change

Colour Change

Colour Change

Colour Change

Colour Change

Colour Change

Colour Change
Stiffness/Viscosity Change
Stiffness/Viscosity Change
Deformation

Type 2 Energyexchanging

Electric Potential Difference
Radiation

Chemical concentration
Temperature Difference
Electric Potential Difference

Hectroluminescents
Photoluminescents
Chemoluminescents
Thermoluminescents
Light-emitting Diodes

Light
Light
Light
Light
Light

Photowoltaics Radiation (Light) Electric Potential Difference

Fiber Optics Deformaion Light/Electric Potential
Difference

Phase Change Materials Temperature Phase Change

Type 2 Energyexchanging (reversible)

Piezoelectric Deformation

Pyroelectric Temperature Difference
Thermoelectric Temperature Difference
Bectrorestrictive Electric Potential Difference
Magnetorestrictive Magnetic Field

Electric Potential Difference
Electric Potential Difference
Electric Potential Difference
Deformation
Deformation

2.3.1 Type 1: Property Changing

If the response of a smart material alters the internal energy of the material by altering

either t he material 6s

mo |

ecul ar

property change of the materi@ddington & Schodek, 2005) These properties can be

either intrinsic, me ani

ng

t hat

t hey

Sstructure

resul

composition, or extrinsic, meaning that they are dependent on additional environmental

factors.

as the colour may change in relation to the angle of incident light.

An example of an extrinsic factaould be the viewing angle for liquid crystals

and

Property changing

me mo r

materials include colour changing materials such as photochromics and suspended
particle systems, viscosity changing emas such as electrorheological
magnet or heol ogical fluids, and shape
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experimental investigations. This section wil present to the reader several property

changing smart materials along with their resp@n internal mechanisms.

2.3.1.1 COLOURAND OPTICALLY CHANGING MATERIALS

For colour and optically changing materials, an external stimulus from the surrounding
environment induces a property change in the smart material which in turn alters the
mat er i aal preperties.p t Wefliving creatures with eyesperceive these optical
alterations as a colour change. Fundamentaly, the input energy produces an altered
molecular structure or orientaton on the surface of the material on which light is
incident. These changes i nnce tou refiectared f e c t
characteristics and hence its perceived colour. To adhere to the repeatabilty criterion of

a smart material, these responses must be reversible

Sever al different environment al stimuli h a
molecular structure. Some examples include electromagnetic energy, thermal energy,
mechanical energy, chemical energy, and electrical energy. The opticaly changing
materials that respectively respond to each energy source are thus further categorized in
photochromics, thermochromics, mechanochromics, otienmmics, hydrochromics, and
electrochromics; Iso classified as opticaly changingiaterials are liquid crystals and

suspended particles.

2.3.1.1.1 Photochromic Materials

Photochromism isdefined as a revesible transformation in a chemical species between

two forms having differentabsorption spectra by photoirradiation (Tsivgoulis, 1995)

Most commercial photochromic materials tend to focus on reacting to photoirradiation
derved directly from sunlight. Thesenaterials are therefore engineered to respond to
electromagnetic energy in the ultraviolet (UV) region as UAdiation is traditionaly

absent from artificial lighthg but present in sunlight. After absorbing UV
electtormgnetic energy, the material ds mol ecul a

wavelength to change in the visible spectrum. Most photochromic materials exhibit
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positive photochromism, when its stable form is colourless of slightly yellow and the
transformed state is colourd@ee Figure 2-1 for an example) Negative photochromism

i s |l ess c¢common, when a material 6s colour i

Figure 2-1: Visionaire in collaboration with Calvin Klein produced a limited
edition solar issue using Photochromic Plastisol Ink. The photo turns from blac
and white to a full spectrum of colour when expeed to sunlight or UV radiation.
Photo Extracted from (Barberich, 2009)

Photochromic materials can be derived from inorganic and organic compounds.
Inorganic compounds include siver halides.g( siver bromide (AgBr), ster chloride

(AgCl, & siver iodide (Agl) whie organic compounds include napthopyranes,
spiopyranes, and bacteriorhodopsm: protein isolated from halobaterium salinarum that
reacts to the influence of light by undergoing a reversible colour chamge violet to

yelow (Ritter, 2007) These compounds can be placed into paints, dyes, and plastics
among other thinggand can produce a variety of colaursThese materials can also be
used for data storage and if they respond rapidly, they could be useful for random access
memory components of an optical computer. Results ffbed Burkey suggest a

potential writing speed of TMHz (Burkey, 2004)

The most well known use of photochromic materngldheir use in reactive eyewear (See
Figure 2-3). Photochromic lenses wil darken upon expesto suniight, thus acting as
sungl asses when needed. Thereds no need
eyeglasses and sungl asses and oneods presc

Photochromic lenses generaly use either naphthopydye or siver halide crystals for
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the photochromic reaction. In the case of naphthopydye (as shown inFigure 2-2),

when exposed to UV radiation, a weak chairimond breaks and the molecule rearranges
into a form that absorbs light at longer wavelendtsckson, 2009) For lenses with
embedded siver halde crystals, electrons from the glass combine with the colourless
siver cabns upon the presence of UVA rays (wavelength of-820 nm) to form
elemental siver (Erickson, 2009) As elemental siver is visible, the lenses appear

darker.  Wien sunlght is absent, photochmo lenses wil return totheir clear,
transparent state.

PHOTOCHROMIC REACTION
When a naphthopyran dye is exposed to UV light, a weak
bond (red) breaks and the molecule rearranges to a species
that absorbs light at longer wavelengths,

A
e,
[ S j
e
o,

Absorbs UV light Absorbs UV and visible ligh

Figure 2-2: Some plastic photochromic lenses u Figure 2-3: Photochromic lenses darken whe

naphthopyran dye as its photochromic materia they are exposed to sulight. Photo extractec
When exposed to UV light a weak bor fom (Erickson, 2009)

(highlighted in red) breaks and the mdecule
rearranges into a form that absorbs light at longe
wawelengths. Photo extracted from (Erickson,
2009)

2.3.1.1.2 Thermochromic Materials

Thermochromics absorb heat, which leads to a thermally induced chemical reaction or
phase transformation. Thermochromics have properties that undmrgsible changes
upon changes in the surrounding temperature. The new molecular structure (or phase
structure) resuliing from the temperature change has a different spectral reflectivity than
the original structure; as a resul, the electromagnetiati@direflected from the material

changes, which we perceive as a colour change.
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Thermochromic colours are derived fundamentallymfrdquid crystals and leucodyes,
both of which are organic compounds. Thermochromic pigments or materials are formed
usng an organic dye, naacid activator, and a low me§ sold such asan ester or
aloohol that acts as a solvent whelguefed (Pariyasamy & Khanna, 2010)
Thermochromicpaints and dyesare widely used to provide a colour noba indicator of

the temperature level of a product. Thermochromic ink designed and manufactured by
Chromatic Technologies, Inds used oncold certiied cans and bottles by Cdoisight

as shown inFigure 2-4; when the beer inside is at its optimum drinking temperature (4°C
or lower), the white mountains turn bly€oors Light, 2008) This transformation is
performed using leuco dyes as the organic compourelico dyes are also used on the
Duracell battery tester. A thermochromic ink layer derived from leuco dyes is placed on
top of a conductve ink layer that has a small resistatwe electric current
(HowsStufiworks, Inc., 2000) When conducting electric currentesistive heat is
generated through the conductive i@nd transfers to the leuco dye through thermal
conduction. The heat activates the ¢&eulye to turn clear, showcasing to the viewer the
colour ofthe conductive ink. Leuco dyes are less expensive than liquid crystalsarbut
only be usedfor one colour transformation: coloured when below the transformation
temperature and clear when abovee transformation temperaturéColor Change
Corporation, 2002) Leuco dyes can therefore only be used to indicate if the temperature
is above or below the transformation temperatupett the specific transformation
temperattes can be engineeredCTl can provide custom activation temperatures as low
as-8°C and as high as 69°(Chromatic Technologies, Inc. (CTI), 2009) Exposure to
utraviolet wavelengths (like sunlight) may cause the matéviadegrade and lose its
colourchanging capabiltiesthus limiting their use in architecturg Addington &
Schodek, 2005) Although widely used in applications, the mechanism underlying a
lkuco dyeds t her mokheluly anersood(Tang, SMackaeeh, & tWhite,
2010)
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Figure 2-4: The infamous cold activated can by Coor8 Light, uses thermochromic inks to let the
drinker know when the beer is at its optimum drinking temperature. When the mountains turn blue
t he beer i s deemed, Acerti f(Chlrahaticc ethdolbgies, IncP G1d),
2009)

Liquid crystals are more expensive than leucodyes, but are highly sensitve to
temperatre fluctuation. Known as calamitic liquid gstals, liquid crystal molecule
aggregatesare typicaly rod shaped with flexible ends to allow easdiow (University

of Cambridge, 2007) An Austrian botanist named Friedrich Reinitzer is often credited
with discovering the liquid crystal phase. In 1888, Reiniizer observed that cholesteryl
benzoate had two distinct melting points, one point where the compound transttioned
between a sold saple and a hazy liquid, and another point where the hazy liquid
transitioned into a clear, transparent liq@i?Vhat are Liquid Crystals, 2003)

Thermochromic liquid crystals have been employed as a flow visualization tooldor

four decadeqSmith, Sabatino, & Praisner, 2001 )Liquid crystals(LCs) have the abilty

to reflect a wavelength of I|ight that S
wavelength (or hue) of the reflected lightiries monotonically with temperature within a
specific temperature bandwidth. This monotonic relationship between colour and
temperature has alowed researchers to quantitively map surface andieldow
temperature distributions with high spatial resoh and more recently, high accuracy
(Smith, Sabatino, & Praisner, 2001)Liquid crystals are intially translucerielow their
temperature range as they reflechtligvith wavelengths longer than those in the visible

spectum. When heated to the lowerobndary of its temperature bandwidth liquid
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crystal wil reflect light closer to the lower energy end of the visible spectremrdd).

As temperature increases, the liquid crystel reflect shorter wavelergt passg
through orange, yelow, green, abdle and finally violetat the higher boundary of the
temperature bandwidth Once past the upper boundary of its temperature range, a liquid
crystal wil once again turn translucemtdicating that it refiects wavehgths shorter than
those in the visible spectrum. A black substrateis normaly applied beneatliquid
crystals to absorb and prevent reflection of unmodified light passing thtbagliquid
crystal layer; making the liquid crystalsappear black when tuide of their activation
boundaries(Smith, Sabatino, & Praisner, 2001)

The temperature infuenced coloahangesof liquid crystalsare a result oichanges in

their spacing andorientaton A liquid crystal exhibits itscrystalic (or sold) phase
below the lower boundary temperature, its anisotropic nematic phase (or liquid crystal
phase) in between boundary temperatwbere they refiect light in the visible spectrum
and isotropic liquid phase above its higher boupd@mperature While transitioning

from its crystal to liquid phase through a temperature chaage,r y s madetu s
aggregateschange orientation from pointing towards a common axs ¢rystalic phase
structure) to no intrinsic orientationd. liquid phase structure) thus affecting theriqudic
spacing between aggregat@&hat are Liquid Crystals, 2003) The molecular alignment
respective to each phase is shownFigure 2-5. The intermediate phase, the liquid
crystal phasejs present during the transiton from sold to liquid and vice versa. The
liquid crystal phase is not as ordered as dtystalsold phase, but nonetless hassome
degree of alignment that distinguishes itselfimfriquid phase Molecules in the liquid
crystal phase tend to retain their orientation akin to a crystal, but alow themselves to
switch positions with other molecules akin to a liq@id/son, 2011) The liquid crystal
phasethus exhibis characteristics of crystals and liquidsence the term liquid crystals.

White light passing through these liquid crystals in tusats defracted and the
wavelength with the greatest constructive interference is reflected bdadkough the
control of temperature, one can control the liquid crystals orientation and periodic

spacing to influence the wavelength of the reflected ligitor example, atemperature
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closer to the upper boundary wil reduce the space between molecules and therefore
reflect a shorter wavelength. a wavelength closer to theiolet side of the colour

spectrum.

TR T AY
OO0 040 I\,
e Ny NN

Solid Liquid Crystal Liquid

Figure 2-5: The molecular alignment of a crystal, liquid crystal, and liquid. The solid (o
crystal) phase has molecules with an orientation pointing towards a common axis,
liquid phase has molecules with no orientational order, and the liquid crystaimolecules
exhibits an orientation that has characteristics from both the solid and liquid phase
Image extracted from (What are Liquid Crystals, 2003)

Another type of liquid crystal phase is the chiral nematic liqugstal phase. The term,
chiral nematic is oftenmistakenly interchangeabl with the term, cholesteriqanother

type of liquid crystal phase) despite that both phases have distinct chemical (chiral
nematic phases are nsterol based) and physical projgest (Smih, Sabatino, &
Praisner, 2001) The chiral nematic phase is typicaly composed of nematic molecules
with a chiral center that produces intermolecular forces to favour an alignment at an angle
with respect to each sudrguent molecule. Theod-shapedmolecules in each layerare
twisted with respect to the molecules above and befowuccession. The molecular
orientationsin turn follow a helical patta that is characterized by pitch. Pitshdefined

the distance leeen layers thaexhibit the same orientatiome. the distance where the
molecules collectively rotate 360 degrees in successieigure 2-6 illustrates a group of
chiral nematic liquid crystals along a length of ¥ pitcfihe pitch of the chiral nematic
phase is quite important as it influences the colour of reflective wavelengths. Essentially,
the pitch acts simiar to a fiter, allowing lprwavelengths equal to pitch length to travel

through the Iliquid crystals.  Addiionally, the pitch length can be altered through
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temperature. An increase temperaturencreases the angle between successive layers of
molecules, therefore decreasing thieh. Likewise, a decrease in temperature causes the
angle between successive layers to decrease, therefore increasing theApitaicrease

in temperature wil therefore shorten theavelength of light reflected from the liquid
crystal and a decrease temperature wil increase the wavelength of refiected light. This
featureallows liquid to act as colour thermometers.

1/2 pitch

Figure 2-6: Rod-shaped chiral nematic liquid crystals art
oriented in a helical patern that is characterized by pitck
Image extracted from (University of Cambridge, 2007)

Thermochromic liquid crystals are commercially avaiable ivasiety of forms, but the
micro-encapsulating chiral nematic liquid crystals have become the choice for most
research applications as the perceived colour displays the lowest sensitivity to lighting
and viewing angle variationéSmith, Sabatino, & Praisner, 2001)Manufacturedin 10

15 micron packets encased in a protective clear polymer coatgppsulated liquid
crystals are the least sensitt@ contaminants such as dust or moistai reference to

other thermochrora liquid crystaltechnologies(Smith, Sabatino, & Praisner, 2001)
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Figure 2-7: The before (left) and after (right) images of an electronic device that has been spra
with thermochromic liquid crystals. Colours closer to the \violet spectrum indicate hotter spol
while colours closer to the red spectrum indicate cooler spots. Image extracted frofAdvancec
Thermal Solutions, Inc., 2010)

Liquid crystals can be engineered to change temperature-307€ to 120°C and can be
sensitive enough to detect changes as small &6 (Cblor Change Corporation, 2002)
Because of their sensitivity to temperature fluctuatiothey are often used for heat
transfer studies and mapping temperature fields on electronic components or boards.
Shown in Figure 2-7, Advanced Thermal Solutions, dn offers a thermochromic liquid
crystal kit for these heat transfer studies alowing the experimenter to pinpoint locations
of hotspots on a device witemperature ranges from 12°C to 120°C, each one with a
particular bandwidth from 1°C to 20°@dvanced Thermal Solutions, Inc., 2010)

2.3.1.1.3 Mechanochromic Materials

Mechanochromic materials have altered optical properties when excited by the effects of
compression, tension, or friction. Essentialy, the material wil undergolar change

when subjected to stresses and deformations with external forces.

One of the few compounds to exhibit reversible mechanochromism is difluoroboron
avobenzone. When let crystalize, difluoroavobenzone packs according to three different
morphologies: prisalike crystals, neediéke crystals, and dendritic crystals which
respectively fluoresce a green, cyan, and blue glow. Professor Cassandra Fraser at the
University of Virginia reports that a thermaly annealed fim of the dendritric- flue

emitting crystal glows yellow when slghtly touched with a cotton swabe Light
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Touch of a Cottom Swab, 2010) The yelow emission which is lkely due to an
amorphous solid form, revertsack to greerwith time (a matter of a few minutes at room
temperature, faster if heated).

The gold(l) compound [(C6F54( €1,4-Disocyanobenzene)] has also shown
reversible mechanochromism. After gently pressing the compound in its powderaform,
team from Hokkaido University discovered that the subtle changes in the molecular
arrangement caused a change in luminesgeaperties (NPG Asia Materials, 2008)

Under UV light, the compound changd®m a greyyellowish appearance to yello{®ee

Figure 2-8. The change is fuly reversible through the addition of a solvddespite

these findings, mechanochromic materials have yet to make their mark commercialy.
This is most likely from a vaaty of factors that include cost, avaiabiity, demand, and
use. From the information gathered, it appears that most mechanochromism occurs under

luminescence, a property that has limited demand commercially.

Figure 2-8: Photograph showing the gold(l) compound material under UV light
illumination. The part of the powder that was crushed shows yellow luminescent
contrasting with the blue luminescence from the original compound. Image
extracted from (NPG Asia Materials, 2008)

2.3.1.1.4 Chemochromic Materials

Chemochromic materials react @ change in their surroundinghemical environment.

Akin to the production of heat in an exothermic reaction or the onset oflaw; a
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change in colour is a sensual clue to a chemist that a chemical reaction has taken place.
For example, if one places a copper penny in a solution of nitric acid, the induced redox
reaction wil cause the penny to turn greefule. In acidbase titration experiments,
acid-base indicator dyeare used to visualy let the chemist know when a pH level has
been reached. Phenolphthalein is used to indicate when a pH of seven has been reached
by transitoning the liquid from pink to clear or vice s@&r One of the most common
ways to test a solutions pH paper is through litmus paper; a strong acid makes a red stain
while a strong base makes a blue sta@olour is so prevalent in chemistry, that chemists
measure the intensity and hue of colour tdedsine the extent that a chemical reaction

has taken place.The art of spectrometrgllows chemists to measure colour in intensity

and wavelength to determinaot only the concentration of chemical solutions, but also

the molecular makeup of thehemicalcompound itself Spectrometry is also performed
outside of the visible spectrufor aqueous solutions that do not absorb wavelengths in

the visible spectrum.

As colour change plays a major role in chemical reactions, the author beleves the term
chemochlomism is unft for use. Almost all compounds in one form or another can
change colour through a chemical manipulation. As already mentioned, elemental copper
turns greenisiblue once oxidized, but copper dertainly not considered smart as many
metals degade when in an acidic solutiooften with colour changes.As almost every
material in some regard, can be opticaly altered through the use of a particular chemical

reaction, the author believes that this term is not fit to be used.

2.3.1.1.5 Hydrochromic Materials

Hydrochromic materials are materials that undergo optical property alterations in reaction
to the presence of waterCurrently, all hydrochromic materials such as inks, fabrics, or
paints transform from white to transparent when wetted witterwabnd likewise changes
back to white when dried. Matsui International Company, Inc. has produced a special
binder known as Hydr@hromic White, a special binder that can be screen printed over a

fabric design(Matsui International Company, Inc., 2008)When screen printed over a

27



coloured design, the design wil appear white when dry, but after the medium is wetted,
the binder wil become transparent to showcase the design hidden underneath. After
drying, tle bnder wil return to its opaque, white state and once again hide the coloured

design. The product is commonly used in reactive diapers and umbrelad-iffBee
2-9).

Figure 2-9: SquidLondon's Squidarella Umbrella. Image extracted from(SquidLondon, 2010)

2.3.1.1.6 Electrochromic Materials

In the broadest sense, electrochromism is defined as a reversible colour change caused by
an application of electric current or potentiaElectrochromism was first noted in the
1930s when colouration was noted in bulk tungsten dxd®s). In 1953, Kras studied
electrochromism othin flms of tungsten trioxide when he discovered that asWeapour

layer deposited on a semitransparent metal layer (Cr, Ag) was intensively blue when
cathodically polarized in 0.1N 430, (Aegerter, Avelaneda, Pawicka, & Atik, 1997)

In 1969 and 1973, S.K. Deb published his research work on thin films of molybdenum
and tungsten trioxide, which established the principles of modern electrochromism
(Ritter, 2007) Seveal inorganic and organic materials have been shown to exhibit
electrochromism, most of which are transition metal oxideQrganic electrochromic
materials tend to suffer from problems with secondary reactions during switching, but

more stable organic dgsns have been developédampert, 2004) An electrochromic
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material 6s colouration and polrizagoc Biuwsugly under
descried byEquation 2-1:

MeO, + xI" +xe Z MeO, 2-1

where Me is a metal atom, Is a singly charged

g $E ion usualy H or Li*, € is an electron and n
=

g ;’ g 8 depends on the particular type of oxifegerter,

s § 51 , ,
3|§|§|§Eg| i Avellaneda, Pawlicka, & Atik, 1997) Among all

interior T iﬂ;_ L exterior ) ) )

@ | of the materials studied so far, the one material
\'EI'_;]J: I

that remains the most researched has beeny WO
(Deb, Opportunites and challenges in science and
technology of WO3 for, 2008)

Electrochromic devices are the most popular

technology for large area switching devices
A

fayertidinessesnotalionn tscakl (Lampert, 2004) Technological developments in
- electrochromic materials have led to a number of

advancements, most notably the first atxdd
electrochromic Asmart wi nd
potential to make a significant impact in energy

conservation. An electrochromic window darkens

and lightens depending on the induced electric

potential. A small voltage(1-5V) causes the

Bl . E electrochromic raterial to darken whie reversing

Figure 2-10: An illustration showing how the wvoltage causes the material to lighten.
Sage Glass technology works to lirr .

both light and heat transmission. Wher Fundamentaly, —the colour change in an
an electric potential is applied the glas
turns from clear (abowe) to a dark blue
(below). Image extracted from (Sage
Hectrochromics, Inc., 2010)

electrochromic material is induced from a
chemical molecular change caused by redox
reactions. Several layers are needed for
electrochrong reactions to take place. An electrochromic window for example needs

seven layers: two glass layers, two conductive layers, an ion storage layer, an ion
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conductor/electrolyte layer, and the electrochromic lay@tigure 2-10 and Figure 2-11

llustrate how these layers are organized in an electrochromic window.

Essentially, hydrogen or lithium ions(cations) along with their associated electroase
stuated in the ion storage layer when inactiv&Vhen the proper electric potential is
applied across ¢ conductive layers, both the cations and associated elearens
transpoted to the electrochromiayer. The electric potential propels the cations to the
electrochromic layer via the ion conductor layer whie the electrons are propeled to the
electrochromic layer through the conducting oxide layers and external circlite T
positive portion of the electrical potential must be connected to the conductive layer
adacent o the ion storage layer for these transptotoccur. Once amalgamated in the
electrochromic layer, the cations and electrons react with the electrazHiomihrough

the redox reaction previously shovim Equation2-1. The compound to the right of the

equation exhibits a darkened state whie the pmnmds on the left of the equation are

r-) ®| I® _v-

relatively colourless.

o
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Figure 2-11: An illustration demonstrating showing the direction of electron transport upon an
application of an electric field. Image extracted from (SAGE Hectrochromics, Inc., 2009)

In glass assembliegsuch as the ones shownFhigure 2-12), the electrochromic layer is
often WO3. Using lithium (Li+) and WGQ; to represent the cations and electrochromic

material, equation 2-1 canbe rewritten as follows:

WO3 (colourless) + xUli +x€ Z  yWQ3 (blue) 2-2
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Before the electric potential is applied, thiectrochromic layer (Wg) is colourless, but

changes to a dark blue hwnce the electric potential is applied as a result a the
associated redox reactiorWWhen ionicaly bonded with lithium ions, WiQexhibits a dark

blue hue. The reaction thus changet h e electrochromic mat er
properties. It is generaly believed that the colouration occurs as a result of the injection

and trapping of a large density of electrons in the electrochromic oxide(Bgbr 1994)

Al
]
=
]

Figure 2-12: Sage Glass in the transparent and tinted state
Chabot's Student Senice Center. Image extracted fronfSage
Glass, 2010)

Electrochromics have several major advantages includagsmall switching voltage {1

5V), specular reflection, a gray scale (the darkened hue can vary with respect to applied
voltage), and the fact that power is only needed during switdhiagpert, 2004)
According to Sage Electrochromics, Ind.,takes less electricty to power and control
1,500 square feet of their electrochromic smart windows per day than it does to power a
60-Watt light bulb (Sage Electrochromics, Inc., 2010) Typical electrochromic devices

have upper visible transmission off E 70-50 and fuly coloured transmission of, F
25-10% (Lampert, 2004) Levelsof transmittanceas low as 1% are possibl&Switchirg

time, however, is not instantaneousThe dectrochromic smart windows offered from
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Sage Electrochromics, Inctake 35 minutes to change tintSage Electrochromics, Inc.,
2010) SaintGobain uses electrochromic glass #utomotive sunroof glazing where the
switching time between the darkest and lightest shades is about 30 s¢Samds
Gobain, 201Q)

2.3.1.1.7 Liquid Crystals and Suspended Particles

Like electrochromic materials, liquid crystals and suspended particles respond to an
electric potential resulting in a change in their optical properties. However, the
mechanism underlying the optical property changes does not insotlemical redox

reaction In both liquid crystals and suspended particles, the electric potential induces
shifts in respective particle orientations

absorptance properties.

As mentioned previously in Sectidh3.1.1.2 liquid crystals respond ttemperature with

a change in their orientation. The change in orientaton can be exploited to alter the
reflective properties of liquid crystals in the fornh @ colour change. More commonly,

however, liquid crystals are used to fiter light throuble application of arelectric or
magnetic field. These fi elbdtsn acwawimghch | i qui

their light transmissive properties aered macrosipically.

Calamitic (rodshaped) crystal molecules typically possess an electric dipole where one

end of the dipole has a net positive charge whie the other end has a net negative charge
(Electric and Magnetic Field Effects, 2004) Applying a sufficient electric fieldto a

liquid crystal, the dipole molecules wil reorient themselves towardsetbetric fieldd s

net directon The electric field wildl exert a torg
wil rotate in the direction of the electric field as a resufor example, ake the situation

where liquid crystal molecds are aligned parallel to a surface and an incrgaslactric

field is appled perpendicular to the surface. Initially, the electric field wil not cause any
change in algnment, but once the threshold magnitude is reactednalecule wil

begin to rotate in the direction of the electric fieldAfter reaching a sufficient electric

field, the lquid crystal molecular aggregate wil be in complete alignment with the
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induced electric field. The induced chanc
through inducing an electric field is known as eedélericksz transttiomnd is ilustrated
in Figure 2-13. (Electric and Magnetic Field Effects, 2004)

Figure 2-13: An electric field (the direction of which is shown by the arrows
causes calamitic crystal molecules to rotate in the direction of the appli
field. Image extracted from (Hectric and Magnetic Field Effects, 2004)

Feedericksztransitions are most commonly exploited in liquid crystal displays (LCDs)

an illustration of an L CDHiQue 2-14i ILCDsrconsisty me c h
of a nematic liquid crystal layer sandwiched by lageof polymer substrate, followed by
transparent electrodes, sheets of glass, and polarizing fithe polymer substrate layer
undergoes a rubbing process abhieaves a series of parallel microscopic grooves in the

layer. The polymer substrate layers are 9@reks out of phase of each otheihe
grooves wi || cause t he first |l ayer of mo
(Tyson, 2011) These grooves in turn, help algn the nematic liquid crystals in a 90
degree twist into the bulk of the crystal, quite simiar to the chiral nematic [hassted

Nematic (TN) Displays, 2004)

Figure 2-14: An illustration showcasing how an LCD screen works. The whi
light is first polarized via a polarizing film, is twisted by the liquid crystal
layer, and goes through the final polarizing film. (Desimpel, 2006)
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