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ABSTRACT 
Dykelands in Atlantic Canada represent some of the most agriculturally productive yet 

environmentally vulnerable lands due to rising sea levels and coastal inundation risks. This 

thesis assesses equipment and technologies to enhance the development and sustainable 

management of these lands for agricultural production. The first study focuses on 

characterizing and estimating the cultivated hectares on Nova Scotia's dykelands using 

Canada's Annual Crop Inventory from 2015 to 2019. The analysis revealed that 56% of the 

total surface on the dykelands was dedicated to field crops and forage, with forage 

representing approximately 80% of the total cropland area. This quantification provides a 

foundational understanding of current land utilization, which is useful for developing more 

suitable land-use policies on the dykelands. The second study developed a Mask R-CNN 

deep learning model using LiDAR-derived elevation data to detect land-formed fields, 

which is a surface drainage technique commonly used on these lands and highly indicative 

of agricultural utilization. The model demonstrated strong performance with a mean 

Average Precision (mAP) of 0.89 and revealed that 53% of dykelands in Nova Scotia are 

used for agricultural purposes, with approximately 75% (6,924 hectares) of these fields 

being land-formed. This advancement offers novel insights into surface drainage mapping 

on the dykelands. Building on these findings, the third study integrated AI-generated field 

boundaries, data from Canada's Annual Crop Inventory, and a budget calculator within a 

GIS environment to assess net profits per hectare on Nova Scotiaôs dyke system. Results 

showed considerable variability in field sizes and profitability across different dyke 

systems. Notably, the Grand Pré, Wellington, and Annapolis River systems achieved higher 

average net profits of $822,152, $780,587, and $479,151, respectively. The non-linear 

relationship between dyke system size and profitability suggests that factors beyond size 

influence economic returns, emphasizing the need for a comprehensive approach to 

optimizing dykeland profitability and management. Finally, the fourth study utilized aerial 

imagery collected from drones over three years to create high-resolution elevation models. 

These models were used to evaluate crop performance and simulate surface drainage under 

Hortonian flow conditions on agricultural dykelands. Analysis of vegetation indices and 

plant height models revealed a substantial decline in productivity in areas with poorly 

maintained surface drainage. Mean plant height in flood-prone zones decreased from 

1.43 m in 2022 to 0.26 m in 2023, and flood risk areas expanded from 37% to 61% of the 

total surface of the fields. Conversely, fields maintained annually showed improvements in 

plant heights and NDVI values, highlighting the importance of proactive management in 

mitigating flood risks and enhancing crop productivity. These findings could influence the 

scope of provincial initiatives, such as the On-Farm Water Management program, which 

supports producers in adapting to the water-related impacts of climate change. These 

studies demonstrate that integrating advanced technologies, such as deep learning models, 

GIS-based economic analysis, and drone-based remote sensing, can significantly enhance 

the sustainable management of dykelands in Atlantic Canada. The findings provide 

valuable insights for stakeholders aiming to optimize agricultural productivity while 

making informed decisions in the current context of rising sea levels. 
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CHAPTER 1 : INTRODUCTION 
Throughout history, communities have demonstrated remarkable ingenuity in adapting to 

extreme environmental conditions and transforming challenging landscapes into productive 

resources. In Nova Scotia, Canada, early settlers recognized the immense potential of the 

rich, fertile soils along the Bay of Fundy, an area characterized by some of the highest tides 

in the world (Lambiase, 1980; van Proosdij & Page, 2012). To harness these marshlands 

for agriculture, they developed sophisticated systems of dykes and aboiteaux to protect 

against coastal inundation and to drain excess water (Bleakney, 2004; Milligan, 1987). 

These engineered landscapes, known as dykelands, have since become some of the most 

agriculturally productive lands in Nova Scotia and New Brunswick, enabling the 

cultivation of crops and forages in areas once dominated by tidal waters. 

Dykelands have long been a cornerstone of Nova Scotia's agricultural landscape. These 

reclaimed marshlands contribute significantly to forage production, accounting for an 

estimated 24.8% of the province's total food output (Asiedu, 2013; Jones, 2011). Early 

dykeland farmers in the 1700s often chose to develop dykeland rather than upland due to 

labour efficiencies and higher productivity per hectare, compared to the more labour-

intensive process of clearing less fertile upland (Bleakney, 2004; Milligan, 1987). Over the 

last 400 years, agricultural dyking has enabled rapid growth and expansion of farming 

operations (Milligan, 1987). However, these advantages have come at the cost of coastal 

habitats, which are vital to the health, well-being, and economy of Atlantic Canada (Baird, 

1954; van Proosdij et al., 2018). The significance of dykelands to Nova Scotia's agriculture 

is further underscored by the fact that they account for approximately 10% of the province's 

active agricultural land (Devanney, 2010; Milligan, 1987).  

Despite their importance, approximately 15% of dykelands in Nova Scotia remain 

uncultivated and are utilized for non-agricultural purposes (Singh et al., 2007). This 

underutilization underscores a broader issue in these areas, which is the lack of 

comprehensive data on land use, crop allocation, and effective maintenance practices. 

Traditional assessments have proven vague, failing to quantify the full agricultural potential 

of the dykelands. The absence of detailed information hinders stakeholders, including 

farmers, policymakers, and the Nova Scotia Department of Agriculture, from making 
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informed decisions regarding the management, potential conversion, or restoration of 

underutilized dykelands (Drever et al., 2021; Philp & Cohen, 2020; Webster et al., 2012). 

1.1 Literature Review and Gap Analysis 

1.1.1 Crops and Economics 

Previous research on land-cover mapping has predominantly focused on satellite-based 

approaches or survey-based methodologies (Loveland et al., 2000). Early efforts employed 

coarse resolution sensors to characterize land cover at a particular point in time (Loveland 

et al., 1991, p. 199) or intermediate resolution imagery for single-class mapping (Skole & 

Tucker, 1993; Sleeter et al., 2013). Few studies have investigated the use of property 

borders and crop inventories for agricultural analysis, although the integration of remote 

sensing and GIS techniques has shown that it can improve agriculture sustainability. 

(Kvande et al., 2024; Mathenge et al., 2022; McCracken et al., 1999).  

In Nova Scotia, studies examining the province's dykelands were undertaken on a smaller 

scale, resulting in fragmented information on cropping potential (Baird, 1954; Milligan, 

1987; Singh et al., 2007). The lack of a thorough crop inventory means decision-makers 

lack a detailed picture of the dykelands' agricultural potential. Furthermore, there is limited 

information on the total number of hectares and type of crops being grown on these lands 

(Drever et al., 2021; Philp & Cohen, 2020; Webster et al., 2012). 

Economic analyses and reports, such as those published by Farm Credit Canada (FCC, 

2019) or Jones (2011), provide aggregate information on land value and cost of production 

but do not address the specificity of the dykelands. Land clearing costs and production 

expenses for uplands versus dykelands remain unexplored, leaving a gap in understanding 

the economic viability of these agricultural areas (Gartley et al., 1986; Milburn & Higgins, 

1992). 

1.1.2 Surface drainage on the dykelands 

The improvement of water movement in the fields by means of land forming extends the 

growing season and enhances field trafficability early in the fall (MacIntyre & Jackson, 

1975). However, plowing alters field topography over time, necessitating the costly process 

of "recrowning" dykeland fields approximately every ten years at an estimated cost of 

$300ï$500 per acre (N. Juurlink, February 24, 2021). Inadequate maintenance of ditch 

drains can lead to sediment obstruction, causing a rise in the water table and poor 
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gravitational water drainage towards field ditches, ultimately reducing crop growth 

(Kolstee et al., 1994). Although such negative impacts are noted in the literature (Bleakney, 

2004; Gartley et al., 1986; Milligan, 1987), they are not well-documented on the dykelands. 

Farmers typically rely on their experiential knowledge to identify low-lying areas with 

insufficient slopes, which makes the process subjective and potentially imprecise.  

Integrating UAV technology and remote sensing could significantly improve surface 

drainage management in these contexts, allowing for timely interventions to prevent 

waterlogging and optimize field conditions. High-resolution aerial imagery and 

multispectral data collected by drones enable precise monitoring of crop health, soil 

conditions, and drainage patterns (Krishna, 2018; Sylvester et al., 2018). Photogrammetry 

techniques applied to high-resolution RGB images captured by UAVs can generate 

accurate digital elevation models, providing detailed topographical information to identify 

micro-relief features influencing surface drainage (Chidi et al., 2021; DôOleire-Oltmanns 

et al., 2012). 

Accurate mapping and characterization of these fields remain a significant challenge due 

to their irregular field boundaries, non-linear drainage patterns, and variable surface 

topography. Recent advancements in remote sensing technology, particularly the 

availability of high-resolution airborne LiDAR data across Canada, offer promising 

opportunities for improved land-use analysis and agricultural management (Nova Scotia 

Department of Natural Resources and Renewables, 2022). Machine learning and deep 

learning algorithms have gained significant attention for their potential to process and 

analyze large-scale high-dimensional datasets (Jordan & Mitchell, 2015; Yu et al., 2017; 

Zhang et al., 2016). These techniques have been increasingly applied to agricultural tasks, 

such as crop type classification, yield prediction, and field boundary delineation (Maggiori 

et al., 2017; Mohan & Giridhar, 2022; Zhao et al., 2021).  

On this note, advanced field boundary delineation using deep learning algorithms has 

demonstrated remarkable results with an average IoU accuracy score of 0.94 (DigiFarm, 

2022a). This represents a significant milestone since the precise identification of 

boundaries within agricultural fields is a critical prerequisite for any meaningful land use 

analysis, although the full scope of their utility remains to be tested. For instance, field 

boundaries delineation algorithm can play an important role for growers since it can be 
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used to optimize the use of fertilizer and herbicides, which contributes to better efficiency 

in the field management processes. Additionally, field boundaries are crucial in developing 

GNSS guidance maps, offering valuable spatial data for precision farming practices. 

1.2 Purpose of the Study 
Given the significant agricultural importance of the dykelands and the challenges posed by 

the lack of comprehensive data, there is a critical need to enhance our understanding of 

land use, crop allocation, and maintenance practices on these lands. This study aims to fill 

these knowledge gaps by employing advanced technologies such as remote sensing and 

unmanned aerial vehicles to assess land use and drainage management on the dykelands. 

1.3 Research Objectives 
The overall objective of this thesis is to provide quantifiable data on agricultural dykelands 

to help stakeholders make informed decisions regarding the maintenance, agricultural 

conversion, or restoration of underutilized dykelands into salt marshes. The specific 

objectives of this study are to: 

1. Determine the current acreage and spatial distribution of corn (Zea mays L.), barley 

(Hordeum vulgar L.e), soybeans (Glycine max L.), wheat (Triticum aestivum L.) 

and forages on the dykelands of Nova Scotia by analyzing crop inventory and 

property boundary data. 

2. Test a Mask R-CNN model for detecting land-formed fields on agricultural 

dykelands using high resolution Digital Elevation Models derived from LiDAR 

data. 

3. Develop and apply a budgeting tool to estimate the cost of production and evaluate 

the economic viability of agricultural fields on the dykelands over a seven-year 

period. 

4. Evaluate the accuracy of drones-based remote sensing in identifying low-lying 

areas with poor surface drainage on Nova Scotia's agricultural dykelands by 

comparing remote sensing data with ground-truth measurements across different 

seasons.. 
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1.4 Significance and Impact 
Understanding and utilizing these technologies could play a pivotal role in enhancing the 

productivity and sustainability of dykeland agriculture. By providing detailed information 

on land use, crop allocation, and cost of production, stakeholders will be better equipped to 

make informed decisions regarding the management of the dykelands. This is particularly 

important in the context of environmental challenges such as climate change and rising sea 

levels, which pose significant threats to the integrity of the dyke infrastructure (van Proosdij 

et al., 2018; van Proosdij & Page, 2012). Within the next 50 years, approximately 70% of 

the 241 km of dykes in the province could be at high risk of coastal erosion and overtopping. 

As environmental challenges persist and the impacts of climate change become more 

pronounced, adopting innovative solutions like remote sensing and UAVs becomes 

increasingly essential. This approach addresses immediate agricultural concerns and 

contributes to the long-term resilience of Nova Scotia's dykelands, ensuring they remain a 

vital part of the province's agricultural output. 
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2.1 Abstract 
Dykelands are agricultural ground protected from coastal inundation by dyke infra-

structure and constitute some of the most agriculturally productive lands in Nova Scotia. 

Between 2015 and 2019, Canada's Annual Crop Inventory was used to characterize and 

estimate hectares of agricultural dykelands cultivated in Nova Scotia. The number of 

hectares of wheat, barley, corn, forages and soybeans were compiled for each year and 

compared to the previous year. This was accomplished using GIS software, satellite 

images, and geodata from the Nova Scotiaôs Land Property Database. Results revealed 

that from 2015 to 2019, an average of 56% of the dykelandsô total surface was dedicated 

to the production of field crops (wheat, barley, corn, soybeans) and forage. Results also 

highlighted the importance of forage production on the dykelands. Forage was the largest 

commodity grown, representing around 80% of the total crop land area of the agricultural 

dykelands. Corn and soybeans were the second and third crops of abundance, constituting 

12 and 4% of the total crop land area, respectively. This study represents the first attempt 

to document the number of hectares of the principal crops grown on Nova Scotia's 

dykelands using crop inventory and property boundaries. Given the predictions of rising 

sea levels and the overtopping risks that the dykelands face, this study will facilitate more 

suitable land-use policies by providing stakeholders with an accurate quantitative 

assessment of the utilization of agricultural dykelands. 
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The work presented in this chapter has been published in the ISPRS International Journal 

of Geo-Information 10(12): 801, entitled ñEstimation of Agricultural Dykelands Cultivated 

in Nova Scotia Using Land Property Boundaries and Crop Inventoryò. 

 

2.2 Introduction 
Dykelands are agricultural lands protected from coastal inundation via dyke 

infrastructure and constitute some of the most agriculturally productive lands in NS, 

Canada. Agricultural dykelands are used mainly to produce hay and pasture, corn, and 

cereal crops (Nova Scotia Department of Lands and Forestry, 2018); however, many other 

crops have historically been found to be agriculturally viable on the dykelands, such as root 

crops, soybeans, chives, sunflowers, salad greens, and cabbage (Asiedu, 2013). Other 

sources also reported that on well-drained dykelands, beans, beets, swedes, carrots, spinach, 

and celery had been successfully grown on these soils (Baird, 1954). It is estimated that 

17,401 hectares of tidal land are being protected by the NSDA, which represents 

approximately 10% of Nova Scotia's active agricultural land (Devanney & Reinhardt, 2010; 

Milligan, 1987). 

In 1954, (Baird, 1954) estimated the total area of dykelands in the Maritime 

Provinces ranged between 28,300 to 32,300 hectares and suggested that another 6000 to 

8000 hectares could be reclaimed by the construction of mud dykes. He also noted that out 

of this number, approximately 4000 to 6000 hectares had a different soil texture from the 

average dykelands soils and could be made very productive when properly drained and 

cultivated (Baird, 1954). 

In 1939, the Maritime Beef Cattle Committee funded a study on the dykelands to 

understand the challenges that the dykeland owners of the Chignecto Isthmus area 

(45.8482°N, 64.2881°W) were facing. As a results from this study, twelve elements were 

highlighted to be of vital interest to dykelands owners at the time. These recommendations 

can be summarized into two important themes: the importance of maintaining and 

improving dyke infrastructure and associated drainage systems; and improving hay 

production on grazing lands (Baird, 1954). These recommendations shaped long-term land 

management practices and are still prevalent to this day through the adoption of recent 

federal and provincial government policies (Gorman, 2019). Today, dykelands still play an 



11 

 

important role in Nova Scotia since they hold a diversity of public and private assets and 

infrastructures, such as roads, malls, suburbs, and sewage treatment plants (Sherren et al., 

2016). 

A report on agricultural dykelands published in 2013 suggested that the importance 

of dykelands in the province is attributable to the large production of forage on this land, 

estimated at 24.8% of the provinceôs overall forage production (Asiedu, 2013; Jones, 2011). 

Other reports estimated that roughly 15% of marshlands (2610 hectares) are not being 

farmed in Nova Scotia and are used for non-agricultural practices and development (Singh 

et al., 2007). To date, these estimates remain vague and do not provide a clear 

characterization of the state of agricultural situation on the dykelands.  

This is especially pertinent in the context of current and future climate change 

(Drever et al., 2021; Philp & Cohen, 2020; Webster et al., 2012). This situation was outlined 

in a study by van Proosdij and Page (van Proosdij & Page, 2012), which predicted a relative 

sea-level rise in Nova Scotia, ranging from 70 to 140 cm over the next century and will 

therefore increase the vulnerability of the dyke system to storm surges (van Proosdij & 

Page, 2012). Within the next 50 years, approximately 70% of the 241 km of dykes in the 

province could be at high risk of coastal erosion and overtopping (van Proosdij et al., 2018).  

Today, dykeland stakeholders are seeking to understand in which scenario 

underutilized dykelands should be maintained, converted to agricultural use, or restored 

into salt marshes. Knowing when and how to manage these scenarios is especially pertinent, 

considering that most of these dyke infrastructures will have to be maintained in the coming 

years due to rising sea levels. Unfortunately, very little information on what is being grown 

and how many hectares of crops are being grown are currently available for dykelands 

(Drever et al., 2021; Philp & Cohen, 2020; Webster et al., 2012). Given the predictions of 

rising sea levels, challenges regarding a proper assessment of the resources of the dykelands 

must be addressed. To develop suitable land-use policies, there must be an accurate 

quantitative assessment of the land utilization of dykelands. 

To address the challenges associated with quantifying land use in dykelands, remote 

sensing techniques may be leveraged. The rich literature related to land-cover mapping can 

be mainly categorised into satellite-based techniques and survey-based methodology. 

Satellite-based techniques of land-cover mapping involves the interpretation of remotely 



12 

 

sensed data generally derived from satellite images (Loveland et al., 2000). Early efforts of 

land cover mapping used either a coarse resolution sensor and focused on the 

characterization land cover for a single point in time (e.g., Loveland et al. (Loveland et al., 

1991)), or used moderate resolution imagery for single class mapping (Skole & Tucker, 

1993; Sleeter et al., 2013).  

2.2.1 Related Work 

One of the first coarse-resolution, global land cover databases used in global 

environmental studies included the Matthews et al. and Wilson and Henderson-Sellers 

(Matthews, 1983; Olson et al., 1985; Wilson & Henderson-Sellers, 1985) global databases 

(Loveland et al., 2000). In the early 21st century, Loveland et al. (Loveland et al., 2000) 

developed a global land cover database with 1 km spatial resolution using AVHRR data. 

This global database consisted of numerous seasonal land cover regions that could be used 

in global environmental studies.  

At present, few studies have used a combination of property boundaries and crop 

inventory for agriculture analysis. Previous research focused mainly on land-cover 

mapping or the development of automated process to delineate farm fields (Loveland et al., 

1991; North et al., 2019). Related work by McCracken et al. (McCracken et al., 1999) used 

400 property boundaries in the Brazilian Amazon to identify land-cover class patterns that 

reflect farming differences. Results from the study demonstrated that the use of remote 

sensing and GIS techniques integrated with information from property boundaries helped 

explain deforestation at a very small scale. 

Other similar work from Hanus et al. (Hanus et al., 2018) investigated the accuracy 

of cadastral parcel boundaries with GIS. Results showed that a good understanding of the 

accuracy of cadastral data could contribute to regional development. Precise measurement 

of parcel boundaries guarantees stability for farmers who collect subsidies for agricultural 

and forestry parcels from EU funds. 

In recent years, the improvement capability of satellite sensors (e.g., Landsat 8, 

World-view-3, and PlanetScope) allowed a more precise crop inventory and at higher 

spatial resolutions. In Meyer et al. (Meyer et al., 2020), they investigated the possibility of 

accurately splitting large areas of land into discrete fields using high-resolution satellite 

images as well as deep learning algorithms. Similarly, North et al. (North et al., 2019) 
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developed an automated method of deriving closed polygons around fields from time-series 

satellite imagery. This technique was proven to be successful in mapping large agricultural 

study sites (4000 km2) and for segmenting parcels of land containing different crops and 

pasture (North et al., 2019). 

The use of statistical surveys and census approaches to quantify land change 

contributes valuable information to our understanding of crop change but does not offer a 

comprehensive assessment at smaller scales. Data is often difficult to acquire and 

inconsistent due to the spatial and temporal complexity that are not adequately captured in 

national agricultural census (Sleeter et al., 2013). In Canada, crop insurance data have 

historically been the most precise and comprehensive sources of information for crop type 

information (Fisette et al., 2014). Unfortunately, this data, which is provided by crop 

insurance agencies, can only be accessed in Alberta, Saskatchewan, and Quebec (Fisette et 

al., 2014). Additionally, Statistics Canada stopped collecting survey-based information on 

land use in 2011, and started to use annual crop inventories derived from satellite imagery 

(Fisette et al., 2014; Government of Canada., 2011). 

Previous works that estimated dykelands in the province were conducted at a 

smaller scale, which often resulted in fragmented information on cropping potential (Baird, 

1954; Milligan, 1987; Singh et al., 2007). The use of satellite images and GIS allows 

decision-makers to have a more precise understanding of the agricultural potential on the 

dykelands. Due to the lack of a comprehensive crop inventory of the dykelands, the 

objective of this study is to determine the current acreage and spatial distribution of corn 

(Zea mays L.), barley (Hordeum vulgar L.e), soybeans (Glycine max L.), wheat (Triticum 

aestivum L.) and forages on the dykelands of Nova Scotia by analyzing crop inventory and 

property boundary data from 2015 to 2019. The goal of this paper is to document the 

number of hectares of the principal crops grown on Nova Scotia's dykelands using crop 

inventory and property boundaries data. Results of this paper are divided into three parts. 

First, results from the Annual Crop Inventory analysis for the dykelands were compiled 

from 2015 to 2019. Second, a five-year average analysis of crops produced on the 

dykelands was accomplished to define the most abundant crop. Third, the analysis was 

broken down by county to understand better the most productive region for field crops and 

forage. 
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2. Materials and Methods 

2.2.2 Study Area 

Although predominantly agricultural lands, dykelands have also been used 

historically for several other applications. The dykelands system in Nova Scotia protects 

over 600 residential and commercial buildings, 25 km of railway, 80 km of paved roads 

and trails, and more than 120 km of power lines from storm surges and floods (Nova Scotia 

Department of Lands and Forestry, 2018; Sherren et al., 2019). The major dyke systems in 

Nova Scotia are located in four main regions (Figure 2-1): Cumberland, Colchester, Hants 

and Kings, and Annapolis and Digby (van Proosdij et al., 2018). These regions are Nova 

Scotiaôs agricultural heartland, surpassing all other counties in terms of the number of farms 

and the total crop area (Devanney & Reinhardt, 2010).  

 

Figure 2-1: Geographical distribution of analysis regions based on the provincial distribution of dykelands (adapted 
from van Proosdij et al. (van Proosdij et al., 2018)). 

2.2.3 Datasets 

2.2.3.1 Annual Crop Inventory 

The AAFC Annual Crop Inventory from 2015 to 2019 was used as a primary source 

of data. The annual inventory is published by the Earth Observation Team of the STB at 

AAFC. The digital maps were created using optical (Landsat-8, Sentinel-2) and radar 

(RADARSAT-2) based satellite images using a decision tree classifier (Fisette et al., 2014). 
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The Annual Crop Inventory maps are useful in understanding the state and trends of 

agricultural production at a high spatial resolution (30 m) (Figure 2-2).  

 

Figure 2-2: Agriculture and Agri-Food Canada Crop Inventory Map of Nova Scotia in 2019. 

To validate the satellite data analysis, AAFC acquired ground-truth information as 

point observations as well as data from other provincial sources. For each year, tens of 

thousands of points that identified crops across Canada were combined and used as training 

or reference sites (Fisette et al., 2014). However, the classification accuracy is not uniform 

and tends to vary annually and provincially. The differences in accuracy were related to the 

differences in the satellite data availability and the distribution of training site for each 

province (Fisette et al., 2014). Table 2-1 shows the overall accuracies of the Annual Crop 

Inventory in Nova Scotia used in this analysis. 

Table 2-1: Overall accuracies of the Annual Crop Inventory in Nova Scotia (adapted from Agriculture and Agri-Food 
Canada). 

Year  Overall accuracies  

2015 85.2% 

2016 90.6% 

2017 89.5% 

2018 92.5% 

2019 89.1% 
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2.2.3.2 Property Boundaries 

The Nova Scotia property boundaries from the NSPRD were used to segment the 

data from the crop inventories and attribute the crop types to the property polygons. To 

date, this dataset provides the most reliable GIS information on each property of the 

province. Information such as land use, contained in the NSPRD, was useful in filtering the 

data and eliminate outliers. The property boundaries used for this analysis were updated in 

April 2019. 

2.2.3.3 Marsh Boundaries 

The boundaries of the dykelands were provided by the NSDA in a shapefile format. 

This dataset was digitized from the 1950ôs and 1960ôs Agricultural Marsh Plans of Works 

and compiled in the 1990ôs. The boundaries refer to the legislated agricultural marshland 

defined under the Agricultural Marshland Conservation Act. This dataset was used to 

identify which fields were parts of the dyke system and which were not. 

2.2.3.4 Satellites Images 

The PlanetScope satellite (Planet Labs Inc., San Francisco, CA, USA) takes images 

of Earth's land surface daily at a 3 m spatial resolution (Planet Labs., 2021). These images 

were used to resolve ambiguity in the land usage associated with the property boundaries. 

More specifically, it was useful to remove roads, forested areas, and bodies of water 

features from the datasets. A series of satellite images were selected between June and 

August from 2016 to 2019 (Table 2-2). 

Table 2-2: List of Planet satellite images used in the study for the region of Nova Scotia. 

Source Dates 
Day of 
Year 

Time 
Spatial Resolution 

(m) 

4-band PlanetScope Scene 01-Jul-16 183 12:12 3.2 
4-band PlanetScope Scene 01-Jul-16 183 12:15 3.2 
4-band PlanetScope Scene 23-Aug-16 229 12:40 2.5 
4-band PlanetScope Scene 26-Jun-17 177 17:28 3.1 

RapidEye Ortho Tile 06-Jul-17 187 15:33 6.5 
4-band PlanetScope Scene 29-Aug-17 241 15:09 3.7 
4-band PlanetScope Scene 30-Jun-18 131 14:41 3.8 
4-band PlanetScope Scene 07-Aug-18 219 14:40 3.9 
4-band PlanetScope Scene 28-Aug-18 240 14:12 3.7 
4-band PlanetScope Scene 08-Jul-19 189 14:41 3.9 
4-band PlanetScope Scene 16-Jul-19 197 14:58 4.0 
4-band PlanetScope Scene 28-Jul-19 209 14:46 3.9 
4-band PlanetScope Scene 15-Aug-19 227 13:26 3.5 
4-band PlanetScope Scene 28-Aug-19 240 14:50 3.9 
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2.2.4 Data Processing 

To assign a land use to the property boundaries, the Annual Crop Inventory raster 

layers were clipped to the edges of the marsh bodies. Here, the zonal statistics tool within 

ArcGIS Pro (ESRI, Redlands, CA, USA) was used to identify the dominant crop type from 

the crop inventory within each property boundary polygon (Figure 2-3). This approach 

allowed each property unit within the NSPRD to be assigned a crop type within the marsh 

bodies, thus enabling the possibility of estimating the number of hectares of crops produced 

each year. All of the fields that were not assigned a class were removed from the database. 

Additionally, all the water, road, and rail polygon segments were selected and removed 

from the dataset. The filtering process provided a stronger characterization of the crops 

grown on the dykelands by eliminating non-agricultural fields that could compromise the 

rest of the analysis. 

 

Figure 2-3: Examples of the Annual Crop Inventory in Grand-Pré, Nova Scotia (left) and assigned to property 
boundary from the NSPRD (right). 

2.2.5 Extraction of Crops and Data Filtering 

The property boundaries containing the crop inventory information generated in the 

previous steps were sequentially selected and extracted to a new dataset. Here, crops were 

manually filtered using information from the assessment value classification code taken 

from the NSPRD (Table 2-3). All the fields with a class other than resource taxable, 

resource farm, federal farm, provincial farm and municipal farm were removed from the 

analysis. The filtering process was especially helpful in removing the forage classes, which 
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were not used for agriculture purposes but listed in the Annual Crop Inventory. This 

situation was prevalent for the residential houses with large open grass fields that are not 

used for agriculture. 

Table 2-3: Assessment Value Classification Code taken from the Nova Scotia Property Records Database. Adapted 
from (Province of Nova Scotia., 2019). 

Code Feature explanation 

1 Residential taxable 

2 Commercial taxable 

3 Resource taxable  

21 Residential exempt 

22 Commercial exempt 
23 Resource exempt 

24 Nonprofit land 
25 Resource farm 

26 Commercial forest  

27 Resource forest 
50 Federal farm  

51 Provincial farm  

52 Municipal farm  

54 Federal forest  
55 Provincial forest  

56 Municipal forest  

The area of each polygon was calculated using the calculate geometry tool within 

ArcGIS pro. The resulting values were used to calculate the hectares of crops grown within 

each polygon, assuming that the entire polygon was cultivated. To eliminate possible errors 

caused by this assumption, field boundaries were visually assessed from time-series 

satellite imagery from PlanetScope and outliers were subsequently removed from the 

analysis. Similar techniques of visual assessment are described in North et al. (North et al., 

2019) and Rahman et al. (Rahman et al., 2019). Satellite images were also used to reduce 

ambiguity during the process of identifying the agricultural fields. Agricultural dykelands 

can be identified from high-resolution satellite images by locating series of open ditches 

parallel to each other that are typically spaced 45 to 60 m apart (Gartley et al., 1986). All 

these steps were carried out on data from the Annual Crop Inventory for 2015 to 2019. 
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2.3 Results 

2.3.1 Analysis of the Agriculture and Agri-Food Canada Crop Inventory 

Results from the Annual Crop Inventory dykelands analysis were compiled in Table 

2-4. These results show dykeland utilization before filtering using information from the 

assessment value classification code. The analysis of the Annual Crop Inventory revealed 

that out of the total 16,238 hectares of provincial dykelands, 60% of the land area was 

dedicated to the production of field crops and forage. Interestingly, the production of 

vegetables, small fruits and potatoes has remained negligeable in comparison to other 

crops. An average of approximately 11,735 hectares of dykelands were labelled as forage 

or pasture fields in the last five years. 

Table 2-4: Analysis of the Agriculture and Agri-CƻƻŘ /ŀƴŀŘŀΩǎ !ƴƴǳŀƭ /ǊƻǇ LƴǾŜƴǘƻǊȅ ŦǊƻƳ нлмр ǘƻ нлмфΦ 

Crops  2015 2016 2017 2018 2019 Average 

Barley 52 68 11 42 149 64 

Beans - - - - 9 9 

Blueberry 67 13 - 2 6 22 

Broadleaf 39 82 174 116 44 91 

Coniferous 52 57 82 79 72 68 

Corn 1123 1353 1311 1330 1125 1249 

Exposed Land / Barren 7 40 250 259 119 135 
Fallow 68 2 55 16 155 59 

Grassland 8 19 6 189 20 49 

Mixedwood 24 40 6 4 5 16 

Nursery - - - - 12 12 

Oats 35 13 20 64 2 27 

Orchards 18 17 23 28 4 18 

Other Vegetables 22 30 45 9 29 27 
Pasture / Forages 11,790 11,838 11,720 11,028 11,925 11,660 

Potatoes 99 148 33 - 11 73 

Rye - - - 104 10 57 

Shrubland 765 97 202 300 118 297 

Sod 12 10 -  13 4 10 

Soybeans 386 468 494 351 580 456 

Spring Wheat - - 5 34 60 33 
Urban / Developed 527 456 359 518 234 419 

Water 64 57 50 55 50 55 

Wetland 377 720 772 928 868 733 

Winter Wheat 270 212 162 301 170 223 

Roads/Railways 463 463 463 463 463 463 

Total (hectares) 16,270 16,204 16,244 16,234 16,244 16,239 
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2.3.2 Average Area of Crop Production from 2015 to 2019 

From 2015 to 2019, an average of 9,880 hectares of field crops (wheat, barley, corn, 

soybeans) and forage were cultivated on Nova Scotia's dykelands (Table 2-5). Over the last 

five years, the production of barley has been limited in comparison to the other crops, 

making up 0.65% of the area of crops grown. 

Table 2-5: Five year averages of crops produced on the dykelands of Nova Scotia. 

Crops  2015-2019 averages (hectares) 

Wheat* 242 
Barley 64 
Corn 1,247 
Forages 7,870 
Soybeans 456 

Total (hectares) 9,880 
* Average of Spring and Winter wheat. 

On a 5-year average, corn was the second-most abundant crop, with 1,247 hectares 

grown annually, followed by soybeans and wheat with 456 hectares and 242 hectares 

grown, respectively. This number varied marginally from year to year, ranging from 9,395 

hectares in 2018 to 10,251 hectares in 2016 (Table 2-6). 

Table 2-6: Hectares of crops produced within the marsh bodies of Nova Scotia. 

Crops  2015 2016 2017 2018 2019 

Wheat* 270 212 0 - - 
Spring wheat - - 5 34 60 
Winter wheat - - 162 301 168 
Barley 52 68 11 42 149 
Corn 1119 1353 1311 1330 1125 
Forages 7908 8150 7946 7336 8011 
Soybeans 386 468 494 351 580 

Total (hectares) 9736 10,251 9929 9395 10,093 
* This sub-cereal class is mapped only if the distinction of sub-wheat covers Spring 
Wheat or Winter Wheat is not possible.  

2.3.3 Area of Crop Production by County 

Over a period of five years, the dykelands from the Hants and Kings Counties 

produced the most field crops and forage of all the other counties in the province (Table 

2-7). Almost 75% of the provinceôs croplands dedicated to the production of corn were in 

this county. Similarly, the production of soybeans and wheat was disproportionally high in 

the Hants and Kings Counties, ranging from 81 to 91%. Dykeland fields in Cumberland 

County were mainly used to produce forage, which represented almost 25% of the 

province's dykeland area. 
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Table 2-7: Hectares of field crops and forage produced by counties. 

    Kings & Hants Colchester Cumberland Annapolis   
    Ha % Ha % Ha % Ha % Total Hectares 

2015 

Wheat* 236 87 13 4 0 0 22 7 270 

Spring wheat - - - - - - - - - 

Winter wheat - - - - - - - - - 

Barley 0 0 13 26 34 54 5 6 52 

Corn 847 76 140 12 0 0 132 11 1,119 

Forages 2,770 35 1,662 21 2,000 25 1,477 19 7,908 

Soybeans 314 81 65 15 6 1 2 0 386 

2016 

Wheat* 212 100 0 0 0 0 0 0 212 

Spring wheat - - - - - - - - - 

Winter wheat - - - - - - - - - 

Barley 25 37 26 31 7 7 10 10 68 

Corn 952 70 194 14 0 0 207 15 1,353 

Forages 2,699 33 1,578 19 2,317 28 1,555 19 8,150 

Soybeans 378 81 75 15 0 0 15 3 468 

2017 

Wheat* - - - - - - - - - 

Spring wheat 0 0 5 100 0 0 0 0 5 

Winter wheat 162 100 0 0 0 0 0 0 162 

Barley 11 100 0 0 0 0 0 0 11 

Corn 979 75 248 19 0 0 83 6 1,311 

Forages 2,544 32 1,538 19 2,232 28 1,631 20 7,946 

Soybeans 428 87 38 7 24 4 4 1 494 

2018 

Wheat* - - - - - - - - - 

Spring wheat 34 100 0 0 0 0 0 0 34 

Winter wheat 274 91 0 0 0 0 28 8 301 

Barley 32 77 10 13 0 0 0 0 42 

Corn 971 73 189 14 0 0 171 13 1,330 

Forages 2,457 33 1,393 19 1,967 27 1,520 21 7,336 

Soybeans 321 91 30 8 0 0 0 0 351 

2019 

Wheat* - - - - - - - - - 
Spring wheat 11 19 10 16 23 39 15 26 60 
Winter wheat 168 100 0 0 0 0 0 0 168 

Barley 41 27 5 3 104 69 0 0 149 
Corn 754 67 250 22 0 0 121 11 1,125 

Forages 2,594 32 1,552 19 2,207 28 1,658 21 8,011 
Soybeans 515 89 65 11 0 0 0 0 580 

* This sub-cereal class is mapped only if the distinction of sub-wheat covers Spring Wheat or Winter Wheat is not possible.  

2.4 Discussion 
The in-depth analysis of the Annual Crop Inventory revealed that roughly one-third 

of the approximately 11,735 hectares of forage inventoried on the dykelands were classified 

in the NSPRD as non-agricultural fields. This represents approximately 3,844 hectares of 

forage fields that were not utilized for agricultural production. Although this represents a 

large area, two factors can explain the main causes of this discrepancy. 
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First, the zonal statistics tool used to calculate the dominant class within each 

polygon tended to categorize residential and commercial property fields as forages. Large 

areas of lawn grass in rural areas often resulted in these areas being categorized as forage 

fields. However, this issue was corrected by filtering out these fields using property records 

from the NSPRD and satellite images. Additionally, the overall accuracy of the Annual 

Crop Inventory model used to generate the inventory for non-agricultural land cover was 

approximately 70%, yearly (Agriculture and Agri-Food Canada. & Secretariat, 2021). The 

presence of large lawn areas and a reduced accuracy for non-agricultural cover could mean 

that this analysis underestimated the number of hectares of fields used for residential and 

commercial applications, thus overestimating the total forage hectares. 

The second factor that may explain the discrepancies between the number of 

hectares of forages from the Annual Crop Inventory and the calculated values could be that 

some forage fields were isolated, inaccessible to farmers, or owned by provincial and 

federal agencies who are not farming these fields. For example, the Minudie dyke system 

(45.8086°N, 64.3229°W) represented 1,422 hectares of forage dykeland that was not 

utilized for farming (C. Esau, personal communication, December 5, 2021). This large land 

area was removed from the analysis since it was not currently used for agricultural 

production. 

2.4.1 Fields Crops and Forages on the Dykelands 

Historically, there was no significant difference in which crops could be 

successfully produced on the uplands versus the dykelands (Bleakney, 2004). The problem 

with high value cash crops was not so much that dykelands could not support the crops but 

resides in the inherent difficulty associated with drainage (N. Juurlink, personal 

communication, February 24, 2021). Dykelands soils have low permeability and poor 

surface drainage, thus requiring land forming to maximize their potential (Kolstee et al., 

1994). Over time, however, plowing causes soil redistribution and thereby modifies the 

topography; hence, dykeland fields must be reformedða process known as "recrowning". 

In Nova Scotia, field drainage is often the limiting factor on the types of crops that 

may be successfully grown (Figure 2-4) (Gartley et al., 1986). Gartley et al. noted that it is 

generally difficult to grow valuable cash crop on recently drained land (Gartley et al., 

1986). It is advised to grow grain or hay crop for several years following an initial re-

crowning to help improve the soil structure. This management practice will in turn, improve 
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soil drainage and aeration over time, as the crop rooting zone extends deeper into the soil 

profile (Gartley et al., 1986). 

 

Figure 2-4: Dykeland field in Truro, Nova Scotia (45.3729°N, 63.2954°W) with water-saturated areas. Image was 
captured on the morning of November 11, 2020. 

High value cash crops often require more intensive machinery use, which may 

increase the risk of soil compaction (Gartley et al., 1986). Intensive farming of row crops 

may then lead to the degradation of soil structure, which will negatively impact the mobility 

of water and reduce the effectiveness of the drainage (Soil Conservation Service, 1973). 

This creates a cycle that is difficult to recover from without a complete recrowning of the 

field. On poorly drained dykelands, farmers are often cautious to seed field crops since they 

are concerned that they will not be able to harvest their fields in the fall (C. Esau, personal 

communication, December 5, 2021). This could explain the prevalence of forage and 

pasture on the dykelands, relative to other crops. Forages makes up the largest commodity 

grown, representing around 80% of the total agricultural dykelands. This production is even 

more essential considering that dykelands are usually more productive than the uplands 

(Langille & Warren, 1961). 

Langille and Warren demonstrated in their study that over a 3-year period, forage 

yields on dykelands were 20% greater as compared to upland crops. Furthermore, they 

noticed that seasonal distribution of forage was better on the dykelands than the uplands, 

which allows them to excel in the production of timothy (Phleum pratense), orchard grass 

(Dactylis glomerata L.), red clover (Trifolium pratense L.), alfalfa (Medicago sativa L.) or 

Ladino clover forages (Trifolium repens L.) (Langille & Warren, 1961). 
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Information from the federal census of agriculture also revealed that forage 

production in Nova Scotia represented 60% of the total agricultural land in the province 

(Government of Canada., 2011, 2016). It is important to note that 80% of the agricultural 

dykeland fields in the province are used to grow forage, which far surpasses forage 

production on provincial upland fields. 

2.4.2 Limitations 

The strength of this methodology depends mainly on the quality of both the AAFCôs 

Annual Crop Inventory and the NSPRD. The NS property boundaries can either over- or 

underestimate the hectares of land cultivated. A more in-depth segmentation of the field 

boundaries, followed by field surveys, could increase the overall accuracy of the 

estimations. Additionally, if not up to date, the property boundaries database could lead to 

discrepancies between estimation of lands cultivated and reality. For instance, if the land 

use of a property boundary has changed from agricultural production to residential and the 

information has not been updated to the database, this could misrepresent the results. This 

type of discrepancy can be minimized by using the latest dataset available and, if possible, 

by ground proofing the results to reduce ambiguity. 

Another limitation of this analysis lies in the fact that it only contained the results from the 

last five years. Unfortunately, the 2020 AAFC Annual Crop Inventory could not be 

completed in Nova Scotia due to COVID-19 travel restrictions. These restrictions 

prevented the collection of ground data collected, making it impossible to define an 

agricultural class precisely (Agriculture and Agri-Food Canada. & Secretariat, 2021). An 

in-depth analysis over a more extended period would provide a detailed representation of 

the agricultural situation on the dykelands. Finally, the technique presented in this analysis 

requires users to have a fair understanding of GIS software, thus requiring qualified GIS 

professionals to conduct the analysis. 

2.5 Conclusions 
To make more informed land management decisions on dykelands, a detailed 

inventory of corn, barley, soybeans, wheat, and forages was compiled. This paper aimed to 

determine the current acreage and spatial distribution of field crops and forages on the 

dykelands of Nova Scotia by analyzing crop inventory and property boundary data from 

2015 to 2019. Evidence from previous report on agricultural dykelands by Baird (Baird, 

1954), Milligan (Milligan, 1987) and Singh et al.(Singh et al., 2007) demonstrated a vague 
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understanding of the state of agricultural situation on the dykelands . This research is 

particularly important in today's context, where challenging decisions will have to be made 

in the upcoming years when considering the future of the Nova Scotia dyke system, thus 

affecting agricultural dykelands. If it is not cost-effective to maintain dykelands, it may be 

necessary to compensate landowners with upland lots. Knowing when and how to manage 

these scenarios requires more study on the long-term economic value of agricultural 

dykelands, which requires a deep understanding of the cropping potentials. To date, there 

has been no comprehensive crop inventory of the dykelands. Understanding cropping 

potential on the dykelands will help prepare for long-term food security for the region, 

which is essential given the possible impacts of climate change. This study provides 

quantifiable information on the land usage of the dykelands, thus helping government 

agencies to make informed decisions regarding agricultural protection on the dykelands. 

Furthermore, the work presented in this paper lays the framework for how this method can 

be duplicated for future years. This would allow the possibility to evaluate changes in 

production and the number of acres farmed over time. In addition, this work could be 

beneficial to local authorities for decision making. The model presented in this analysis 

could also be expanded to other regions of Canada. For example, the province of New 

Brunswick, Canada, is currently facing similar issues to Nova Scotia and is protecting 

almost 15 000 hectares of dykelands in which 41% are not being farmed. This analysis 

could improve decision making by increasing the knowledge on crops cultivated (Singh et 

al., 2007). 

This analysis provides a more precise representation of the agricultural utilization 

of the dykelands. To date, this work represents the first robust crop inventory of the major 

crops grown on the dykelands. Results from the five-year averages of this analysis revealed 

two significant trends. First, more than half of the Nova Scotian dykelands are being used 

for agricultural production. Second, the production of forage is predominant on the 

agricultural dykelands constituting approximately 80% of the total crop land area. This 

finding is important considering that the second (corn) and third (soybeans) crops of 

abundance only represent 12 and 4% of the total crop land area, respectively. 

Further research will be conducted to improve the field boundaries segmentation 

and provide recommendations for future cultivation based on the information gathered in 

this analysis. This will be accomplished by refining the resolution of the crop inventory by 
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using higher-resolution satellite images (e.g., Sentinel 2) and conducting field interviews 

with dykelands farmers to understand the economics of dykelands farming. 
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3.1 Abstract:  
Agricultural dykelands in Nova Scotia rely heavily on a surface drainage technique called 

land forming, which is used to alter the topography of fields to improve drainage. The 

presence of land-formed fields provides useful information to better understand land 

utilization on these lands vulnerable to rising sea levels. Current field boundaries 

delineation and classification methods, such as manual digitalization and traditional 

segmentation techniques, are labour-intensive and often require manual and time-

consuming parameter selection. In recent years, DL techniques, including convolutional 

neural networks and Mask R-CNN, have shown promising results in object recognition, 

image classification, and segmentation tasks. However, there is a gap in applying these 

techniques to detecting surface drainage patterns on agricultural fields. This paper 

develops and tests a Mask R-CNN model for detecting land-formed fields on agricultural 

dykelands using LiDAR-derived elevation data. Specifically, our approach focuses on 

identifying groups of pixels as cohesive objects within the imagery, a method that 

represents a significant advancement over pixel-by-pixel classification techniques. The DL 

model developed in this study demonstrated a strong overall performance, with a mAP of 

0.89 across IoU thresholds from 0.5 to 0.95, indicating its effectiveness in detecting land-

formed fields. Results also revealed that 53% of Nova Scotia's dykelands are being used 

for agricultural purposes and approximately 75% (6,924 hectares) of these fields were 

land-formed. By applying deep learning techniques to LiDAR-derived elevation data, this 

study offers novel insights into surface drainage mapping, enhancing the capability for 
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precise and efficient agricultural land management in regions vulnerable to environmental 

changes. 

The work presented in this chapter has been published in the open access journal Scientific 

Reports DOI 10.1038/s41598-024-60525-5, entitled ñEnhancing surface drainage 

mapping in eastern Canada with deep learning applied to LiDAR-derived elevation dataò. 

3.2 Introduction 
Agricultural dykelands in Nova Scotia are an essential component of the agricultural 

landscape, providing fertile land for cultivation and supporting diverse ecosystems 

(Sherren et al., 2021). These low-lying areas have unique drainage characteristics and land 

formations. Dykeland soils are highly mineralized, high in silt content, and very compact, 

making them difficult to drain (Rodd et al., 1993). Low permeability of the soil often makes 

the fields water-logged due to high precipitation early in the fall (Desplanque, 1983). High 

rainfalls are a consequence of the coastal effect on Nova Scotia's weather and its 

geographical vulnerability to hurricanes (Davis, 1996). During winter, snow and ice 

prevent the lowering of the water table resulting in saturation of the top soil layers when 

snow accumulations melt in the spring (Desplanque, 1983). These conditions create acute 

drainage problems on the dykelands, resulting in difficult farming conditions. 

In the 1700s, Acadians settlers solved drainage problems by digging ditches that 

followed the natural slope of the land. In flat areas, they built small excavated channels 

separated by parallel ditches approximately 20 meters apart (MacIntyre & Jackson, 1975). 

The length between the ditch areas would vary depending on the location but could extend 

up to several hundred meters. On uneven ground, low-lying areas were drained by digging 

ditches along the path of least resistance and would be connected to the nearest ditch. This 

often resulted in agricultural dykelands with irregular ditch lengths, uneven surfaces, and 

small flats. Although efficient for hand and horse work, this arrangement later posed a 

challenge for modern farm equipment and proper usage of dykelands (MacIntyre & 

Jackson, 1975). 

Accurate mapping and characterization of these fields remain a significant challenge 

due to their irregular field boundaries, non-linear drainage patterns, and variable surface 

topography. Recent advancements in remote sensing technologyðparticularly the 

availability of high-resolution airborne LiDAR data across Canadaðoffer promising 
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opportunities for improved land-use analysis and agricultural management (Nova Scotia 

Department of Natural Resources and Renewables, 2022). Machine learning and deep 

learning algorithms have gained significant attention for their potential to process and 

analyze large-scale high-dimensional datasets (Jordan & Mitchell, 2015; Yu et al., 2017; 

Zhang et al., 2016). These techniques have been increasingly applied to various agricultural 

tasks, such as crop type classification, yield prediction, and field boundary delineation 

(Maggiori et al., 2017; Mohan & Giridhar, 2022; F. Zhao et al., 2021). Recent advances in 

delineating field boundaries using deep learning algorithms have demonstrated remarkable 

results with an average IoU accuracy score of 0.94 (DigiFarm, 2022a). This represents a 

significant milestone since the precise identification of boundaries within agricultural fields 

is a critical prerequisite for any meaningful land use analysisðalthough the full scope of 

their utility remains to be tested. For instance, field boundaries delineation algorithm can 

play a significant role for growers since they can use them to optimize implement size, 

which contributes to a better efficiency in the field management processes. Additionally, 

field boundaries are crucial in the development of GNSS guidance maps, offering 

invaluable spatial data for precision farming practices.  

DL is a subfield of machine learning that uses neural networks with multiple layers to 

model and understand complex patterns in datasets. These characteristics enables 

computers to make predictions. DL have multiple layers between input and output nodes, 

granting it distinct advantages which include the ability to learn from data with minimal 

human intervention, robustness to natural variations in data, and efficient handling of high-

dimensional data (Goodfellow et al., 2016). Most DL models are trained using labelled 

datasets, with each example comprising an input vector and an associated output label. The 

model learns to map inputs to outputs, adjusting its internal parameters based on the error 

it made during backpropagation(LeCun et al., 2015).  

These DL models, have demonstrated promising results in various applications, such 

as underwater archaeology and damage detection in buildings. A study by (Character et al., 

2021) provides a compelling example. They demonstrated the effective use of the YOLOv3 

architecture, combined with topo-bathymetric data, to detect shipwrecks. Their results 

exhibited high accuracy, with an F1 score of 0.92 and a precision of 0.90, highlighting the 

potential of using DL models in underwater archaeology. Similarly, other researchers have 

applied machine learning techniques to aerial imagery for damage detection.(Munawar et 
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al., 2022) revealed the efficacy of drone imagery for identifying cracks and structural 

damage in buildings, achieving a remarkable global accuracy of 0.990. Their approach 

employed a CNN architecture and integrated GF to fine-tune predicted outputs. This 

methodology yielded numerous benefits, including noise reduction, high-level feature 

supervision, and the incorporation of both multi-scale and multi-level features during the 

training process. In a different context, Corbane et al., 2021, adopted a deep learning-based 

framework for extracting human settlements from Sentinel-2 satellite images(Corbane et 

al., 2021). Their work highlighted the vast potential of deep learning in remote sensing 

applications across an extensive geographic extent. The results presented by Corbane and 

his team underscore the exciting promise of utilizing deep learning techniques in remote 

sensing to tackle an array of complex tasks. 

CNNs, a subset of deep learning, have also shown impressive results in image 

classification tasks, such as recognizing patterns and features in remotely sensed images 

that can be used to accurately identify and map field boundaries (F. Zhao et al., 2021). For 

instance, CNNs can classify land cover types from multi-spectral satellite images by 

learning distinctive spatial and spectral features. CNNs can also detect specific objects, 

offering valuable insights for urban planning, environmental monitoring, and disaster 

management (Mehmood et al., 2022).  

Expanding on the capabilities of CNNs, Mask R-CNN has been developed for instance 

segmentation tasks, providing a pixel-wise classification of objects in an image (Cresson, 

2020). Evolving from Faster R-CNN, this technology uses a RPN to identify potential 

object-containing RoIs within an image. These RoIs are then passed through a 

convolutional network, generating independent feature maps for each RoI (He et al., 2017). 

This method facilitates localized feature extraction and leads to more precise mask 

predictions, yielding binary masks for each object instance. Mask R-CNN has shown 

potential for automating the mapping of topographic features from digital elevation data, a 

task traditionally riddled with time-consuming and labour-intensive manual interpretation 

(Passalacqua et al., 2010). While deep learning, CNNs, and Mask R-CNN have 

revolutionized tasks such as feature extraction, classification, and detection on large 

geographic extents, their application to the detection of surface drainage characteristics on 

agricultural fields remains a gap that needs to be addressed.  
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The primary objective of this research was to train and test a Mask R-CNN model for 

detecting land-formed fields on agricultural dykelands using high resolution DEMs derived 

from LiDAR data. By incorporating DEMs and training the model with representative 

samples of land-formed field, we expect to achieve positive detection of surface drainage 

patterns on agricultural dykelands. Our technique concentrates on grouping pixels into 

objects within the images, which differs from methods that classify each pixel separately. 

This research will contribute to a better understanding of land use, leading to more efficient 

management practices and policies. This novel research also showcases how other deep 

learning algorithms, namely field boundary delineation, can be used as the foundation 

blocks to characterize other land features on large geographic extents, thus further 

expanding on their potential uses in agricultural studies. 

3.3 Materials and Methods 

3.3.1 Historical Context  

3.3.1.1 Land-forming  

The first experiment in drainage and reformation of dykelands in Atlantic Canada 

was initiated in 1922 at the Experimental Farm in Nappan, Nova Scotia. At the time, 

researchers at the farm had to increase the distance between the ditches to accommodate 

the trafficability of small motorized farming equipment. This decision resulted in increased 

cultivated areas and fewer drainage ditches, and they observed little to no impact on the 

effectiveness of drainage (Calder et al., 1986). 

This phase of experimentation continued until the 1950s and involved the 

construction of multiple field sections, each 23 m in width and ranging from 106 to 274 m 

in length. Shallow depressions between the ditch areas carried off the water, allowing 

machines to operate in any direction across the land (MacIntyre & Jackson, 1975). 

Although these draining and reforming experiments were an improvement over previous 

methods, they were designed for the horse age and were still unsuitable for larger farm 

machines due to limited distances between ditches. As a result, a new dykeland formation 

and drainage pattern was required to accommodate modern machines and farming 

practices. This led to a new series of experiments at the Nappan farm involving land 

forming. 

Land forming is a technique used to alter the topography of fields through the 

mechanical movement of soil to improve surface drainage. This process involves 
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excavating a series of parallel ditches which are then filled in to create hills called "crowns." 

The surface water on the crowns then drains off to the two adjoining ditches (Desplanque, 

1983; Kolstee et al., n.d.). The first land forming studies began in 1950. These studies aimed 

to determine the impact that crowning the fields had on drainage and production (Baird, 

1954). These experiments ultimately led to the crowning of dykelands on larger plots of 

land (>2 hectares) with larger ditches (45-60 m wide) and lengths exceeding 457 meters. 

This demonstration showed that wide dykeland ditches (<30 m) provided adequate 

drainage and were easier to work with heavy farm equipment, as they improved field 

trafficability. These surface drainage improvements resulted in a longer growing season 

and increased crop yields (Bleakney, 2004). 

In 1986, a report titled "Farm Drainage in the Atlantic Provinces" summarized the 

results from the experiment at the Nappan farm and recommended a distance between open 

ditches to be between 35 to 60 m with a gradient of 0.1-0.4% to an open collector ditch 

(Gartley et al., 1986). These recommendations have been in place for more than three 

decades and have propagated across the maritime provinces, making it the modern method 

of land forming agricultural dykelands (Nova Scotia Environmental Farm Plan, 2020). 

3.3.1.2 Subsurface Drainage  

Subsurface drainage trials were conducted on Nappan Farm's dykelands in the 

1950s using tile drains, a system of underground pipes removing excess water from the 

soil. Initially, attempts with four-inch drainage tiles placed in a field ditch and covered with 

clay proved to be inadequate to remove excess surface water (MacIntyre & Jackson, 1975). 

In 1954, a new trial was conducted on different types of ditches and drains. Results from 

this experiment showed that the tiled drains were not functioning properly, as water 

remained on top of the tile drain in several locations. It was determined that the tiles were 

unobstructed, but the water was unable to percolate through the soil that covered the tile. 

Further trials on tile drains were carried out at the Nappan Farm in 1968 on a wet 

and poorly drained one hectare area bordering the uplands. The area had several springs at 

the base of the uplands, which posed a significant issue in this field. To address the problem, 

the tile drains were connected to the springs to eliminate the water seepage at the surface. 

The field was also sloped to facilitate water movement towards the area over the tile 

(MacIntyre & Jackson, 1975). Observations over the next six years following the 

installation revealed that the tile functioned well and effectively drained the field. This 
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drainage and land levelling method offers a viable approach to addressing problematic 

small wetland areas located proximal to uplands, thereby converting them into more 

extensive fields free of ditches. Additionally, the elimination of ditch maintenance 

translates to reduced operational costs (B. Biggs, personal communication, April 8, 2022). 

Understanding this historical context makes it possible to infer land usage based on 

its forming state. Fields with open ditches spaced 35 to 61 meters apart were most likely 

built later than the 1950s and suggest intensive farming activities. Oppositely, the presence 

of parallel ditches spaced 15 to 23 meters apart indicates that older drainage techniques 

were used before the 1950s and suggest limited agricultural activities due to their 

inefficiency in carrying large farming equipment. Finally, the presence of un-formed 

agricultural dykelands and the use of tile drains have also proven to be a viable solution for 

fields closer to the uplands. 

3.3.2 Study Area  

The study area, situated on the East Coast of Canada, encompasses the entirety of 

Nova Scotia's dyke system, as defined by the Nova Scotia Agricultural Marshland 

Conservation Act (Figure 3-1). This system spans an impressive 17,401 hectares. Most 

dykelands in Nova Scotia are situated along the Bay of Fundy, illustrating the interaction 

of coastal and agricultural landscapes in this part of Canada. These dyke systems spread 

throughout the counties of Annapolis, Colchester, Cumberland, Digby, Hants, Kings, and 

Yarmouth (Figure A-1Error! Reference source not found.).  

 

Figure 3-1: Geographical distribution of Nova Scotia's dyke systems by counties. 
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3.3.3 Datasets 

3.3.3.1 Automatic Detection of Field Boundaries 

To distinguish the boundaries of agricultural fields so they could be used to assess 

the drainage type, DigiFarm (DigiFarm, Inc., Oslo, Norway) provided a dataset of all the 

field boundaries within the dyke systems. DigiFarm has developed an API that employs a 

deep neural network model capable of detecting field boundaries from satellite imagery. 

The model uses high-resolution orthophotos (25 cm spatial resolution) in conjunction with 

enhanced Sentinel-2 images, upscaled from a 10 m spatial resolution to 1.25 m using a 

proprietary algorithm (Digifarm, 2022b; Figure 3-2). DigiFarm's API was applied to Nova 

Scotia's dyke systems, resulting in the digitization of 3,421 vector polygons (Table 3-1). 

The extent was confined to the limit of the study area and was used to exclude agricultural 

fields that are not inside the dyke systems. DigiFarm's deep learning model was exclusively 

employed for delineating the boundaries of agricultural fields. The outputs from this model 

were subsequently utilized as reference data (ground truth) to evaluate and enhance the 

performance of the deep learning model discussed in this manuscript. 

 

Figure 3-2: Sample of the field boundaries delineated with the DigiFarm API on the Grand-Pré dyke system. 

3.3.3.2 Manual Digitization of Field Boundaries 

DigiFarm field boundary delineation API was trained from satellite images of 

agricultural dykelands and thus struggled to identify boundaries of abandoned agricultural 

fields due to the presence of dense vegetation. Therefore, the remaining agricultural field 

boundaries were manually digitized in ArcGIS Pro (ESRI, Redlands, CA, USA). 

Multitemporal satellite images were used for digitizing missing field boundaries manually. 

Manual digitization on high-resolution images is a common approach for boundary 
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delineation but has proven to be labour-intensive and time-consuming for large areas 

(North et al., 2019). 

This digitization process was performed on approximately 3,820 hectares of 

dykelands, representing 399 polygons. To maintain a consistency during the digitization 

process, three rules of image interpretation were defined (Paine & Kiser, 2012). Firstly, 

tree lines, streams of water, ponds and roads were used as natural boundaries to delineate 

fields (Lillesand et al., 2015). Secondly, changes in pattern consistency from aerial images 

were used as indications of new field boundaries. Thirdly, satellite images from the 

Sentinel-2 and PlanetScope constellations, taken at different dates, were used to reduce 

ambiguity during the delineation process (Franklin & Wulder, 2002). The total number of 

field boundaries delineated from DigiFarm APIs and manually amounted to 13,262 

hectares. Roads, railroads, and urban areas, particularly common in Truro, Stewiacke, 

Windsor, Wolfville, and Annapolis Royal were excluded from the datasets. 

Table 3-1: Total number of field boundaries digitized from a deep learning API and manually within Nova Scotia's 
dyke system. 

County 
Digitized Features 
from DigiFarm's 

API 

Manually 
Digitized 
Features  

Total Number 
of Digitized 
Features 

Total 
Digitized 

(ha) 

Total 
Land 
(ha) 

Annapolis 422 148 570 1491 2296 
Colchester 604 28 632 1994 2730 

Cumberland 749 36 785 4228 5166 
Digby 12 41 53 237 328 
Hants 746 28 774 2177 2947 
Kings 847 80 927 2925 3642 

Yarmouth 41 38 79 210 292 

Total 3421 399 3820 13,262 17,401 

 

3.3.3.3 Digital Elevation Models 

A variety of products derived from LiDAR data were utilized to identify agricultural 

fields within the dykelands and generate training data for the DL model. LiDAR data are 

suitable for identifying agricultural fields on dykelands as they can pass through openings 

in the vegetation canopy cover commonly found in these areas (Bleakney, 2004; Thiel & 

Schmullius, 2017). 

LEG was contracted by the province of Nova Scotia to collect LiDAR data as part 

of an initiative aimed at gathering LiDAR data over a five-year period, with each year 

focusing on various regions of the province. This research project drew upon data collected 
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during 2019 and 2020. The 2019 phase of data collection covered roughly 35,000 km2, 

encompassing the western and southwestern counties of Nova Scotia, while the 2020 

survey targeted approximately 10,000 km2 within Cumberland county (Leading Edge 

Geomatics, 2021, 2022). For the execution of these surveys, LEG utilized a Riegl Q780, 

Riegl VQ-1560i, and a Riegl VQ-1560ii scanning system. These aerial surveys were 

complemented by ground verification efforts by a ground team dispatched across the survey 

sites to collect RTK ground control points. These control points were used during the post-

processing of the data to validate the precision of the LiDAR surveys. For NVA, the 

average difference between the ground control points and the LiDAR survey was 0.005 

meters in 2019 and -0.022 meters in 2020, suggesting a very high level of accuracy. The 

precision details about these surveys are outlined in Table 3-2. Additional information 

regarding the methodologies and outcomes of the 2019 and 2020 Nova Scotia LiDAR 

surveys can be found in the acquisition reports, accessible via the Nova Scotia Geographic 

Information Services (Government of Nova Scotia, 2024a). 

Table 3-2: Description of LiDAR data and positional accuracy metrics for surveys conducted in Nova Scotia during 
the years 2019 and 2020. 

 LiDAR Dataset 

Specification 2019 Collection 2020 Collection 

Collection Dates May-October July-September 

Sensor VQ1560i, Q780 VQ1560i, VQ1560ii 

Sidelap 20%, 55% 20% 

Average Post Spacing 6 ppsm 6 ppsm 

Metric - NVA Average Difference (m): 0.005 Average Difference (m): -0.022  

 RMSEz (m): 0.055 RMSEz (m): 0.057 

 NSSDA (m): 0.107 NSSDA (m): 0.112 

Metric - VVA Average Difference (m): 0.078 Average Difference (m): 0.008  

 RMSEz (m): 0.119 RMSEz (m): 0.046  

  NSSDA (m): 0.233 NSSDA (m): 0.091 

ppsm= points per square meter, NVA=Non-Vegetated Vertical Accuracy, VVA=Vegetated 
Vertical Accuracy, RMSEz=Vertical Root Mean Square Error, NSSDA=National Standard for 

Spatial Data Accuracy   

 

To improve the data handling efficiency, datasets were partitioned into 14 km by 

14 km scenes encompassing the study area. A total of 20 scenes covering the study area, 

were employed during the assessment phase (Table A-1Error! Reference source not 

found.). All LiDAR points were projected onto their respective UTM zones and, where 
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necessary, adjusted to conform to the Canadian Geodetic Vertical Datum of 2013 

(CGVD2013)(Government of Nova Scotia, 2024b). From the LiDAR data, a DTM was 

created with a spatial resolution of 1 meter. This model included points identified as 

Ground, Water, and Key-points. The blast2dem tool from the LAStools (rapidlasso GmbH, 

Gilching, Germany) software suite, was employed for this purpose(Leading Edge 

Geomatics, 2021). This tool facilitated the triangulation of the point cloud, creating an 

initial TIN with the longest triangle edges capped at 50 meters(Government of Nova Scotia, 

2024b; Leading Edge Geomatics, 2022). To address small data-void regions, typically 

characterized as 'nodata' zones, an interpolation approach using the gdal_fillnodata tool was 

applied, allowing for the fill-in of these gaps by extrapolating from adjacent valid pixels, 

with the interpolation radius set to a maximum distance of 400 meters(Government of Nova 

Scotia, 2024b). 

The aspect and slope functions in ArcGIS Pro were used to create two raster layers 

from the DEM using the composite band function. The aspect represents the downslope 

direction of the maximum rate of change in value from each pixel to its neighbouring pixels 

(ESRI, 2024a). It is reflected as the compass direction and symbolized by varying hues. 

Slope, on the other hand, measures the rate of change in elevation for each DEM pixel. For 

this study, the slope inclination was calculated using degree values ranging from 0 to 

90(ESRI, 2024b). Figure 3-3 represents the general workflow used to generate the training 

data for the DL model from the LiDAR data. 

 

Figure 3-3: Utilization of LiDAR Data for the generation of multiband raster datasets for the training of a deep 
learning model.  
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3.3.4 Assessment and Classification of Surface Drainage 

Fields were evaluated for land forming by two RAs employed by Dalhousie 

University. RAs were proficient with the use of GIS and were trained during workshop 

sessions on recognition of land-formed fields. Trainings sessions were designed to help RA 

to be consistent in the image interpretation and expose them to ambiguous scenarios. To 

minimize inconsistency errors, the same RAs were used during the digitization process and 

two rules were established during the workshop sessions. Firstly, the classification of land-

formed fields should be made only on positively identified fields. Secondly, any ambiguity 

in relation to the size, shape, texture or height of land-formed dykelands should be 

classified in a different category for further assessment (Tarko, 2019). This manual 

assessment method was inspired by Marshall et al., 2019, who showed a similar mapping 

initiative using a crowd-driven manual digitization approach (Marshall et al., 2019). 

The DEMs were the primary data source for manually assessing if agricultural dykelands 

were land-formed. This was achieved by creating a new column within the field boundaries 

vector file's attribute table and editing the value for each field boundary polygon based on 

the drainage types. This helped organize the data for each polygon, which was used in later 

stages for further processing (Corbin, 2020). To facilitate the identification of land-formed 

fields, DEMs were enhanced during image interpretation using the dynamic range 

adjustments within ArcGIS Pro (ESRI, Redlands, CA, USA) to stretch the pixel values 

within the display's extent (Burrough et al., 2015). Fields with open ditches spaced 35 to 

60 meters apart were classified as Land-formed. Figure 3-4A shows a sample of three 

agricultural field identified with land-formed features. 
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Figure 3-4: Example of land-formed fields in the study area. Image (A) presents a hillshade visualization derived 
from LiDAR elevation data. Image (B) displays the corresponding training mask utilized in developing the deep 
learning algorithm. 

Agricultural fields that did not present with signs of land formation were classified as Not 

Formed or Old Formed/Underutilized. Table 3-3 contains a brief explanation of each 

categories used to classify agricultural dykelands and an explanation of the drainage type 

used to make these determinations. 

Table 3-3: Category of fields used to classified agricultural dykelands in Nova Scotia based on their drainage 
characteristics. 

Category Description Short Description 

1 
Fields are land-formed with open ditches spaced 
35 to 60 meters apart.  

Land Formed  

2 
Fields are relatively flat with no signs of surface 
drainage.  

Not Formed  

3 
Fields are land-formed with ditches spaced 15-23 
meters apart.  

Old Formed & 
Underutilized 

 

Figure 3-5A,B shows land formed fields presented on satellite images and hillshades 

generated from the Lidar data datasets. Fields with open ditches 35 to 60 meters apart were 

classified as Land Formed while fields with dales separated by parallel ditches 15-23 meters 

apart were classified as Old Formed/Underutilized (Figure 3-5C,D). Additionally, presence 

of dense shrubland vegetation on land formed fields were used as an indicator of 

underutilized agricultural lands and were characterized as such (Figure 3-5E,F). Remaining 
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agricultural dykelands were classified as Not Formed. Ambiguity in classifying land 

formed fields were resolved using multi-temporal satellite images, from field visits or from 

consultations with members of the NSDA land protection division. 

 

Figure 3-5: Examples of agricultural dykelands in Nova Scotia, Canada, illustrated through satellite imagery (left) 
and hillshade visualizations derived from LiDAR elevation data (right): (A) & (B) show land-formed fields shaped 
with evenly spaced, open parallel ditches; (C) & (D) depict a pattern of closely spaced parallel ditches, 
characteristics of surface drainage techniques used before the 1950s; (E) & (F) present a land-formed field currently 
used for agriculture (left side of the image) and adjacent to an underutilized dykelands distinguished by shrubland 
(highlighted in blue). 
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3.3.5 Images Chip Generation 

In deep learning techniques that employ convolution, models must be trained on 

rectangular sections of images rather than individual pixels. This is because convolution 

effectively captures the spatial relationships between pixels in an image, which cannot be 

achieved by training on single pixels or isolated components. Therefore, the Export 

Training Data for Deep Learning tool in ArcGIS Pro was used to generate image chips 

consisting of 512 x 512 pixel dimensions. These image chips were generated from the 

aspect and slope raster datasets, and a width and height of 256 pixels in both X and Y 

directions was applied when exporting them. This created a 50% overlap with adjacent 

chips. 

Using digitized polygons, agricultural fields classified as land-formed were 

employed as a mask to label features on the image chips (Figure 3-4B). Table 3-4 displays 

the names of the dyke systems utilized for training, testing, and validating the deep learning 

model. These areas were non-overlapping and chosen based on their distribution across the 

province and the number of land-formed fields per dyke system. Dyke system with a high 

concentration of land-formed fields were prioritized for training the model. 

Table 3-4: Number of land-formed fields digitized by dyke system and image chips used to train, test and validate 
the deep learning model. 

Dyke System County Total Area (ha) 

LF Area 
(ha) 
Ground 
Truth 

Number of 
LF fields 

Img 
Chips 
w/  LF 
fields 

Tr-Val; 
Test 

Grand Pré Kings 1206 984 222 856 Tr-Val 

Converse Cumberland 260 153 40 600 Tr-Val 

John Lusby Cumberland 353 223 73 718 Tr-Val 

Fort Lawrence Cumberland 826 337 60 1746 Tr-Val 

 Annapolis  2296 486 166 N/A  Test  

 Colchester 2730 1381 395 N/A Test 

 Cumberland* 3727 856 192 N/A Test 

 Digby 328 34 13 N/A Test 

 Hants 2947 1374 436 N/A Test 

 Kings* 2436 1013 362 N/A Test 

 Yarmouth 292 81 34 N/A Test 

Total  17401 6922 1993 3920  

*Excluding dyke systems used to train and validate the model.  LF ɬ Land Formed;  
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Data augmentation has proven to minimize overfitting by increasing the number 

and variety of training samples (Hsia et al., 2022; Stewart et al., 2019; Yu et al., 2017). 

Hence, augmentation was implemented on the original image chips using angular rotations 

at 90°, 180°, and 270°, by adjusting parameters within the Export Training Data tool 

(Maxwell et al., 2020; F. Zhao et al., 2021). This approach resulted in three additional 

augmented images per image, aiming to provide the model with more training data that 

represents the dynamic nature of dykelands fields, which are often found in various 

orientations, sizes, and shapes. Employing this method, 3920 image chips of digitized land-

formed fields were used (80% training, 10% validation, and 10% testing) for training and 

evaluating the model. 

 

3.3.6 Model and Training 

ArcGIS Pro incorporates deep learning capabilities through the utilization of the 

ArcGIS API for Python. This API is built on top of already established deep learning 

frameworks such as TensorFlow and PyTorch. This offers a comprehensive interface that 

facilitates the integration of geospatial data with deep learning models. For object detection 

tasks, such as those executed with a Mask R-CNN model, ArcGIS Pro employs the deep 

learning library, ArcGIS Learn (ESRI, 2023a). This library streamlines the process of 

training, fine-tuning, and deploying deep learning models tailored for geospatial data 

analysis. ArcGIS Learn offers an array of pre-trained models suited to various tasks like 

object detection. These pre-trained models serve as an initial foundation for transfer 

learning, enabling the training of models on specific datasets with reduced sample sizes 

and training durations (Abd-Elrahman et al., 2021). 

The Train Deep Learning Network tool in ArcGIS Pro was utilized for the process 

of model training. This tool enables the user to specify parameters such as the maximum 

number of epochs, the batch size, the chosen deep learning architecture, and the proportion 

of data used for validation. The training of the model occurs iteratively, leveraging the full 

dataset for each training cycle. However, given computational constraints, only a random 

subset of the training dataset was fed into the training algorithm. For this study, the epoch 

count, which regulates the number of times the dataset was processed during the training 

phase was set to 500. ArcGIS Pro features a built-in learning rate finder tool that assists in 

identifying a suitable learning rate by training the model for a few epochs while 
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progressively increasing the learning rate and plotting the training loss against the learning 

rate.  

In this study, a sequential training approach was adopted. Initially, the model was 

trained using datasets from Kings county for 500 epochs at a learning rate ranging from 

0.0001 to 0.00001. Following the effective tuning of this initial training phase, the pre-

trained model was used as a starting point to further train it for another 500 epochs on 

datasets from Cumberland county. The learning rates during the training process for 

Cumberland county were a slightly lower than those of Kings county, varying between a 

minimum and maximum boundary of 9 x 10-5 to 9 x 10-6. This training approach leveraged 

the learned features from the Kings county datasets to accelerate and enhance the learning 

process for the Cumberland county datasets. ResNet-50 was used as the preconfigured 

neural network backbone and used as the architecture for training the new model. 

Experimentation with newer backbones, such as ResNet-101 and ResNet-152 were also 

conducted but yielded lower accuracy. It was theorized that several reasons might explain 

this. Indeed, while deeper networks can sometimes provide better performance, they also 

introduce more complexity, which is not always beneficial. In some cases, the additional 

layers in ResNet-152 may not contribute to the overall performance but increase the chance 

of issues such as vanishing gradients, exploding gradients, or poor weight initialization (He 

et al., 2016). The computational tasks were carried out on a high-performance workstation 

furnished with a 10-core Intel i9-10900K processor running at 3.70 GHz, an extensive 

memory capacity of 128 GB RAM, and a robust GeForce RTX 3090 graphics card with 24 

GB of on-board memory. 

The evaluation of the model's performance was made using a metric called 'loss,' 

which quantifies the discrepancy between the model's predictions and the reference dataset 

(Alpaydin, 2020). The aim during training was to minimize this loss, thereby optimizing 

the model's predictive accuracy (Bishop & Nasrabadi, 2006). 

 

3.3.7 Model Prediction 

Once the model was trained, it was employed towards detecting land-formed fields 

within the testing extent of the study area (Table 3-4). The Detect Objects Using Deep 

Learning tool in ArcGIS Pro was used to create polygons on detected land-formed fields. 

Created polygons had a confidence score and class labels associated with each feature. To 
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improve the accuracy of the results, adjustments were made by refining the confidence 

threshold at 70% and merging overlapping detections using the dissolve tool. The 

confidence threshold determined the level of confidence required for a delineated land-

formed field to be accepted as a successful delineation (Abd-Elrahman et al., 2021). An 

analysis mask polygon of the geographic extent was also used to limit the processing and 

target only agricultural fields within the dyke system. This adjustment ensured that the final 

results were more precise and reliable, providing a better representation of the land-formed 

fields in the study area. 

 

3.3.8 Validation 

The accuracy of the model was calculated using the Compute Accuracy for Object 

Detection tool in ArcGIS Pro by comparing vector polygons generated from the trained 

model against the manually classified ground truth data. Five metrics, namely IoU, AP, F1 

score, mAP, and Precision/Recall curve were used to evaluate the model (ESRI, 2023b). 

 

The IoU ratio was used to measure the agreement between the predicted and 

manually digitized land-formed field. The IoU ratio is the amount of overlap between the 

vector files generated from the predicted field boundaries and the vector file around the 

reference data manually digitized. The following formula was used to calculate the IoU: 
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In object classification, a model can predict a positive class or a negative class, and the 

predictions can be true or false (Mehmood et al., 2022). For example, when detecting the 

presence of surface drainage on an image, the positive class may be "Land-formed", while 

the negative class would be "Not Formed". A TP occurs when the prediction is correct, and 

a FP occurs when the prediction is incorrect. 

Precision, Recall, and F1 score are calculated using TP, FP, and FN to provide a 

comprehensive evaluation of the model's performance in detecting land-formed agricultural 

fields. Precision represents the portion of the land-formed fields that were land-formed and 

is equivalent to 1 ï commission error. Recall represents the ratio of correctly mapped 

formed fields relative to the total number of formed fields and is equivalent to 1 ï omission 
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error (ESRI, 2023b; Mehmood et al., 2022). The F1 score is the harmonic mean of precision 

and recall and ranges from 0 to 1 where 1 means highest accuracy. The following formulas 

were used to calculate the Precision, Recall and F1 score: 
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3.4 Results 

3.4.1 Mask R-CNN Model 

The training phase for Kings county demonstrated a good level of precision, achieving an 

average precision score of 0.973. This score, which assesses the model's aptitude in 

distinguishing between positive and negative instances of the target class, suggests the 

model's performance of higher values indicates better performance. Furthermore, there was 

a consistent decrease in both training and validation losses over time, indicating the model's 

increasing ability to accurately recognize target objects (Figure 3-6). 

During the initial 200 epochs, we observed an encouraging trend: the model was 

learning effectively, with losses decreasing and average precision improving consistently. 

This suggests that the model was continually improving its capacity to correctly classify 

land-formed fields in the images. However, we also noted that the model's performance 

plateaued after the 200th epoch, with validation and training losses stabilizing thereafter.  

The training phase for Cumberland county shared a similarly encouraging outcome 

but achieved a lower level of precision at 0.895. As the epochs increased, we observed a 

general trend of decreasing training and validation losses, coupled with a consistent 

improvement in average precision. This combination of factors points to the model 

effectively learning and enhancing its performance over time. Until the 240th epoch, the 

model continued to demonstrate improvements. Both losses were decreasing, and the 

average precision was increasing, indicating no issues with overfitting or underfitting up to 

this point.  
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Figure 3-6: Overall loss values and precision for training and testing data in Kings county (A) and Cumberland 
county (B) across all epochs. The training loss is a measure of the difference between the predicted output and the 
ground truth. Lower values indicate better performance. The validation loss is a measure of how well the model 
generalizes to unseen data. Lower values indicate better performance. 

3.4.2 Validation 

Table 3-5 shows the performance of the evaluation metrics of the DL model for land-

formed field detection. The model performed best in Digby county with a precision of 

0.792, recall of 0.834, and an F1 score of 0.812, while Yarmouth county exhibited the 

lowest precision of 0.595. In counties with over 350 accurately mapped fields, namely 

Kings, Colchester, and Hants, Colchester county stood out by achieving a high model 

performance with an F1 score of 0.772 at an IoU threshold of 0.5, based on 395 verified 

fields. Similarly, Hants county demonstrated strong model effectiveness, with an F1 score 

of 0.754, supported by 436 verified fields. Kings county also showcased efficient model 

usage, obtaining an F1 score of 0.791 with 362 verified fields. 
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 Performance generally declined at higher IoU thresholds across all counties, indicating a 

decrease in model accuracy for more stringent overlap criteria. Across the counties, the AP 

metric remained consistently high, with a mean AP of 0.898 and a weighted AP of 0.912 

for IoU thresholds ranging from 0.5 to 0.95, underscoring the overall robustness of the 

Mask R-CNN model in detecting land-formed fields.  

Table 3-5: Performance Evaluation of the Mask R-CNN deep learning model for the detection of agricultural land-
formed fields across various counties in Nova Scotia: Highlighting the Precision, Recall, F1 Score, and Average 
Precision (AP) metrics at multiple Intersection over Union (IoU) thresholds. 

County IoU   Precision Recall F1  AP TP FP FN 
GT 

Fields 
 

Annapolis 

0.5 0.654 0.772 0.708 0.848 109 57 32 166  

0.75 0.554 0.654 0.600 0.848 92 74 49 166  

0.95 0.401 0.474 0.435 0.848 67 99 74 166  

Colchester 

0.5 0.743 0.804 0.772 0.918 293 102 72 395  

0.75 0.628 0.675 0.651 0.918 248 147 119 395  

0.95 0.455 0.487 0.470 0.918 180 215 190 395  

Cumberland
*  

0.5 0.760 0.826 0.792 0.897 146 46 31 192  

0.75 0.660 0.710 0.684 0.897 127 65 52 192  

0.95 0.470 0.511 0.490 0.897 90 102 86 192  

Digby 

0.5 0.792 0.834 0.812 0.955 10 3 2 13  

0.75 0.686 0.734 0.709 0.955 9 4 3 13  

0.95 0.494 0.548 0.520 0.955 6 7 5 13  

Hants 

0.5 0.729 0.781 0.754 0.934 318 118 89 436  

0.75 0.610 0.654 0.631 0.934 266 170 141 436  

0.95 0.443 0.474 0.458 0.934 193 243 214 436  

Kings* 

0.5 0.765 0.819 0.791 0.922 277 85 61 362  

0.75 0.665 0.705 0.685 0.922 241 121 101 362  

0.95 0.472 0.508 0.490 0.922 171 191 165 362  

Yarmouth 

0.5 0.595 0.699 0.642 0.817 20 14 9 34  

0.75 0.457 0.557 0.502 0.817 16 18 12 34  

0.95 0.328 0.403 0.362 0.817 11 23 17 34  

*Values calculated excluding dyke systems used to train and validate the model.  

mAP @ IoU [0.5: 0.95] @ Land-formed = 0.898, Weighted AP @ IoU [0.5: 0.95] @ Land-formed = 0.912 

 

 

 Figure 3-7 illustrates the predicted landform fields juxtaposed against those 

manually digitized in Hants county. The visual comparison indicates a generally accurate 

detection of the land-formed fields, with a minimal number of false positives and false 

negatives. However, there was a noticeable difference in boundary lines, which did not 

perfectly align with the reference datasets. While the deep learning model proved to be 
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largely successful in its detection capabilities, it encountered some difficulty in identifying 

land formations along the peripheries of the fields. 

 

Figure 3-7: Examples of detected land-formed fields in Hants county, NS. The blue lines represent the objects 
detected by the Mask-RCNN algorithm, while the red lines indicate the ground truth results that have been 
manually outlined by researchers for comparison and validation purposes. 

Figure3-8 presents common examples of FN and FP in relation to land-formed 

fields. For instance, Figure3-8A demonstrates a shorter section of land-formed fields that 

was divided by a larger, atypical ditch. Ordinarily, these fields would be formed with an 

east-west orientation, and this divergence could potentially be the cause of the false 

negatives. Similarly, Figure3-8B displays a field with an uncharacteristic orientation, 

namely south-southeast, which was not included in the model's training datasets and could 

thus be a contributing factor to a false negative. Figure3-8C features a field with an unusual 

relief pattern that might have confounded the model's detection capabilities. In Figure3-8D, 

the upper part of the field showcases a minor slope located between the ditches, a 

characteristic reminiscent of typical landform fields. This similarity may have confused the 

model. However, the lower section of the same field displays a varying relief pattern that 

the model might have struggled to interpret correctly. 
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Figure3-8: Example of False Negative (A), (B) and False Positive (C), (D). 

3.4.3 Nova Scotia Dykelands 

Expanding beyond the deep learning models results, this work also allowed a precise 

characterization of the size and agricultural use of Nova Scotia's dykelands. A total of 

13,262 hectares were classified across four different categories. The land categories 

included Land Formed, Not Formed, Old Formed, and Freshwater Marshes/Shrubland. We 

contrasted the categorized land versus the total amount of land protected by the NSDA. 

Results revealed that 9,272 hectares of dykelands were used for agriculture and almost 75% 

(6,924 hectares) were land-formed while the remaining were not (2347 hectares) (Table 

3-6). Land utilisation also varied significantly between counties, with Cumberland county 

having the most underutilized dykelands in the province (Table A-2Error! Reference 

source not found.). 
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Table 3-6: Number of hectares of dykelands classified by drainage types and agricultural utilisation within the 
dykelands of Nova Scotia. 

Category Description  Field Size (ha) Used for Agriculture  Underutilized  

1 Land Formed 6,924 
9,272 

 

2 Not Formed  2,347  

3 Old Formed  2,899  

3,989 
4 Marshes/Shrubland 1,090  

Total  13,262  
 

Total land protected by NSDA  17,401  
 

3.5 Discussion 

3.5.1 Interpretation and Significance of Findings 

The present study's findings align with preceding research, which demonstrated the utility 

of CNNs in feature extraction from elevation models (Maxwell et al., 2020; F. Zhao et al., 

2021). For instance, Maxwell et al., 2020, employed Mask R-CNN for extracting valley fill 

faces from elevation data, achieving high Precision, Recall, and F1-score exceeding 0.85. 

Likewise, Zhao et al., 2021, demonstrated the flexibility and adaptability of deep 

convolutional networks in mapping complex terraces. 

Expanding the perspective to a wider scope, the present study reinforces the 

importance of CNNs in mapping features that possess distinctive spatial, contextual, or 

textural signatures. This is particularly relevant when these features are not spectrally 

separable from other classes or features, further solidifying the value of these techniques in 

the field of remote sensing (You et al., 2019). 

 Although the use of an automated approach, as presented in this study, can offer 

less effort than manual delineation, the practical application of an automated solution is 

always a semi-automated solution where humans revisit the results and adjust the 

problems(Abdel-Jaber et al., 2022). Consequently, the proposed model should function as 

a preliminary screening tool, aiding geospatial analysts in refining the classification 

process. Analysts should validate the model's outputs, eliminating inconsistencies and 

outliers. Therefore, the adoption of this deep learning solution would transform the task 

into one focused on quality assurance rather than traditional manual digitization. This was 

an important takeaway from the study, where, during the validation phase, fields not 

classified as land-formed were manually classified into one of the categories listed in Table 

3-3. This process, therefore, had to be completed manually. Although time-consuming and 

labour-intensive, this process was still more efficient than a complete manual classification. 
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Out of the total 1,598 land-formed fields in Nova Scotia, 1173 were correctly classified by 

the algorithm at an IoU of 0.5, indicating that 73.40% of the fields did not necessitate 

manual corrections. For all of the dyke systems, representing 3,820 fields, 31.42% of the 

features required manual intervention to complete a full classification into the four 

categories. 

 Advancements in instance segmentation techniques, such as Mask R-CNN, have 

brought significant enhancements to the field of remote sensing by providing new tools to 

interpret aerial images versus more traditional techniques, such as OBIA. OBIA operates 

by segmenting images into objects based on spectral, spatial, and textural characteristics, 

which are then classified into different categories (Hossain & Chen, 2019). However, OBIA 

often requires manual and time-consuming parameter selection. Alternatively, deep-

learning-backed techniques like Mask R-CNN can automatically delineate individual 

objects within images. These techniques also provide real-time image processing, a vital 

capability in urgent applications such as disaster response (Ren et al., 2015). Furthermore, 

Mask R-CNN yields pixel-level object masks, offering more granular and accurate results 

than OBIA's typically broader object classifications (Hossain & Chen, 2019). Despite the 

computational and data requirements, continuous advancements in computing 

infrastructure help mitigate these challenges. Thus, instance segmentation techniques, in 

compensating for the shortfalls of OBIA, are revolutionizing the efficiency and precision 

of remote sensing image analysis. 

In parallel with these considerations, this study showed that the aspect and slope 

raster datasets used for preprocessing the training data performed best as it offers several 

advantages that contribute to better model performance. This representation method 

captures the intricate morphological variances of terrain, an asset of paramount importance 

for tasks like landform detection, terrain analysis, and hydrological modeling(Tzvetkov, 

2018). This representation enables the model to discern subtler features and variations, 

thereby potentially increasing its predictive performance.  

3.5.2 Limitations 

One of the biggest limitations of the model is that it was trained exclusively on land-formed 

fields. A more nuanced distinction between old and newly formed fields would have been 

advantageous, but the scarcity of training areas made this difficult to implement. The 

potential solution lies in employing newer instance segmentation algorithms or enlarging 
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the dataset to encompass broader study areas. Such an expansion could improve the model's 

flexibility, enabling it to differentiate these fields effectively. 

The study area stretches 250 km, from the easternmost to the westernmost dyke 

system. The enormity of this area is not the only challenge; certain systems are 

disproportionately affected by tidal changes due to the Bay of Fundy's unique 

geomorphology. Variations in dyke system, from those directly on the Bay of Fundy to 

river systems, contribute to diverse land features. Consequently, dykeland fields differ from 

one dyke system to another. This variability makes it challenging to generate substantial, 

representative training data needed for training deep learning models. The authors propose 

that these conditions may partly explain the model's lower performance with the training 

data from Cumberland county. This dataset, which accounted for nearly 80% of the total 

image chips used, was significantly larger than the Kings county dataset. In contrast, the 

Kings county dataset was limited to the Grand-Pré area, characterized by its homogeneity 

as most fields are land-formed. Although incorporating the Cumberland county dataset 

reduced the overall accuracy, it enhanced the model's robustness and made it more capable 

of distinguishing land-formed fields across the dykelands. Finally, despite diligent efforts 

to minimize errors during the manual classification of land-formed fields, the authors 

acknowledge the inherent subjectivity of the image interpretation process. Influencing 

factors may encompass the interpreter's training and experience, the complexity of the 

objects being interpreted, and the quality of the images utilized (Marshall et al., 2019). 

3.6 Conclusions 
The findings of this study demonstrate the precision of Mask R-CNN in discerning surface 

drainage characteristics from digital elevation data, achieving a mAP of 0.93 across IoU 

thresholds ranging from 0.5 to 0.95. This finding highlights the potential of Mask R-CNN 

as a reliable tool for this purpose. Moreover, boundary delineation algorithms that leverage 

deep learning models offer a rapid and effective approach to characterizing large 

geographic areas while offering the possibility to conduct multi-year analysis. By 

employing these algorithms, we gained valuable insights into drainage patterns and 

enhance our understanding of land utilization on agricultural dykelands. 

However, our model currently falls short in detecting fields that were originally 

land-formed but have lost their crowned aspect due to poor maintenance. Enhancing this 
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aspect of the model could open up new opportunities for automatically detecting fields in 

need of reformation, more effectively serving the farming community. It is also worth 

considering the extension of this training concept to include elevation models generated by 

drones using photogrammetry-based DEMs. These are generally more cost-effective than 

their LiDAR-derived counterparts and could provide a valuable resource for refining the 

proposed algorithm. Additionally, challenges persist when integrating these advanced 

algorithms into standard GIS software. These challenges typically stem from the need for 

custom coding to transform training data into a data type that newer models can process. 

Consequently, this complexity hinders the ease of incorporating trained models into GIS 

software, thereby impeding the technology adoption rate in remote sensing and GIS (Choi, 

2023). 

Future research avenues could include comprehensively characterizing fields 

classified as 'Old Formed.' This might offer novel insights and deepen our understanding 

of agricultural dykelands in Atlantic Canada. Moreover, it would be intriguing to examine 

the applicability of our current model in diverse contexts that implement land-forming 

techniques. For instance, an immediate area of interest could be the provinces of New 

Brunswick, which is geographically proximate to Nova Scotia. Indeed, New Brunswick 

alone boasts over 15,000 hectares of dykelands that could be characterized using our 

proposed algorithm (Singh et al., 2007). Moving beyond regional boundaries, it could be 

beneficial to extend the application of our model to global locales that utilize land-forming 

techniques. A notable example is the flat land of the Red River Valley located in Northwest 

Minnesota, USA (Soine, 1972). Analyzing such varied geographic regions would 

undoubtedly strengthen our model's robustness and generalize its applicability at a wider 

scale.  

Finally, exploring how alternative instance segmentation algorithms, such as the 

YOLO series could be an interesting avenue of research (Li et al., 2022). This particular 

algorithm has shown remarkable results in previous studies and could offer valuable 

insights into better ways of characterizing land features from elevation models (Bolya et 

al., 2019; Mohamed et al., 2021; Z. Zhao et al., 2022). 
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4.1 Abstract:  
Agricultural economic analysis tools such as crop profitability analyzers developed by 

academic institutions and governmental agencies have thrived in recent years. These tools, 

which incorporate various quantitative variables, have proven accurate in reflecting 

production costs and helping farmers with budgeting. Despite their utility, their application 

has been limited to small-scale economic analyses rather than being deployed on large 

geographic extents. This study aims to broaden the scope of economic analysis in 

agriculture by integrating three datasets: AI-generated field boundaries, annual crop 

inventories, and a budget calculator for crop and forage production. Focusing on the Nova 

Scotia dykelands, an agriculturally rich area vulnerable to climate change, this research 

explores the utility of combining these datasets for macro-scale economic analysis. These 

datasets were integrated within a geographic information system environment to assess 

agricultural productivity and land use. Results from the study uncovered significant 

heterogeneity in field sizes and profitability, indicating that some agricultural fields were 

notably more profitable than others. The Grand Pré, Wellington, and Annapolis River dyke 

systems were the top performers with average net profits of $822,152, $780,587, and 

$479,151, respectively. Results also revealed a non-linear relationship between dyke 

systems' size and profitability, suggesting that factors beyond size play a role in 

determining economic returns. This underscores the need for a multifaceted approach to 
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optimize dykeland profitability and long-term management. This approach provides a 

broader perspective on land management, considering the economic specifics of each field. 

 

4.2 Introduction 
As of 2024, crop budgeting tools designed to assist farmers have been developed by 

government agencies across every province within Central Canada and the Canadian 

Prairies (CECPA, 2023; Government of Alberta, 2023b; Government of Manitoba, 2022; 

Government of Ontario, 2023; Government of Saskatchewan, 2023). These tools are 

customized for the respective region's unique soil types and climate conditions, providing 

farmers with a valuable resource for financial planning (Wipf, 2008). Unfortunately, these 

budgeting tools often lack the capacity to incorporate broader economic considerations, 

potentially overlooking the long-term sustainability of land management strategies. 

Consequently, a case study was conducted on the agricultural dykelands of Nova Scotia to 

explore an innovative framework that helps estimate the cost of production and economics 

of agricultural fields over a period of seven years. 

Dykelands are agricultural lands protected from coastal inundation by dyke 

infrastructure and constitute some of the most agriculturally productive lands in Nova 

Scotia (Milligan, 1987). Dykes and aboiteaux were first developed by the French settlers 

in the 1700's to allow fresh water to drain from the marshland during low tide and to prevent 

saltwater intrusion during high tides (Bleakney, 2004; Milligan, 1987). In Nova Scotia, 

Canada, the management of the provincial dykeland system presents a series of challenges 

(de Bruin et al., 2009). Stakeholders, including the NSDA, are tasked with evaluating 

various options for dykelands that are currently underutilized. They must decide whether 

to maintain them, repurpose them for agricultural activities, or revert them to salt marshes. 

Effective decision-making in this area is crucial given the anticipated impacts of climate 

change (Drever et al., 2021; Philp & Cohen, 2020; Webster et al., 2012). Research by van 

Proosdij and Page (2012) has highlighted concerns about a projected sea-level rise of 70 to 

140 cm over the next century in Nova Scotia. Such an increase could heighten the 

susceptibility of dyke systems to storm surges (van Proosdij & Page, 2012). Furthermore, 

within the upcoming five decades, it is estimated that about 70% of the 241 km of dykes 

across the province will face significant risks related to coastal erosion and overtopping 

(van Proosdij et al., 2018). 
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Farmers represent the most prominent land-based owner of dykelands in the Bay of 

Fundy, which makes them more likely to be impacted by rising-sea levels. This situation 

puts them at a greater risk of having to manage the negative impacts of land reclamation 

caused by dyke realignment projects, which are at the forefront of governmental initiatives 

(Gorman, 2019; Government of Nova Scotia, 2020). For these farmers, the challenges 

stemming from land reclamation due to dyke realignment are complex and put dykelands 

stakeholders in an ambiguous situation with limited options. Farmers can reclaim adjacent 

land and purchase new pieces of uplands if available, reduce the scale of their farming 

operation, or relocate their farm in more extreme cases. While research indicates that 

scaling down farming operations can optimize practices and enhance operational efficiency 

in some instances, this improvement is specific to certain farming activities and is limited 

in scope (Asgedom & Kebreab, 2011; Fortier, 2014). 

The long-term impact of diminishing agricultural production extends beyond 

immediate financial considerations (Francis et al., 2012). As societal demands for food and 

agricultural products continue to grow, the significance of local production becomes 

increasingly apparent. This is particularly relevant in Nova Scotia, where a staggering 87% 

of consumed food is imported (HRM, 2020), resulting in substantial environmental costs. 

While imports are often associated with a substantial carbon footprint due to transportation, 

they can also contribute positively to emissions reduction by sourcing products from 

regions where production is more efficient (Baylis et al., 2021). Thus, the relationship 

between local production and sustainability is complex and context-specific. Nevertheless, 

enhancing local food systems can offer advantages in terms of fostering regional economic 

growth (NSDA, 2020). The economic viability of agricultural utilization within the 

dykelands is an essential factor influencing land use decisions. In this context, 

understanding the net profitability of different dyke systems becomes crucial. This can 

influence policymakers in their evaluation of the ROI of maintaining dyke infrastructures 

vulnerable to rising sea levels or planning re-alignment projects. Hence, this study aims to 

shed light on the financial outcomes associated with various dykeland systems in the 

province by analyzing the net revenue of agricultural fields from 2016 to 2023.  

To date, other similar land characterization work has mainly focused on the non-

economic analysis of agricultural land. Work by Botzas-Coluni & Andrews (2023) 

presented an ecosystem accounting framework to assess Canada's agroecosystems and the 
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ecosystem services they provide. This approach to track the area and state of 

agroecosystems has the potential to provide important information to link economic and 

environmental data for policymakers. Unfortunately, this work is still in progress, and 

official results have yet to be published. Other work by Benami et al. (2021) highlights the 

integration of remote sensing, crop modelling, and economics to manage agricultural risks. 

It examines how risk management influences production decisions and the impact of 

agricultural insurance on mitigating risks, which could offer insights into broader economic 

analyses in agriculture. Similarly, work from Hunt et al. (2023) attempted to address the 

need for more detailed and practical agricultural data by developing CSBs. This approach 

was used to aggregate gridded landcover data into field-level insights by utilizing 

geospatial polygons that delineate areas of homogeneous cropping sequences. This method 

provided a scalable solution for large-scale crop mapping, although it does not include 

economical assessment.  

This study introduces an innovative approach that leverages AI-generated field 

boundaries to enhance the precision of agricultural economic assessments. Unlike 

traditional methods, this approach uses high-resolution delineations of agricultural fields, 

enabling a more accurate calculation of field areas. This granularity allows for capturing 

spatial heterogeneity and nuanced differences in land use and management practices, which 

are often overlooked in aggregate analyses. To achieve this, we developed and applied a 

budgeting tool designed to calculate the cost of production per hectare of crops and forage 

on the dykelands of Nova Scotia. The tool was then used to evaluate the total net revenue 

for each agricultural field within the dyke systems. This was helpful in aggregating and 

analyzing data across various dyke system in the province, enabling a comparative 

assessment of their economic viability.  

By focusing on Nova Scotia's dykelands, this research contributes to the broader 

field of agricultural economics by demonstrating how spatial analysis and remote sensing 

techniques can be integrated into economic modeling. The findings have implications for 

policymakers, stakeholders, and researchers interested in optimizing land use, improving 

agricultural profitability, and developing adaptive strategies to mitigate the impacts of 

climate change. 
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4.3 Methods 

4.3.1 Analysis Regions 

The analysis covered all of Nova Scotia's dykelands, encompassing 17,401 hectares 

along the Bay of Fundy, Canada (Figure 4-1). The NSDA identifies each dyke system with 

a unique identification number and name. There are 82 dyke systems in total within the 

province, and 77 of these were examined in this study. The remaining five dyke systems 

were excluded as they did not contain actively used agricultural fields. 

 

Figure 4-1: Geographical distribution of Nova Scotia's dyke systems by counties. 

4.3.2 Analytical overview 

The approach taken in this study integrates four primary components, which include 

a budgeting tool, AI-generated field boundaries of agricultural dykelands, the AAFC 

Annual Crop Inventory from 2016-2023 and the legal boundaries of the dyke systems 

(Figure 4-2). By combining these datasets within a GIS, the agricultural productivity and 

profitability of dyke systems were assessed at a detailed spatial scale.  
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Figure 4-2: Workflow employed in the analysis to link agricultural productivity and land use of Nova Scotia's dyke 
systems with an economic value. 

4.3.3 Budgeting tool 

The budgeting tool was developed to calculate the cost of production per hectare 

for various crops and forage on the dykelands. It details cost projections for the main crops 

grown on dykelands: barley, corn (for both grain and silage), soybeans, wheat, winter 

wheat, dry hay, and baled silage (Bilodeau et al., 2021). The tool incorporates over 130 

input variables, including seed costs, fertilizer, chemicals, fuel consumption, labor, and 

surface drainage costs. Cost are estimated utilizing either the provided default data or inputs 

specified by the user. (Table 4-1) outlines the structure of the budgeting tool. 

Table 4-1: Overview of the structure of the budgeting tool: Each sheet is designed to guide users through different 
aspects of farm budgeting, ranging from introductory instructions to detailed financial and production analyses. 

Sheet Name Sheet Number Content Description 

Intro 1 Introduction to the workbook, usage instructions 

User Guide 2 Instructions on how to use the workbook 

Field1 to Field5 3-7 Field-specific data, crop management 

Op Costs 8 Operating costs, labor, fuel, machinery, storage, drainage 

Land & Equip 9 Land and equipment loans, rentals, payments 

Product 10 Product management, seed, grain 

Fertilizer 11 Fertilizer types, costs 

Assumptions 12 Crop seeding, chemical use, yield forecasts, and pricing assumptions 

Summary-Total 13 Analysis of production costs, profitability, and revenues per crop 

Summary-Acre 14 Farm summary by acre, detailed financials 
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Appendix B contains a comprehensive guide that provides a detailed understanding 

of the functionality and calculation methods of the production cost estimator. This resource 

outlines all variables, considerations, and assumptions incorporated into the model 

framework, ensuring transparency and supporting users in making well-informed 

interpretations of the tool's results. 

4.3.3.1 Cost of production per hectare  

The budgeting tool generated estimations of production cost per hectare for crops 

and forage. Table 4-2 lists the input cost used to calculate the net profit used in the analysis.  

Table 4-2: Cost of production per hectare generated from the dykelands crops and forage budgeting tool showing 
input cost used to generate the analysis. 

  
Barley 

Grain 
Corn 

Silage 
Corn 

Soybeans Wheat 
Winter 
wheat 

Dry 
Hay 

Baled 
Silage  

A.  Operating Costs         

Seed & Treatment $114 $253 $285 $107 $163 $151 $125 $125 

Fertilizer $379 $720 $720 $277 $442 $545 $267 $267 

Herbicide $62 $99 $99 $93 $62 $62 $0 $0 

Fungicide $49 $0 $0 $40 $49 $49 $0 $0 

Insecticide $0 $0 $0 $0 $0 $0 $0 $0 

Fuel $76 $83 $147 $62 $79 $79 $71 $71 

Hired Labour $271 $271 $271 $271 $271 $271 $271 $271 

Machinery Operating $25 $25 $25 $25 $25 $25 $25 $25 

Crop Insurance $19 $2 $4 $4 $25 $25 $0 $0 

Other Costs $19 $19 $19 $19 $19 $19 $0 $19 

Twine/Net Wrap $0 $0 $0 $0 $0 $0 $0 $16 

Bale Plastic Silage Wrap $0 $0 $0 $0 $0 $0 $0 $57 

Interest on Operating $25 $37 $39 $22 $28 $31 $20 $21 

Total Operating $1,039 $1,508 $1,608 $920 $1,164 $1,258 $808 $872 

B.   Fixed Costs         

Land Cost $0 $0 $0 $0 $0 $0 $0 $0 

Machinery Cost $0 $0 $0 $0 $0 $0 $0 $0 

Machinery Depreciation $0 $0 $0 $0 $0 $0 $0 $0 

Total Fixed  $0 $0 $0 $0 $0 $0 $0 $0 

Total Operating & Fixed $1,039 $1,508 $1,608 $920 $1,164 $1,258 $808 $872 

C. Ownership         

Owner Withdrawal $62 $62 $62 $62 $62 $62 $62 $62 

Total Costs $1,101 $1,570 $1,670 $982 $1,226 $1,319 $869 $934 

Profitability Analysis 

Avg. Market Price $277 $329 $82 $610 $362 $362 $162 $120 

Yield per ha (MT) 4.2 9.6 38 3.4 5.9 5.9 6.8 13.4 

Unit type MT MT MT MT MT MT MT MT 

Other Crop Income  $0 $0 $0 $0 $0 $0 $0 $0 



71 

 

Gross Revenue $1,164 $3,171 $3,120 $2,110 $2,147 $2,147 $1,117 $1,616 

Marginal Returns          

Over Operating Costs $124 $1,662 $1,512 $1,190 $983 $889 $309 $744 

Operating & Fixed Costs $124 $1,662 $1,512 $1,190 $983 $889 $309 $744 

Total Costs (Net Profit) $62 $1,600 $1,450 $1,128 $921 $827 $247 $682 

 

Considering that many factors can influence the production cost of forage, 

discussed in Section 4.5.1, several assumptions were made to streamline the evaluation 

process. First, the analysis presumes that all forage was grown in a production year, thereby 

excluding costs associated with seeding. Secondly, it incorporates the expectation of two 

harvests annually, effectively doubling the net profit per hectare to account for the 

increased yield. Lastly, all fields were assumed to be seeded with alfalfa-grass, which is a 

typical seeding mixture on the dykelands (Perennia, 2021b). Table 4-3 provides a 

summarised version of the net profit per hectare for the crops and forages for the year 2023 

and used in this analysis.  

Table 4-3: A summarized table of the net profit per hectare of the crops and forage generated from the budgeting 
tool. 

Crops Net profit per hectare (2023) 

Wheat $921 

Winter wheat $827 

Soybeans $1129 

Barley $61 

Corn (Grain) $1601 

Corn (Silage) $1450 

Dry Hay (Alfalfa-Grass) $370 

Baled Silage (Alfalfa-Grass)  $805 

 

4.3.4 Datasets 

4.3.4.1 Historical yields and average market price per hectare 

Yield per hectare was calculated from data provided by the NSCLIC. This 

commission offers crop insurance plans to Nova Scotian farmers that help them manage 

risk on their farms by maintaining cash flows during poor crop years (NSCLIC, 2023). As 

part of their services, the NSCLIC compiles historical yield data on crops provided by 

producers and are used to price insurance policies. Drawing from the NSCLIC dataset, a 

period of 5 years from 2018 to 2022 was used to compile the average yield for each crop 
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(Table 4-4). Since data from the NSCLIC only comprises information on insured crop 

owners, the data was also cross validated with information from the Atlantic Grain Council 

factsheets and seeding rate trials from 2021 and 2022 (Atlantic Grains Council, 2021, 

2022c).While regional variability in yields and prices can influence profitability, data 

limitations require the use of provincial averages. We acknowledge this limitation and 

discuss its potential impact on the results in Section 4.5. 

The market prices were derived by computing data published by Statistics Canada 

on the average monthly price of cash crops targeted in this study from January to June 2023 

(Government of Canada, 2023a). For soybeans, data from the nearest geographical area 

with available information, Prince Edward Island, was selected from the same dataset. 

Lastly, the market prices for corn silage, dry hay, and baled silage were sourced from the 

Manitoba Agricultural Services Corporation (MASC, 2023). Table 4-4 shows the average 

market price for agricultural commodities used in the budgeting tool.  

Table 4-4: Average crop yields and market prices for agricultural commodities used in the tool. 

Crops MT/ha 15%M Market Price ($/MT) 

Soybeans 3.4 $610 

Wheat 5.9 $362 

Wheat - Winter 5.9 $362 

Barley 4.2 $277 

Corn (Grain) 9.6 $329 

Corn (Silage) 38 $315 

Dry Hay (Alfalfa-Grass) 6.8 $162 

Baled Silage (Alfalfa-Grass) 13.4 $120 

  

4.3.4.2 Digitized field boundaries of agricultural dykelands 

Agricultural dykelands rely heavily on a surface drainage technique called 'land 

forming', which alters the topography of fields to improve drainage. After the initial 

forming, farmers perform maintenance work every couple of years to maintain the initial 

slope. This type of work is referred to as secondary forming and involves maintaining the 

ditches and reshaping the crown of the fields using the ditch spoils (Kolstee et al., 1994; 

MacIntyre & Jackson, 1975). 

In this analysis, we utilized the dataset presented by Bilodeau et al. 2024,)which 

offers a comprehensive overview of the agricultural dykelands in Nova Scotia. The dataset 

uses precise field boundaries of every field in Nova Scotia's agricultural dykelands, 
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generated using existing AI technologies developed by Digifarm (Digifarm, Inc., Oslo, 

Norway). Digifarm has developed an API that uses a deep neural network model to detect 

field boundaries from satellite imagery (DigiFarm, 2022). These AI-generated field 

boundaries are secondary data that were sourced and not developed as part of this study. 

To enhance the dataset, these field boundaries were supplemented by a Mask R-

CNN model trained to detect land-formed fields using LiDAR-derived DEMs. The 

presence of land formed fields helped to differentiate fields that were actively used for 

agriculture versus underutilized. Bilodeau et al. 2024)classified 13,262 hectares of 

agricultural dykelands into four distinct categories: Land Formed, Not Formed, Old 

Formed, and Freshwater Marshes/Shrubland. Table 4-5 summarizes the classification of 

these fields. In this study, only fields actively used for agriculture were used, representing 

9,272 hectares in total.  

Table 4-5: Number of hectares of dykelands classified by drainage types and agricultural use within Nova Scotia's 
dyke systems. (Adapted from Bilodeau et al., 2024) 

Category Description Field Size (ha) Used for Agriculture Underutilized 

1 Land Formed 6,924 
9,272 

 

2 Not Formed 2,347  

3 Old Formed 2,899  

3,989 
4 Marshes/Shrubland 1,090  

Total  13,262  
 

Total land protected by NSDA 17,401  
 

 

Field boundaries calculation was limited to dykelands within the legislated 

agricultural marshland defined under Nova Scotia's Agricultural Marshland Conservation 

Act. These boundaries were provided as vector polygons by the NSDA and used to exclude 

agricultural fields that were not part of the dyke systems.  

The histogram in Figure 4-3 reveals a right-skewed distribution of the number of 

agricultural fields by dyke systems. Most dyke systems in Nova Scotia have a smaller 

number of fields, with the most common number ranging from 1 to 32 fields. This class 

alone encompasses over 55 dyke systems, indicating a high frequency of smaller dyke 

systems. Figure 4-3 also demonstrates that as the number of fields increases, there is a 

marked decrease in the frequency of dyke systems. Notably, dyke systems with between 

32 and 63 agricultural fields are less common, and those with more than 63 fields are 
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comparatively rare. The distribution exhibits a long tail to the right, with very few dyke 

systems containing fields in the upper ranges of the dataset. The presence of dyke systems 

with over 200 fields is an outlier occurrence. This distribution pattern underscores the 

predominance of small to medium-sized dyke systems in the agricultural landscape of Nova 

Scotia. 

 

Figure 4-3: Histogram depicting the distribution of dyke systems in Nova Scotia by the number of agricultural fields 
they contain. 

4.3.4.3 Annual crop inventory 

The AAFC Annual Crop Inventory, from 2016 to 2023, excluding 2020, served as 

a resource for evaluating the crops grown on Nova Scotia's dykelands. The annual 

inventory is published by the Earth Observation Team of the STB at AAFC and created 

from optical (Landsat-8, Landsat-9, Sentinel-2) and radar (RADARSAT-2) based satellite 

images using a decision tree classifier (Agriculture and Agri-Food Canada, 2023). 

Although the Annual Crop Inventory maps are valuable for identifying crop types across 

large areas, their spatial resolution is limited to 30 meters. This coarse resolution does not 

capture the detailed field boundaries required for accurate calculation of field areas, input 

usage estimations, and understanding of spatial relationships between fields. 

To ensure the reliability of these inventories, AAFC and its partners gathered 

ground-truth data, which were used to assess the accuracy of the model (Agriculture and 

Agri-Food Canada, 2023). Table 4-6 compares the satellite data utilized across the years 

and the overall accuracy of the inventories. For Nova Scotia, the average accuracy of these 
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datasets was 89% over the period, with a minimum accuracy of 85%. This level of precision 

underlines the consistency and dependability of the AAFC crop inventory (Agriculture and 

Agri-Food Canada, 2023). The AAFC's 2020 inventory was excluded from this analysis 

due to travel restrictions during the COVID-19 pandemic, which impeded ground truth data 

collection in Nova Scotia.  

 

Table 4-6: Overall accuracy of the Agriculture and Agri-Food Canada Crop Inventory for the province of Nova Scotia, 
Canada, from 2016 to 2023 (excluding 2020). (Adapted from Agriculture and Agri-Food Canada, 2023)  

Year Overall Accuracy (%) Remotely sensed data used 

2016 91 Landsat-8, Sentinel-2, RADARSAT-2 

2017 89 Landsat-8, Sentinel-2, RADARSAT-2 

2018 93 Landsat-8, Sentinel-2, RADARSAT-2 

2019 89 Landsat-8, Sentinel-2, RADARSAT-2 

2021 88 Landsat-8, Sentinel-2, RADARSAT (RCM) 

2022 91 Landsat-8, Landsat-9, Sentinel-2, RADARSAT (RCM) 

2023 88 Landsat-8, Landsat-9, Sentinel-2, RADARSAT (RCM) 

 

4.3.5 Analysis 

4.3.5.1 Calculating the value of crop production on the dyke systems 

A Python script was developed within the ArcGIS Pro API (ESRI, Redlands, CA, 

USA) to calculate crop production costs. This script incorporated multiple SQL expressions 

to search, select, and calculate data for specific subsets of table records. The outcome of 

this script included a series of tables that contained feature classes and attribute 

information. Each table presented the cost of crop production on each agricultural field over 

seven years, alongside calculated net profits. The net profit of a field was calculated by 

multiplying the respective cost of production per hectare by the size of the field. Figure 4-4 

illustrates the logical workflow of this operation.  
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Figure 4-4: The logical flow of the SQL query used to assign a dollar value to each agricultural field within the Nova 
Scotia dyke systems. 

At this stage, the cost of surface drainage was determined through a separate SQL 

query. Fields categorized as "Land Formed" were selected, and an additional charge of $50 

per hectare was included in their per-hectare cost. Given that these fields were pre-

identified as land formed, it was presumed that they would require secondary forming every 

eight years. Consequently, the overall expense for secondary forming of $400 per hectare 

was distributed over the usual maintenance frequency (N. Juurlink, personal 

communication, February 24, 2021). 

The Summary Statistics tool in ArcGIS Pro was utilized to consolidate and calculate 

the aggregated values of financial and spatial data. This process was performed on the input 

table generated from the previous steps. The tool was configured to compute the sum of 

each field, effectively providing a total net price for each year and the total area of the 

fields. To identify the dyke system associated with each field, a vector polygon file 

provided by NSDA was used as a reference, enabling the aggregation of data by each 

unique dyke system name within the dataset. This allowed for the results to reflect summed 

values grouped by individual systems. 

Net profits were the primary metric used to assess the cost of production on 

agricultural dykelands. This metric served as an indicator of financial health since it 

revealed the actual profitability after all expenses were accounted for (Timmer, 2002). This 
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information was used for benchmarking, allowing for an effective comparison of 

profitability across different crops and regions (Gray, 2013). Analyzing data at the field 

level allowed to capture spatial heterogeneity and management practices that influenced 

profitability. This granularity provided insights that simplified, aggregate approaches might 

overlooked. 

4.3.5.2 Generating various scenarios 

In Nova Scotia, half of the corn production is allocated for silage and the other half 

for grain corn (Atlantic Grains Council, 2020, 2021). Although useful, this information 

does not identify which fields are used explicitly for what purposes. Therefore, this analysis 

considered two hypothetical scenarios: (A) assuming all corn grown was used for silage, 

and (B) assuming all corn grown was used for grain. Similarly, determining the exact 

proportion of forage production utilized for dry or baled silage is not feasible. 

Consequently, two additional scenarios were analyzed: (C) where all forage was presumed 

to be dry hay, and (D) where all forage was presumed to be used in baled silage. Figure 4-5 

visually represents the various scenarios explored in the study. Evaluating these 

hypothetical scenarios provides a spectrum of probable costs, presenting a more 

comprehensive range of possibilities in the analysis. In this study, the term "performance" 

refers to the total average net profit generated by each dyke system across the four scenarios 

(A, B, C, D). This metric encompasses the economic output of each system based on its 

agricultural productivity under different conditions. 

 

Figure 4-5: Combinations of hypothetical scenarios used in the analysis to widen the spectrum of possible costs. 

For each scenario, the net profit per hectare of crops was calculated and then multiplied 

by the size of each field. These values were compiled for all fields within a dyke system 
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and averaged across all systems in Nova Scotia, resulting in an average yearly net profit 

expressed in dollars per year. Descriptive statistics were computed in Microsoft Excel to 

capture the variation in dyke sizes and their profitability. These statistics included the mean, 

standard deviation, minimum, and maximum values for each dyke system. A scatter plot 

was also generated to represent the relationship between the size of dyke systems and the 

profitability over the study period. Additionally, a histogram was used to examine the 

distribution of fields across different dyke systems. This approach facilitated the 

identification of key patterns and outliers within the data. Lastly, a profitability index for 

each dyke system was calculated by averaging the annual net profit of each system and 

dividing it by the total size of the dyke system. This operation was then repeated for each 

scenario. At this point, the average of all the scenarios per dyke system was computed, 

which resulted in a profitability index represented in net profit ($/ha). 

4.4 Results 
Results from the analysis of the 77 agricultural dyke systems in Nova Scotia and their 

average yearly profits across four scenarios revealed a diverse range of performance 

trajectories. Scenarios A and B were the most profitable, while Scenarios B and D were 

consistently the least profitable options (Figure 4-6). The median average net profitability 

by dyke systems for the seven years (excluding 2020), ranged between $73,104 and 

$79,785 across all four scenarios showing small variations. 

 

Figure 4-6: Average net profitability of crops and forages on Nova Scotia's dyke systems. 
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Table 4-7 presents the total average net profit of the ten best and ten least 

performing dyke systems in Nova Scotia across four scenarios (A, B, C, D), alongside their 

overall average net profits. The top performers showcase Grand Pré, leading with an 

average net profit of $822,152, followed by Wellington and Annapolis River with $780,587 

and $479,151, respectively. On the other end of the spectrum, the worst performing dyke 

systems have significantly lower profits, with Barronsfield at the bottom, yielding an 

overall average of just $448.  

Table 4-7: Total average net profit of the ten best and least performing dyke systems in Nova Scotia. 

Dyke System Scenario A Scenario B Scenario C Scenario D Overall Avg 

Ten best performing dyke systems (total average net profit) 
Grand Pré $925,397 $767,900 $870,693 $724,619 $822,152 
Wellington $874,406 $733,350 $822,916 $691,676 $780,587 
Annapolis River $590,590 $391,432 $564,185 $370,396 $479,151 
Martock $518,079 $284,468 $507,093 $275,690 $396,333 
Falmouth Great Dyke $347,396 $200,518 $335,568 $191,909 $268,848 
Amherst Point $227,699 $93,845 $227,599 $93,744 $160,722 
Fort Lawrence $231,362 $89,268 $230,749 $88,655 $160,008 
Masstown $213,616 $86,468 $213,243 $86,095 $149,855 
John Lusby $174,690 $98,176 $168,935 $93,788 $133,897 
Nappan Dam $183,953 $84,272 $181,326 $82,200 $132,938 

Ten least performing dyke systems (total average net profit) 
Barronsfield $613 $282 $613 $282 $448 
Minudie $984 $453 $984 $453 $719 
Tufts $2,202 $1,013 $2,202 $1,013 $1,607 
Armstrong $2,386 $1,097 $2,386 $1,097 $1,742 
Wentworth $4,322 $1,989 $4,322 $1,989 $3,156 
Truro Dykeland Park $4,623 $2,127 $4,623 $2,127 $3,375 
Kentville $5,714 $2,629 $5,714 $2,629 $4,172 
Pereau $7,305 $2,848 $7,305 $2,848 $5,077 
Saulnierville $7,346 $3,380 $7,346 $3,380 $5,363 
Princeport $9,025 $4,304 $9,025 $4,304 $6,665 

 

The average field sizes per dyke system showed considerable variation, with a mean 

of 120.42 hectares and a standard deviation of 188.71 hectares, indicating significant 

heterogeneity in the sizes of the systems (Table 4-8). In terms of profitability, variations 

were observed across different pricing scenarios (A, B, C, D). Similarly to the yearly net 

profits by dyke systems, the average net profit per hectare was highest in Scenario A at 

$757.85 and lowest in Scenario D at $399.77. The average profitability index, which was 

calculated as the average of the ratios across all scenarios, was $577.73 per hectare. This 
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figure, coupled with a standard deviation of $153.95 per hectare, indicated important 

fluctuations in profitability across certain dyke systems. Similarly, the minimum and 

maximum values showed a large range in profitability, indicating that some dyke system 

were significantly more profitable than others. 

 

Table 4-8: Descriptive statistics of the dataset used to evaluate variation in dyke systems profitability in Nova 
Scotia. 

Variable Mean SD Min Q1 Mdn Q3 Max 

Number of Fields 38.35 58.89 1 9 20 40 311 

Dyke System Size (ha) 
120.4

2 
188.71 0.76 30.33 52.1 116.3

6 
1013.3

4 

Scenario A ($/ha) 
757.8

5 
140.16 204.0

8 
682.7

5 
758.51 848.4

6 
1099.0

2 

Scenario B ($/ha) 
414.1

7 
196.55 93.92 274.9

3 
339.92 525.0

2 
1078.4

9 

Scenario C ($/ha) 
739.1

4 
122.12 204.0

8 
682.7

5 
748.68 806.1

3 
1029.9

8 

Scenario D ($/ha) 
399.7

7 
178.53 93.92 274.8

8 
339.92 509.8

5 
1019.2

1 
Avg Profitability Index 
($/ha) 

577.7

3 
153.95 149 474.9

9 
546.84 673.6

6 
1056.6

7 

 

In the analysis of the dyke systems' performance in dollars per hectare, a marked 

discrepancy was revealed in the economic viability of certain dyke systems (Figure 4-7). 

The Avonport system emerged as the most profitable, with an average profitability 

exceeding $1000 per hectare. Conversely, the Wentworth system had the lowest 

profitability, slightly above $150 per hectare. The upper echelon of dyke systems 

consistently showed profitability above $750 per hectare, delineating a clear economic 

advantage over the bottom ten systems, which plateaued at around $400 per hectare.  
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Figure 4-7: Economic performance of the ten most and least profitable dyke systems calculated in dollars per 
hectare. Prices are calculated as the average measure of net profit from 2016 to 2023, across four scenarios. 

The scatter plot in Figure 4-8 revealed a complex relationship between the size of 

the dyke system and the average profitability that defied a simple linear interpretation. Data 

points are densely clustered within the 0 to 200-hectare range, where profitability per 

hectare exhibited substantial variation from $150 to approximately $1050. As dyke system 

size increased, the frequency of data points diminished, indicating that larger dyke systems 

are less common. Outliers were observed, particularly within the 400 to 600-hectare range, 

where profitability peaked under $700/hectare. On the contrary, systems surpassing 600 

hectares tended to show a lower profitability per hectare.  
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Figure 4-8: Scatter plot of Nova Scotia's dyke systems size (hectares) versus their average net profitability calculated 
in dollars per hectare.  

4.5 Discussion 
An in-depth analysis of the ten most productive dyke systems, based on total average 

net profit, revealed consistent patterns reflective of current agricultural management 

practices. Fields on these dyke systems, notably Grand Pré, Wellington, Annapolis River, 

Martock, and Falmouth, were in crop rotation, which entails sequentially planting different 

crops and forages on the same plot to enhance soil health and nutrient optimization. 

Additionally, nearly 80% of the fields in these areas underwent land formation, indicating 

that efforts were made to maintain surface drainage and field productivity. These 

management practices could be predictors of profitability, although more research is 

needed to assess if a correlation exists.  

The analysis highlighted a significant disparity in profitability, with the top five 

dyke systems achieving net profits that were more than fivefold higher than the median of 

the remaining systems. Specifically, the net profit of the top two systems (Wellington and 

Grand-Pré), amounting to $1,602,739, closely matched that of the third to eighth ranked 

dyke system combined, at $1,614,917. This discrepancy underscored the economic 

significance of these two top systems. However, this profitability did not directly correlate 

with higher revenue per hectare, as illustrated by the scatter plot results. In terms of dollars 

per hectare, the ten most productive dyke systems were approximately the average size of 
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all the systems analyzed (297 hectares). Yet, Wellington and Grand-Pré stood out as 

exceptions, their sizes nearly tenfold larger than the other eight leading dyke systems in 

terms of dollars per hectare.  

The scatter plot revealed no clear trend linking profitability with field size, 

suggesting that factors other than size played a significant role in determining the 

profitability of the dyke systems. This lack of a straightforward size-profitability 

relationship implies that policies focused solely on expanding dyke systems may not 

necessarily lead to higher economic returns. Instead, optimizing profitability may require a 

more multifaceted approach that emphasizes enhancing management practices, improving 

soil conditions, adapting to market conditions and considering logistical factors. 

For instance, proximity to major road networks could plays an important role in 

assessing both the cost of production and profitability. Dyke systems near highways or 

transportation hubs benefit from reduced logistical costs for moving inputs (e.g., fertilizers, 

seeds) and outputs (e.g., crops, forage). Conversely, remote dyke systems with limited 

access to infrastructure such as grain silos face higher costs due to extended transportation 

times and potential delays, which could be reflected in the assessment of the budgeting tool. 

By identifying and targeting these factors, policy efforts can better support sustainable 

profitability across various dyke system sizes, rather than assuming scale as the primary 

driver of economic success. 

4.5.1 Forage production 

Estimating the cost of production per hectare of forage presents several challenges 

due to the variability in farming practices and conditions. A primary factor contributing to 

this complexity is the variability in the number of harvests during a growing season. This 

can range from one to three across different farming operations, greatly influencing total 

revenue per hectare. Additionally, the composition of haylage mixtures is determined by 

soil conditions. This influences the percentage of the mixture (Alfalfa, Red clover, Ladino 

clover, Timothy, etc.), which affects the total cost of seeding (Perennia, 2021b). 

A secondary factor is the financial distinction between seeding and production 

years, which complicates cost estimation. Seeding years entail higher expenses due to the 

costs associated with pre-tillage herbicide application, tillage, seed purchase, and the 

seeding process (Perennia, 2021b; Thomas, 2018). Conversely, production years are 
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characterized by relatively lower costs since soil preparation and planting investments do 

not recur annually. Additionally, after the initial establishment of the crop, production years 

tend to yield more due to the growth maturity of the plants.  

The third factor complicating the cost estimation of forages is their utilization, 

mainly since the majority of forages produced in Nova Scotia are intended for on-farm use 

(Perennia, 2023). This predominance of on-farm use of forage production can be attributed 

to several reasons. Firstly, forage production on a farm can serve as a strategy for feed self-

sufficiency. This allows farmers to ensure a more consistent and cost-effective feed supply 

for their livestock, reducing their reliance on external sources that may be volatile in price 

(McCartney & Horton, 1997; Timmer, 2002). Secondly, the transportation of forage, which 

is bulky and low in density, is costly and can significantly diminish the profit margins from 

selling it (Perennia, 2021b; Timmer, 2002). Lastly, using on-farm forage enables farmers 

to maintain stricter quality control over the feed, which is crucial for the productivity of 

their livestock (Allen, 1996; Mhere et al., 2002).  

The most current and extensive analysis of the cost of forage production in Nova 

Scotia was carried out in 2011 by Jones (2011). This research analyzed the economic 

aspects of establishing forage and the associated production costs within the region. Jones 

(2011) indicated a net profit of $183 per hectare for hay and $81 per hectare for silage, 

based on market prices of $150 per tonne for hay and $120 per tonne for silage(Jones, 

2011). When these figures were adjusted for inflation to 2023 at an annual rate of 2.32%, 

assuming similar yields, the net profits per hectare amounted to $478 for silage and $179 

for dry hay. These findings closely aligned with those presented in this paper, particularly 

considering that Jones's methodology accounted for only a limited set of parameters. Our 

analysis calculated the net profits at $326.49 per hectare for silage and $150.50 per hectare 

for dry hay, as detailed in Table 4-3. 

4.5.2 Limitations 

The proposed method of calculating the net profit of land has several limitations. 

First, the method assumes that crops and forages produced on dykelands are being sold on 

the market for profit. This approach focuses on the performance of the dyke systems in 

dollars per hectare, while the value of land for producers might be found in converting the 

primary resource into feed for animals. The decisions of producers to grow specific crops 

or forages are influence by a variety of factors that extent beyond economic considerations 
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alone. Furthermore, the net profit may not accurately reflect the local variability in costs, 

such as differences in land prices, labour costs, and availability of subsidies, which can 

significantly impact profitability. 

Similarly, using net profit as the primary assessment metric can oversimplify the 

complexity of farm economics by not accounting for non-monetary factors like 

environmental impact and long-term sustainability. This was demonstrated by Stokoe, 

(1989), who showed that wildlife conservation benefits and non-consumptive benefits of 

dykelands are non-negligible but can be challenging to quantify.  

Another important limitation is linked to the budgeting tool. Indeed, the quality of 

the outputs from the tool is dependent on the number and accuracy of the input variables. 

Although we attempted to diligently use values from reliable sources with complete 

transparency, as presented in Appendix B, some of the values used in the analysis failed to 

consider certain operating costs, such as equipment loans, equipment leases, land loans, 

land rental, drying cost for crops and land taxes. Furthermore, the analysis did not include 

fixed input costs such as land costs, machinery costs, and depreciation values of the 

equipment. Therefore, the results of this analysis tend to overestimate the net profits 

associated with each field. Although valuable, it was decided not to include these variables 

since it would introduce uncertainties in the methodology that would be difficult to account 

for due to the inherent variability between the fixed costs of farms.  

 A more comprehensive approach could be conducted by surveying farmers to estimate 

their production cost on the dyke systems where they farm. Counties could repeat this 

surveying process to account for regional variations. Ultimately, this information could be 

used as an input in the presented model to improve the representability of the results.  

4.5.3 Implications for Policy and Management 

Understanding the factors influencing profitability can inform targeted 

interventions to improve economic outcomes in underperforming dyke systems. 

Investments in surface drainage grants, along with the promotion of effective management 

practices such as crop rotation, could enhance profitability. 

For policymakers, the findings highlight the importance of supporting infrastructure 

development and providing resources for farmers to adopt best practices. This is 
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particularly relevant in the context of climate change adaptation, where enhancing the 

resilience and productivity of agricultural lands is crucial. Additionally, the findings of this 

study could be used to compare the length of dyke infrastructure and the number of 

aboiteaux within a system against the average net profitability. This comparison would 

allow the creation of a ratio to assess the cost of maintaining the dyke infrastructure relative 

to the economic return of each system. Furthermore, variables like the vulnerability of each 

dyke system, as presented by van Proosdij et al. (2018), could be integrated and used to 

rank them. Although this approach would not consider ecosystem services, it would provide 

an important baseline for policymakers that currently does not exist. 

4.6 Conclusion 
This study demonstrates that integrating AI-generated field boundaries with 

economic modeling provides a detailed and nuanced understanding of agricultural 

profitability across Nova Scotia's dykelands. By capturing spatial heterogeneity and 

management practices at the field level, we uncover factors influencing economic 

performance that aggregate analyses might miss. While net profit metrics offer valuable 

insights, they represent only one aspect of agricultural economics. Future research should 

incorporate additional metrics such as cost efficiency and environmental impact 

assessments, to provide a more comprehensive understanding. Including region-specific 

data on costs, yields, and prices would further enhance the accuracy of profitability 

assessments. The innovative approach presented in this study has implications beyond 

Nova Scotia's dykelands. It demonstrates the potential of combining AI technology with 

economic modeling in agricultural economics, offering a framework that can be applied to 

other regions and contexts. Policymakers and stakeholders can leverage these insights to 

make informed decisions that optimize land use, enhance agricultural productivity, and 

adapt to environmental challenges. 
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5.1 Abstract: 
Excess water in agricultural fields can significantly limit crop productivity. With the advent 

of drone technology, new methods have emerged for identifying and predicting problematic 

areas in fields prone to poor surface drainage. This study utilized drone-collected aerial 

images in Nova Scotia, Canada over three years to create high-resolution elevation models 

for evaluating crop performance and simulating surface drainage under Hortonian flow 

conditions. Multispectral imagery was also employed to compute vegetation indices, while 

elevation data were used to generate plant height and flood models. Vegetation indices and 

plant height models were analyzed against the flood models to identify low-productivity 

zones on the dykelands and assess the relationship between poor drainage and crop 

productivity. The findings revealed a substantial decline in productivity in poorly 

maintained surface drainage areas, with mean plant height in flood-prone areas 

decreasing from 1.43 m in 2022 to 0.26 m in 2023. Moreover, the size of flood risk zones 

increased from 37% of the field's total surface in 2022 to 61% in 2023, highlighting the 

compounded negative impact of pre-existing drainage issues. Results also showed 

improvements in the mean plant heights and NDVI values on fields that were maintained 

annually, highlighting the importance of a proactive approach. The study demonstrates 

that high-resolution elevation models derived from drone data can offer an effective 

solution to mitigate the adverse effects of soil water saturation on crop productivity. 
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5.2 Introduction 
The province of Nova Scotia, Canada, is a coastal region that experiences high rainfall, 

receiving an average of over 1300 mm of precipitation each year (Davis & Browne, 1996). 

Much of the precipitation occurs in the Spring and Fall, which can delay agricultural 

fieldwork, especially if field drainage is insufficient. The inability to maintain adequate 

drainage on agricultural fields impedes the aeration of the plant root zone required for crop 

production (Hill et al., 2018). In Nova Scotia, field drainage is often the limiting factor of 

the type of crops that can be successfully grown, especially on the dykelands, which are 

more prone to these challenges (Gartley et al., 1986). Dykelands are low-lying agricultural 

land, reclaimed from the sea and protected by dykes. These fields are contained within 

multiple dyke systems along the Bay of Fundy. In Nova Scotia, the total surface area of 

these dyke systems is 17,401 hectares, of which 9,272 hectares are actively used for 

agriculture (Bilodeau et al., 2024a). 

 

The soils on the dykelands are characterized by their naturally low permeability, which 

slows both the downward and lateral movement of water through these soils (Coote & 

Swerman, 1967). Combined with a flat landscape, this causes water to accumulate on the 

surface and water-log the fields. The agricultural productivity of these soils can be 

significantly improved through proper surface drainage (Gartley et al., 1986; Hill et al., 

2018)ðthe orderly removal of excess water from the land's surface. On the dykelands, this 

is accomplished by shallow ditches, which discharge into larger and deeper collector drains 

that eventually evacuate excess water into the ocean (Brouwer et al., 1985). To facilitate 

the flow of excess water toward the drains, the field is given an artificial slope through land 

forming (Kolstee et al., 1994; Figure 5-1)ðthe process of mechanically moving soil to 

change field topography to provide improved surface drainage (MacIntyre & Jackson, 

1975). The soil excavated from the drain is pushed into hills called 'crowns'. When these 

crowns have a uniform slope, surface water from heavy precipitation can effectively run 

off into the adjoining ditches (Kolstee et al., 1994). Land forming is the principal drainage 

technique used on the dykelands. In 2020, it was estimated that 6,924 hectares of fields 

actively used for agriculture in Nova Scotia were land formed (Bilodeau et al., 2024a). 
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Figure 5-1: Land forming and design of surface drainage systems to enhance water runoff efficiency. Image modified 
from Brouwer et al., 1985. 

Recent studies have shown that drones equipped with RGB cameras can be used to 

measure plant height in corn fields. Che et al. (2020) and Gilliot et al. (2021) demonstrated 

that 3D surface models generated from high resolution drone RGB imagery can be used to 

accurately predict plant height in corn fields. Other studies, such as Bendig et al. (2015) 

and Barrero Farfan et al. (2013), showed that plant height is a good indicator for evaluating 

plant growth and grain yield. Further studies have shown that drones can effectively assess 

plant health in agricultural fields using vegetation indices. In Janousek et al. (2023), they 

examined the effectiveness of various vegetation indices (NDRE, NDVI, GNDVI) derived 

from drone-mounted multispectral cameras in estimating the quantity of dry matter in corn. 

Their findings revealed significant correlations between these indices and the nutritional 

values of dry matter, which are important for yield estimates. Similarly, Tsakmakis et al. 

(2019) investigated the correlation between NDVI values and corn yield, finding strong 

positive correlations (r > 0.8). Macedo et al. (2023) also explored the use of the NDVI to 

estimate productivity and above-ground biomass in corn. They obtained similar results, 

demonstrating strong correlations between these indices and corn productivity, 

underscoring their value in predicting yields. The use of UAV imagery has also been 

demonstrated for mapping subsurface drainage systems in agricultural fields. Koganti et al. 

(2021) compared the effectiveness of visible-color, multispectral, and thermal infrared 

cameras for drainage mapping purposes. Li et al. (2021) utilized UAV-based LiDAR to 

enhance flood modelling accuracy by capturing micro terrain features. Chidi et al. (2021) 

highlighted the importance of high-resolution DEMs in soil erosion estimation, 

demonstrating significant sensitivity to DEM resolution.  
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The improvement of water movement in the fields, by means of land forming, 

extends the growing season and enhances the field trafficability early in the Fall (MacIntyre 

& Jackson, 1975). Over time, however, field topography changes after plowing, and 

dykeland fields must be reformedða process is known as "recrowning". Additionally, if 

the ditch drains are not properly maintained and become obstructed by sediments, the water 

table will tend to rise. This results in poor drainage of gravitational water towards the side 

of the fields, thus reducing crop growth (Kolstee et al., 1994). The cost associated with 

recrowning dykelands is estimated to range between $300 and $500 an acre and is 

performed, on average, every ten years (Bilodeau et al., 2024b). To date, the negative 

impacts of poor surface drainage from one season to another have not been well 

documented on the dykelands, although they have been reported in the literature (Bleakney, 

2004; Gartley et al., 1986; Milligan, 1987).  

Despite the proven effectiveness of drones and remote sensing in agricultural 

assessments, there is a lack of studies specifically addressing the evaluation of seasonal 

changes in surface drainage conditions on dykeland fields in Nova Scotia. The unique 

characteristics of these fieldsðsuch as their low-lying nature, susceptibility to 

waterlogging, and the practice of land formingðpresent specific challenges that have not 

been adequately explored using advanced remote sensing technologies. Current practices 

rely on farmers' general knowledge to identify problematic areas, which may not accurately 

capture subtle topographical changes affecting drainage efficiency. 

The goal of this research is to bridge this knowledge gap by evaluating the accuracy of 

drones and remote sensing techniques in identifying seasonal changes across agricultural 

dykeland fields by comparing remote sensing data with ground-truth measurements across 

different seasons. Specifically, this study seeks to determine whether these technologies 

can help farmers identify low-lying areas with poor surface drainage, which may not be 

evident through traditional methods. By providing accurate data, these assessments aim to 

support farmers in making informed decisions regarding the frequency and necessity of 

recrowning dykeland fields. This approach has the potential to optimize field management 

practices, improve crop yields, and ultimately enhance the economic viability of 

agricultural operations on the dykelands.  
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5.3 Materials and Methods 
Figure 5-2 illustrates the overall workflow process used in this research. Aerial images 

were collected to generate elevation data and compute vegetation indices. The elevation 

data was then used to carry out a flood simulation and predict surface drainage patterns. 

The aerial images were processed to develop plant height models. These models and 

vegetation indices were analyzed to identify low-productivity zones on the dykelands. The 

outcomes from both analyses were combined to assess the relationship between poor 

surface drainage and crop productivity. 

 

Figure 5-2: Flowchart of the overall workflow process used to assess the differences between predicted and validated 
data. 

5.3.1 Study area 

Four dykeland fields were evaluated in both Truro and Grand-Pré, Nova Scotia, 

Canada (Figure 5-3). Fields A, B, C and D are located along the Bay of Fundy and are parts 

of the Central Onslow, Cobequid and Grand-Pré and dyke systems.  
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Figure 5-3: Map showing the location and layout of four agricultural fields in the study area (Fields A, B, C, and D) in 
Nova Scotia, Canada. The overview map (bottom right) provides the regional context of the field sites. 

 Table 5-1 details the size of the fields along with the field production through the 

years. Crops and forage grown on the study sites included soybeans, corn and alfalfa-grass, 

which are all commonly grown on the dykelands (Bilodeau et al., 2021). 
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Table 5-1: Field size, location and crop production of the study areas. 

Field Name Location Coordinates Area (ha) 
Field Production 

2021 2022 2023 

Field A Truro 45.3735°N, -63.3305°W 13.5 Corn Corn Alfalfa-Grass 

Field B Truro 45.3761°N, -63.2870°W 6.2 Corn Soybeans Corn 

Field C Grand-Pré 45.1109°N, -64.3208°W 3.2 Corn Corn Corn 

Field D Grand-Pré 45.1086°N, -64.3202°W 5.6 Corn Corn Corn 

 

Fields also differed in management practices, soil types, and drainage systems. For 

Fields A and B, the landowner carefully manages the land to prevent surface damage, 

including erosion from water runoff and ruts or compaction caused by heavy machinery, 

and ponding or waterlogging resulting from poor drainage. A key focus is on the annual 

maintenance of the ditches, which the landowner performs by clearing and re-ditching them 

each year to enhance drainage and improve field usability. In these fields, a combination of 

grassed waterways and land-forming techniques are also employed. Field elevation is 

adjusted using a rotary ditcher, which spreads ditch spoil across the fields to smooth out 

uneven areas. Additionally, culverts are strategically placed to maximize land use 

efficiency. In contrast, none of these maintenance activities are performed in Fields C and 

D. Fields A and B undergo annual ditch maintenance in the fall, along with additional 

maintenance (Table 5-2).  

Table 5-2: Drainage characteristics of fields investigated in this study. 

Field 
Name 

Drainage 
technique* 

Open ditches 
spacing Last recrowning Soil type 

Field A GW, LF 92-183 meters yearly maintenance Minas lowlands 

Field B LF 46-61 meters yearly maintenance Minas lowlands 

Field C GW, LF 46 meters >10 years Annapolis valley soil 

Field D LF 51-87 meters >10 years Annapolis valley soil 
*GW: Grassed waterways, LF: Land forming 

5.3.2 Aerial surveys 

Aerial images were acquired with a DJI Matrice 300 RTK (SZ DJI Technology Co., 

Ltd., Shenzhen, China) (Table 5-3). Surveys were planned and flown using the DJI Pilot 

app (SZ DJI Technology Co., Ltd., Shenzhen, China) at an altitude of 106 m. A D-RTK2 

base station (SZ DJI Technology Co., Ltd., Shenzhen, China) was used during the surveys 

to reduce the positioning errors of the images. Additionally, a minimum of nine GCPs were 

evenly distributed across the survey areas and used during the post-processing to register 
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the drone images to the location of the GCPs (Elmore et al., 2022). To validate the accuracy 

of the elevation models, at least four checkpoints were acquired during each survey. For 

2021, coordinates of the GCPs and check shots were measured using a Topcon HiPer SR 

RTK-GPS (Topcon Positioning Systems Inc., Livermore, CA, USA) in a base station and 

rover configuration. In 2022 and 2023, an Emlid Reach RS2 (Emlid Inc., Hong Kong, 

China) multi-frequency GNSS receiver, linked to a networked transport of RTCM via 

internet protocol (NTRIP) correction service, was used. Both receivers are capable of 

centimetre-level accuracy in RTK modes and have similar horizontal and vertical accuracy 

(Emlid, 2024; Topcon, 2014). All data collected from the surveys were converted to a local 

coordinate system NAD 83 (CSRS)/UTM zone 20N (EPSG:2961). 

Table 5-3: Characteristics of the DJI Matrice 300 RTK drone used for mounting the payloads. 

Matrice 300 Characteristics 

Dimensions 81 cm x 67 cm x 43 cm 

Weight 6.3 kg 

GNSS GPS+GLONASS+BeiDou+Galileo 

Maximum payload 2.72 kg 

Maximum flight time 55 min 

Maximum speed 22.78 m/s 

 

5.3.3 Payloads 

Two successive survey missions were conducted on each of the survey dates. The 

fields were first surveyed with the Matrice 300, equipped with a MicaSence Altum 

multispectral sensors (MicaSense, Inc., Seattle, WA, USA), and secondly with a DJI 

Zenmuse P1 (SZ DJI Technology Co., Ltd., Shenzhen, China). The Altum captures images 

in five spectral ranges, including spectral bands in blue (Band 1-459-491 nm), green (Band 

2 - 546-573 nm), red (Band 3-661ï675 nm), red-edge (Band 4-710ï723 nm), and near-

infrared (Band 5-813ï870 nm). The Zenmuse P1 is a 45-megapixel optical camera, which 

was fitted with a 35 mm lens. Due to the unavailability of the P1 camera in 2021, all images 

of the surveys were conducted with the Altum camera. Table 5-4 contains the 

characteristics of the two payloads used to obtain the aerial images. Surveys were 

conducted with the purpose of generating three sets of data, namely DTMs, DSMs and 

orthomosaics.  
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Table 5-4: Basic characteristics of the DJI Zenmuse P1 optical camera and MicaSense Altum multispectral camera 
used to obtain aerial images of dykelands. 

Characteristics Zenmuse P1 MicaSense Altum 

Dimensions (cm) 19.8 x 16.6 x 12.9  8.2 x 6.7 x 6.45  

Weight 787 g 357 g 

Spectral Bands EO Blue, Breen, Red Blue, Breen, Red, Red-edge, Near-infrared  
Spectral Bands 
LWIR N/A Thermal Infrared 8-14um 

Sensor Resolution 8192 × 5460 pi 2064 x 1544 pi (MSI), 160 x 120 pi (TIR) 

Capture Rate 
1 capture every 0.7 
second 

1 capture per second (all bands), 12-bit 
RAW 

Field of View 53.63o x 36.96o 48º x 37o (MSI), 57o x 44o (TIR) 

Pixel Size 4 µm 3.45 µm (MSI), 12 µm (TIR) 

Effective Pixels  45 MP 3.2 MP per EO band 

* TIR= thermal infrared, MSI= multispectral 
imaging  

5.3.4 Survey frequency 

The survey missions were carried out from May 2021 through August 2023, with two 

surveys being conducted annually across the study sites (Figure 5-4). The scheduling of 

these surveys were designed to ensure align with the agronomic milestones of corn 

development. The first survey of the year took place in the Spring, prior to seeding, when 

the soil was exposed. The second survey was conducted in early August, before the corn 

harvesting period and approximately three weeks after the corn had reached physiological 

maturity.  

 

Figure 5-4: Timeline of UAV data collection activities: A visual representation of the annual bare soil surveys 
conducted each May and the NDVI and plant height surveys conducted each August. 

All surveys were deliberately planned for days with clear sky conditions to ensure optimal 

data collection. Table 5-5 contains details of the survey mission parameters used to collect 

the aerial images. 
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Table 5-5: Aerial survey parameters used with the Zenmuse P1 and MicaSense Altum. The table outlines differences 
in Ground Sampling Distance (GSD), overlap percentage for image stitching, and the operational speed of each 
system used to conduct the survey missions. 

Characteristics Zenmuse P1 MicaSense Altum 

Altitude AGL (m) 106 106 

GSD (cm/px) 1.33 4.57 

Front Overlap 75% 80% 

Side Overlap 75% 75% 

Speed (m/s) 15 10 

*AGL= Above Ground Level, GSD= Ground Sampling Distance  
5.3.5 Data processing 

Aerial photos of the study areas were processed in Agisoft PhotoScan 1.8.2 (Agisoft 

LLC Inc., St.Petersburg, Russia). The processing of the images followed a standard SfM 

processing workflow (Elmore et al., 2022; Paine & Kiser, 2012). Figure 5-5 details the 

processing steps taken to generate DTMs, DSMs and orthomosaics from the RGB and the 

multispectral images. 

 

Figure 5-5: SfM photogrammetry processing workflow. Blue boxes are products/datasets and green boxes are 
processing steps. Figure modified from Girod et al. (2017). 
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DTMs were created in Agisoft using dense 3D point clouds from bare soil surveys 

conducted in the spring, while DSMs were generated in CloudCompare (GPL software, 

cloudcompare.org) from the dense 3D point clouds exported from Agisoft during the 

August surveys (Figure 5-4). The 3D point clouds were filtered using the statistical outlier 

removal tool in CloudCompare and transformed into a 2.5D model using the rasterize tool. 

Table 5-6 contains information on the accuracy of the elevation models used in this 

research. 

Table 5-6: Digital elevation model accuracy report. 

Year Survey ID 
Field 

Coverage 

Control Points 
RMSE (Z error 

cm) 

Ground 
Resolution 
(cm/pix) 

Point Density 
(points/m2) 

 

2021 

TR_A_DTM_2021 A 0.91 4.07 605  

TR_B_DTM_2021 B 0.12 4.18 572  

GP_CD_DTM_2021 C,D 0.69 4.05 609  

2022 

TR_A_DTM_2022 A 6.26 1.11 834  

TR_B_DTM_2022 B 5.63 4.43 508  

GP_CD_DTM_2022 C,D 2.80 2.23 201  

2023 

TR_A_DTM_2023 A 3.62 2.19 208  

TR_B_DTM_2023 B 5.17 2.22 203  

GP_CD_DTM_2023 C,D 4.12 4.46 503  

5.3.5.1 Corrections of multispectral images 

The Altum was calibrated using a CPR to prevent banding and patchiness in the 

orthophotos and to enable more accurate compensation for incident light conditions. This 

process ensures that multispectral images can be used for accurate analysis across multiple 

datasets (MicaSense, 2023). The CPR was helpful to improve the radiometric quality of the 

images since it provides a definite reflectance value during the corrections process. The 

surface of the calibrated reflectance panel has been measured at numerous wavelengths 

using a spectrometer. Panel captures were acquired just before and after each flight as well 

as during each battery swap.  

5.3.5.2 Vegetation index 

The NDVI is a standardized index used to quantify the health and density of 

vegetation. This index leverages the contrast between the characteristics and chlorophyll 

pigment absorption of the red and near-infrared bands (NIR; Xue & Su, 2017). The 

following formula was used to compute the NDVI: 
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Areas with low NDVI values typically represent conditions with little to no vegetation, like 

rocky terrains or bare earth. In contrast, moderate NDVI values suggest the presence of 

grasslands and shrubbery, whereas high values are indicative of dense forests and thriving 

vegetation (Antognelli, 2018; ESRI, 2023).  

5.3.5.3 Plant height estimation  

A CHM was generated by calculating the difference between the Zs, taken from the 

DSM and the Ze, calculated from the DTM as follows:   

ὅὌὓ  ὤ ὤ                               ὉήȢυ ς 

The calculation was performed in ArcGIS Pro 3.5 (ESRI, Redlands, CA, USA) using the 

raster calculator, and results were expressed in meters. To reduce errors and increase 

accuracy while calculating the CHM, the boundaries of all the field ditches in the study 

areas were digitized in ArcGIS Pro and extracted from the DTMs and DSMs datasets using 

the erase tool. To validate the photogrammetric estimate of the CHM, 12 CHref per field 

were acquired each year. To ensure an unbiased randomized selection of the sampling 

areas, the sampling points were selected using the inverted W pattern sampling technique 

(McCully et al., 1991; Tamado & Milberg, 2000; Thomas, 1985). 

Sampling areas consisted of a 1 m x 1 m square, oriented parallel to the corn rows. 

All the plants within the sampling box were measured. Corn fields in the study areas were 

sown 15 cm apart in rows distanced by 75 cm; therefore, 10 to 12 plants were captured 

within each sampling area (Figure 5-6). The geolocation of each sampling area was 

digitized in ArcGIS Pro and imported to the Emlid Flow (Emlid Inc., Hong Kong, China) 

application on an IOS device. The Emlid Reach RS2 was then used to navigate to the 

location of the sampling areas, allowing for the collection of CHref measurements. The 

CHref measurements were acquired one week after the second survey (Figure 5-4). 
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Figure 5-6: Sampling areas for corn height reference measurements (red) around corn rows (green). Only corn plants 
within the sampling plots were manually measured (yellow). 

 The plant height was measured at three locations from the ground base: (1) to the 

base of the flower apex of the stem end, (2) to the first leaf and (3) to the second leaf. Figure 

5-7 offers a visual representation of the different measurements taken from the plant used 

to generate CHref. Measurements were acquired with a four-meter telescoping grade rod, 

equipped with a spirit level and positioned vertically along the corn stalk.  

 

Figure 5-7: Methodology for calculating plant height within each sampling area, including measurements from the 
top flower, first and second leaves, and bare soil. These height measurements were taken at various points on the 
corn plant and used to assess the accuracy of the corn height model. 
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5.3.5.4 Corn height analysis 

The accuracy of the CHM was assessed by comparing it to the CHref. The same 

sampling boxes that were used to acquire CHref data were also employed to filter cell values 

within the CHM. The zonal statistics tool in ArcGIS Pro was used to calculate the 95th 

percentile of these cell values and estimate plant height per plot. This particular percentile 

was chosen based on findings from Malambo et al. (2018), which indicated that the 90th, 

95th, and 99th percentile height metrics from the CHM correlated better with field 

measurements than the maximum height metric. Tests on the dataset confirmed that the 

95th percentile was the most accurate metric. 

The degree of agreement between CHref and predicted plant heights from the CHM 

was evaluated using R², ”c and RMSE. R² was used to assess how well the aerial-based 

model captures the variability in ground-measured plant heights. A high R² indicates that 

the model is successful in capturing the relationship between the aerial images and the 

actual plant heights, whereas a low R² suggests that the model is not accurately representing 

this relation. However, R² alone does not account for systematic overestimation or 

underestimation in the predictions, as it measures the strength of the linear relationship 

without considering how closely the data align with the 1:1 line of perfect agreement. 

Therefore, the values of ”c were also employed since it combines measures of both 

precision and accuracy to evaluate how well the predicted plant heights agree with the CHref 

values along the line of perfect concordance (1:1 line). Lin's concordance correlation 

coefficient assesses the degree to which pairs of observations fall on the 1:1 line, accounting 

for any systematic deviations from this line (Lin, 1989). It includes a Cb that adjusts for 

over or underestimation, ensuring that both the slope and location differences between the 

predicted and observed values are considered (McBride, 2005). This is particularly 

important in this analysis since any consistent underestimation or overestimation could 

indicate a bias in the model predictions (Lin, 1989). An accurate model should have 

predictions that align closely with the 1:1 line, indicating both high correlation and 

agreement. A high ”c value suggests that the model not only captures the variability in plant 

heights (as indicated by R²) but also provides unbiased predictions that closely match the 

CHref values (Steichen & Cox, 2002). 
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Lasty, the RMSE was used to quantify the average error in the plant height 

predictions. Lower RMSE values indicate that the height of corn plants predicted from 

aerial images is very close to the ground measurements, indicating high model accuracy. 

Calculations of both R² and RMSE were made using MATLAB (MathWorks, Inc., Natick, 

Massachusetts, USA) while ”c values were calculated in IBM SPSS Statistics (IBM Corp., 

Armonk, New York, USA). These statistical measures were calculated using the following 

formulas: 
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5.3.5.5 Modelling flooded zones 

A flood simulation technique called the Arc-Malstrøm hydrologic screening 

method (Balstrøm & Crawford, 2018) was used to detect the extent and depth of landscape 

depressions, termed "bluespots", within the fields. This method assumes Hortonian flow 

conditions, identifying bluespots and categorizing the surrounding surface into their 

respective watersheds (Mujumdar & Nagesh Kumar, 2012). The model identifies the 

discharge points of each bluespots and delineates the interconnecting streams that facilitate 

overflow (Balstrøm & Crawford, 2018). 

The method calculates the runoff volume for each watershed (termed RainVolume) 

during a uniform rainfall scenario across the basin. If the capacity of any bluespot is 

exceeded, it results in a spillage (SpillOverOut) at the pour point, initiating a water flow 

path downstream (Figure 5-8). Additionally, any bluespot receiving overflow from 

upstream will count as a SpillOverIn, helping estimate the water balance for each bluespot. 

The overall downstream overflow volumes are compiled from these individual water 

balances during a specified rainfall event (Trepekli et al., 2022). 
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Figure 5-8: Cross-sectional illustration of a bluespot and its hydrological attributes derived from the Arc-Malstrøm 
model. The diagram depicts the contributing watershed area (m²), maximum depth (m), sink extent (m²), and 
capacity (m³), which represents the volume of the bluespots below its pour-point level and the water volumes (m³) 
entering (SpillOverIn) and exiting (SpillOverOut) the bluespot during a uniform rain event. Image modified from 
Trepekli et al. (2022).  

The Arc-Malstrom method was used on the DTMs from the study areas and 

executed using ArcGIS Pro. The model excluded bluespots > 5 cm and > 1 m3 to respect 

the accuracy limit of the DTMs. The model was tested against a uniform precipitation 

scenario of 25 mm. This threshold was selected due to the frequency of these rain events, 

as recorded by the closest weather station to the study sites Truro (Debert) and Grand-Pré 

(Kentville; Figure 5-9).  
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Figure 5-9: Annual distribution of rainfall occurrences recorded at the Debert and Kentville weather stations from 
2021 to 2023. 

Due to the presence of dense vegetation, such as bushes, tall grasses, or small trees 

along some of the ditches, the DTMs were hydrologically conditioned by flattening the 

ditches to a depth of 91 cm, using the surrounding terrain's elevation (Maidment & Djokic, 

2000). By utilizing a Python script in the ArcGIS API environment, the elevation values 

along the ditch lines were systematically lowered to achieve this specified depth, effectively 

modifying the DTMs for hydrological analysis. This depth was chosen based on field 

measurements using the GNSS receivers, common practices for ditch depth on dykelands, 

as well as guidelines from the literature (Gartley et al., 1986; Hill et al., 2018; MacIntyre 

& Jackson, 1975).  

The DTMs were not hydro-enforced when simulating water flow through the 

culverts that separated the ditches. The goal was to assess the impact of clogged or poorly 

functioning drains on the fields and to identify areas where water accumulated during a 

specific rainfall scenario. Additionally, to achieve this objective, the main collector drain 
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for the fields was blocked to prevent water from exiting the watershed of the field. These 

decisions were aimed to simulate a moderately common rainfall event and evaluate the 

response of the drainage system under such conditions. Figure 5-10 illustrates the original 

and hydro-flattened elevation models resulting from these alterations, which were used to 

compute the flood model. 

 

Figure 5-10: Hillshade visualization of elevation models generated from digital photogrammetry using an SfM 
approach (A) and hydrologically flattened, using the surrounding elevation of the terrain(B). Field ditches are 
represented in white. 

5.3.5.6 Flood risk and dry zones  

Areas of the fields within the flood zones were classified as "flood risk," while the 

remaining areas were classified as "dry" zones. To avoid misrepresenting the different 

zones, areas with planting gaps caused by planter malfunctions were manually digitized 

and excluded from the analysis by changing the raster values on the CHM to null. 

Additionally, the same treatment was applied to the gap between the edges of the fields and 

the first row of corn. If not removed, these areas, often composed of grass or bare ground, 

could misrepresent the height of the corn plants in these areas.  

5.3.5.7 Plant height data and NDVI analysis 

Flood risk zones generated by the hydrologic model were exported as vector 

polygons and overlaid on the CHM. The cell values beneath these zones were then extracted 

! . 
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and compared to those in the rest of the fields to evaluate dry areas. For each year and field, 

the cell values on the CHM and the size of each zone were calculated and compiled into a 

table. A similar approach was applied to the NDVI maps, where the same vector polygons 

of flood risk zones were used to extract values from the NDVI data. These tasks were 

automated using the ArcGIS API for Python. 

 

5.4 Results 

5.4.1 Plant height model 

Figure 5-11 displays the results from the CHM compared to the CHref. The trend in 

R2 values from 2021 to 2023 indicates good model performance, with regression lines 

closely fitting the data points and explaining a substantial part of the variance in corn plant 

heights. R2 values ranged between 0.62 and 0.82 between the three years period. 

Additionally, the RMSE ranged between 0.224 m and 0.333 m, indicating that the model 

accurately predicted corn plant heights with reasonable precision, although accuracy 

slightly decreased in 2023. 

Values of ”c increased from 0.7846 in 2021 (95% CI: 0.6946ï0.8504) to 0.8824 in 

2022 (95% CI: 0.8234ï0.9226) and remained high at 0.8837 in 2023 (95% CI: 0.8234ï

0.9243), indicating an overall improvement in the model accuracy over the years. The bias 

correction factors were 0.9897, 0.9741, and 0.988 in 2021, 2022, and 2023, respectively, 

suggesting minimal systematic bias between the measurement methods each year.  

 

Figure 5-11: Comparison of UAV-derived plant height estimates and measured plant height in 2021, 2022 and 2023 
on Nova Scotia's dykelands. 
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5.4.2 Surface drainage analysis 

5.4.2.1 Changes in the size of the flood risk zones 

During the study period, Fields A and B exhibited a decreasing trend in the size of 

flood risk zones (Table 5-7). In 2021, 16% of Field A was classified as a flood risk zone, 

which decreased to 5% the following year. In contrast, Fields C and D showed an increasing 

trend in the size of the flood risk zones. Notably, the proportion of land at risk in Field C 

increased from 37% in 2022 to 61% of the field in 2023. 

Table 5-7: Comparison of plant height and NDVI values across flood risk and dry zones in Fields A, B, C, and D from 
2021 to 2023. 

Flood Risk Zones Dry Zones 

   Plant H(m) NDVI   Plant H(m) NDVI 
Field Year Area (%) ȄɎ  ̀ ȄɎ  ̀ Area (%) ȄɎ  ̀ ȄɎ  ̀

A 
2021 16 2.13 0.29 0.58 0.08 84 2.23 0.23 0.57 0.08 
2022 6 2.38 0.49 0.68 0.08 94 2.54 0.29 0.68 0.07 
2023 N/A N/A N/A 0.76 0.10 N/A N/A N/A 0.80 0.06 

B 

2021 25 1.50 0.53 0.63 0.09 74 1.58 0.46 0.60 0.09 

2022 N/A N/A N/A 0.70 0.13 N/A N/A N/A 0.74 0.09 

2023 18 1.90 0.51 0.67 0.08 82 2.13 0.34 0.67 0.07 

C 

2021 37 1.38 0.50 0.71 0.09 63 1.99 0.35 0.69 0.08 

2022 37 1.43 0.53 0.65 0.14 63 1.79 0.37 0.68 0.10 

2023 61 0.26 0.42 0.46 0.14 39 1.07 0.66 0.55 0.13 

D 

2021 21 2.19 0.55 0.64 0.14 79 2.47 0.31 0.66 0.09 

2022 25 1.77 0.56 0.64 0.14 75 2.17 0.26 0.68 0.10 

2023 35 1.11 0.64 0.62 0.11 65 1.74 0.54 0.67 0.07 

 

5.4.2.2 Mean plant height in flood risk zones and dry areas 

The analysis of plant height across the four fields over three years under a water-

logged scenario revealed important differences between flood risk and dry zones. Dry areas 

consistently exhibited greater mean plant height than flood risk zones across all fields. In 

Field A, the mean plant height in dry areas increased from 2.23 m in 2021 to 2.54 m in 

2022 and from 1.58 m in 2021 to 2.13 m in 2023 for Field B (Table 5-7). A similar trend 

was observed in Fields C and D, where plant height in dry areas remained higher than flood 

risk zones despite a noticeable overall decrease in the mean plant height from one year to 

the other, which indicated worsening growing conditions (Figure 5-12).  

 



113 

 

 

 

Figure 5-12: Comparison of plant height and flood risk zones in Field C for 2022 and 2023. The image on the left 
represents the spatial distribution of plant height across the field. The image on the right shows the extent of flood 
risk areas (highlighted in blue) simulated under a flooding event caused by a uniform precipitation scenario of 25 mm, 
overlaid with the corresponding plant height distribution. 

 

 On the other hand, flood risk areas often displayed more variability and a trend of 

declining plant height over time. This was particularly evident in Field C, where the mean 

plant height in flood-risk areas dropped sharply from 1.43 m in 2022 to 0.26 m in 2023. 

These results indicated that the productivity classification strongly influenced plant height, 

with dry areas generally supporting taller plants (Error! Reference source not found., 

 REF _Ref180530481 \h  \* MERGEFORMAT Error! Reference source not found.). 




































































































































