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ABSTRACT

Dykelands in Atlantic Canada represent some of the most agriculturally productive yet
environmentally vulnerable lands due to rising sea levels and coastal inundation risks. This
thesis assesses equipment and technologies to enhance the developmentiaathlsus
management of these lands for agricultural production. The first study focuses on
characterizing and estimating the cultivated hectares on Nova Scotia's dykelands using
Canada's Annual Crop Inventory from 2015 to 2019. The analysis reveale@%hat e

total surface on the dykelands was dedicated to field crops and forage, with forage
representing approximately 80% of the total cropland area. This quantification provides a
foundational understanding of current land utilization, which is u$efaleveloping more
suitable lanelse policies on the dykelandshe second study developed a MasiCRN

deep learning model using LiDABerived elevation data to detect lafodmed fields,

which is a surface drainage techniqgue commonly used on thesatahtgghly indicative

of agricultural utilization. The model demonstrated strong performance with a mean
Average Precision (mAP) of 0.89 and revealed that 53% of dykelands in Nova Scotia are
used for agricultural purposes, with approximately 75% (6,924ahes) of these fields
being landformed. This advancement offers novel insights into surface drainage mapping
on the dykeland®Building on these findings, the third study integrateeb@herated field
boundaries, data from Canada's Annual Crop Inventorgt a budget calculator within a
GI'S environment to assess net profits per
showed considerable variability in field sizes and profitability across different dyke
systems. Notably, the Grand Pré, Wellingtord Annapolis River systems achieved higher
average net profits of $822,152, $780,587, and $479,151, respectively. Tiaeaon
relationship between dyke system size and profitability suggests that factors beyond size
influence economic returns, emphasgithe need for a comprehensive approach to
optimizing dykeland profitability and managemedsnally, the fourth study utilized aerial
imagery collected from drones over three years to createrégghution elevation models.
These models were used to evaluate crop performance and simulate surface drainage under
Hortonian flow conditions on agrittural dykelands. Analysis of vegetation indices and
plant height models revealed a substantial decline in productivity in areas with poorly
maintained surface dinage. Mean plant height in flogmone zones decreased from
1.43 m in 2022 to 0.26 m in 2023, and fl oo
total surface of the fields. Conversely, fields maintained annually showed improvements in
plant heights ash NDVI values, highlighting the importance of proactive management in
mitigating flood risks and enhancing crop productivity. These findings could influence the
scope of provincial initiatives, such as the-Barm Water Management program, which
supports poducers in adapting to the watetated impacts of climate changghese
studies demonstrate that integrating advanced technologies, such as deep learning models,
GIS-based economic analysis, and drdased remote sensing, can significantly enhance
the sustainable management of dykelands in Atlantic Canada. The fingliogse
valuable insights for stakeholders aiming to optimize agricultural productivity while
making informed decisions in the current context of rising sea levels.
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CHAPTER INTRODUCTION

Throughout history, communities have demonstrated remarkable ingenuity in adapting to
extreme environmental conditions and transforming challenging landscapes into productive
resources. In Nova Scotia, Canada, early settlers recognized the immensel pdtteia

rich, fertile soils along the Bay of Fundy, an area characterized by some of the highest tides
in the world(Lambiase, 1980; van Proosdij & Page, 20112) harness these marshlands

for agriculture, they developed sophisticated systems of dykes and aboiteaux to protect
against coastal inundation and to drain excess wWBteakney, 2004; Milligan, 1987)

These engineered landscapes, known as dykelands, have since become some of the most
agriculturally productive lands in Nova Scotia and New Brunswick, enabling the

cultivation of crops and forages in areas once dominated by tidal waters.

Dykelands have long been a cornerstone of Nova Scotia's agricultural landscape. These
reclaimed marshlands contribute significantly to forage production, accounting for an
estimated 24.8% of the province's total food ouifdiedu, 2013; Jones, 2011Barly
dykeland farmers in the 1700s often chose to develop dykeland rather than upland due to
labour efficiencies and higher productivity per hectare, compared to the more-labour
intensive process of clearing less fertile upléBleéakney, 2004; Milligan, 1987Dver the

last 400 years, agricultural dyking has enabled rapid growth and expansion of farming
operationgMilligan, 1987) However, these advantages have come at the cost of coastal
habitats, which are vital to the health, weding, and economy of Atlantic Cangdaird,

1954; van Proosdij et al., 2018)he significance of dykelands to Nova Scotia's agriculture

is further underscored by the fact thay account for approximately 10% of the province's

active agricultural lan@Devanney, 2010; Milligan, 1987)

Despite their importance, approximately 15% of dykelands in Nova Scotia remain
uncultivated and are utilized for nagricultural purpose¢Singh et al., 2007)This
underutilization underscores a broader issue in these areas, which is the lack of
comprehensive data on land use, crop allocation, and effective maintenance practices.
Traditional assessments have proven vague, failing to quantify the full agatptitential

of the dykelands. The absence of detailed information hinders stakeholders, including

farmers, policymakers, and the Nova Scotia Department of Agriculture, from making



informed decisions regarding the management, potential conversion, or restoration of
underutilized dykeland®rever et al., 2021; Philp & Cohen, 2020; Webster et al., 2012)

1.1 Literature Review and Gap Analysis

1.1.1 Crops and Economics
Previous research on lamdver mapping has predominantly focused on satdldted

approaches or survdyased methodologi€soveland et al., 2000Early efforts employed
coarse resolution sensors to characterize land cover at a particular point(inoveland

et al., 1991, p. 199r intermediate resolution imagery for singlass mappingSkole &
Tucker, 1993; Sleeter et al., 201%ew studies have investigated the use of property
borders and crop inventories for agricultural analysis, although the integration of remote
sensing and GIS techniques has shown that it can improve agriculture sustainability.
(Kvande et al., 2024; Mathenge et al., 2022; McCracken et al.,.1999)

In Nova Scotia, studies examining the province's dykelands were undertaken on a smaller
scale, resulting in fragmented information on cropping pote(Biaird, 1954; Milligan,

1987; Singh et al., 2007The lack of a thorough crop inventory means decisiakers

lack a detailed picture of the dykelands' agricultural potential. Furthermore, there is limited
information on the total number of hectares and type of crops being grown on these lands
(Drever et al., 2021; Philp & Cohen, 2020; Webster et al., 2012)

Economic analyses and reports, such as those published by Farm Credit F&@da
2019)or Jones (2011 )provide aggregate information on land value and cost of production
but do not address the specificity of the dykelands. Land clearing costs and production
expenses for uplands versus dykelands remain unexplored, leaving a gap in understanding
the econond viability of these agricultural areéSartley et al., 1986; Milburn & Higgins,

1992)

1.1.2 Surface drainage on the dykelands
The improvement of water movement in the fields by means of land forming extends the

growing season and enhances field trafficability early in the(fédicintyre & Jackson,
1975) However, plowing alters field topography over time, necessitating the costly process
of "recrowning" dykeland fields approximately every ten years at an estimated cost of
$300 $500 per acréN. Juurlink, February 24, 2021hadequate maintenance of ditch

drains can lead to sediment obstruction, causing a rise in the water table and poor



gravitational water drainage towards field ditches, ultimately reducing crop growth
(Kolstee et al., 1994Although such negative impacts are noted in the liter@Bleakney,
2004; Gartley et al., 1986; Milligan, 198Tey are not wellocumented on the dykelands.
Farmers typically rely on their experiential knowledge to identify-lpwg areas with

insufficient slopes, which makes the process subjective and potentially imprecise.

Integrating UAV technology and remote sensing could significantly improve surface
drainage management in these contexts, allowing for timely interventions to prevent
waterlogging and optimize field conditions. Higésolution aerial imagery and
multispectal data collected by drones enable precise monitoring of crop health, soll
conditions, and drainage pattefisishna, 2018; Sylvester et al., 2018hotogrammetry
techniques applied to higlesolution RGB images captured by UAVs can generate
accurate digital elevation models, providing detailed topographical information to identify
micro-relief features influencing surface draingg&€ h i d i et al-Oltman@s0 2 1 ;
et al., 2012)

Accurate mapping and characterization of these fields remain a significant challenge due
to their irregular field boundaries, ndinear drainage patterns, and variable surface
topography. Recent advancements in remote sensing technology, particularly the
availability of highresolution airborne LIiDAR data across Canada, offer promising
opportunities for improved landse analysis and agricultural managen{&va Scotia
Department of Natural Resources and Renewables, 20k&hine learning and deep
learning algorithms have gained significant attention for their potential to process and
analyze largescale highdimensional datasefdordan & Mitchell, 2015; Yu et al., 2017;
Zhang et al., 2016)These techniques have been increasingly applied to agricultural tasks,
such as crop type classification, yield prediction, and field boundary delin€siagugiori

et al., 2017; Mohan & Giridhar, 2022; Zhao et al., 2021)

On this note, advanced field boundary delineation using deep learning algorithms has
demonstrated remarkable results with an average IoU accuracy score of 0.94 (DigiFarm,
2022a). This represents a significant milestone since the precise identification of
boundaries within agricultural fields is a critical prerequisite for any meaningful land use
analysis, although the full scope of their utility remains to be tested. For instance, field
boundaries delineation algorithm can play an important role for grosuges it can be



used to optimize the use of fertilizer and herbicides, which contributes to better efficiency
in the field management processes. Additionally, field boundaries are crucial in developing

GNSS guidance maps, offering valuable spatial data for precisiomfapractices.

1.2 Purpose of the Study
Given the significant agricultural importance of the dykelands and the challenges posed by

the lack of comprehensive data, there is a critical need to enhance our understanding of
land use, crop allocation, and maintenance practices on these landsudhisirsts to fill
these knowledge gaps by employing advanced technologies such as remote sensing and

unmanned aerial vehicles to assess land use and drainage management on the dykelands.

1.3 Research Obijectives
The overall objective of this thesis is to provide quantifiable data on agricultural dykelands

to help stakeholders make informed decisions regarding the maintenance, agricultural
conversion, or restoration of underutilized dykelands into salt marshesspHuwfic

objectives of this study are to:

1. Determine the current acreage and spatial distriboficorn ea may4..), barley
(Hordeum vulgarL.e), soybeansQ@lycine maxL.), wheat {riticum aestivuni_.)
and forages on the dykelands of Nova Scbifaanalyzing crop inventory and

property boundary data.

2. Test a Mask FCNN model for detecting larfbrmed fields on agricultural
dykelands using high resolution Digital Elevation Models derived from LiDAR

data.

3. Develop andipplya budgeting tool to estimate the cost of productionemaduate
the economic viability of agricultural fields on the dykelands over a sgean

period.

4. Evaluate theaccuracyof dronesbasedremote sensing in identifying lelying
areas with poor surface drainage on Nova Scotia's agricultural dykelands by
comparing remote sensing data with grotindh measurements across different

seasons.



1.4 Significance and Impact
Understanding and utilizing these technologies could play a pivotal role in enhancing the

productivity and sustainability of dykeland agriculture. By providing detailed information

on land use, crop allocation, and cost of production, stakeholders Wwétiee equipped to

make informed decisions regarding the management of the dykelands. This is particularly
important in the context of environmental challenges such as climate change and rising sea
levels, which pose significant threats to the integrityefdyke infrastructur@zan Proosdij

et al., 2018; van Proosdij & Page, 201@jithin the next 50 years, approximately 70% of

the 241 km of dykes in the province could be at high risk of coastal erosion and overtopping.

As environmental challenges persist and the impacts of climate change become more
pronounced, adopting innovative solutions like remote sensing and UAVs becomes
increasingly essential. This approach addresses immediate agricultural concerns and
contributego the longterm resilience of Nova Scotia's dykelands, ensuring they remain a

vital part of the province's agricultural output.
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2.1 Abstract
Dykelands are agricultural ground protected from coastal inundation by dyke- infra

structure and constitute some of the most agriculturally productive lands in Nova Scotia.
Between 2015 and 2019, Canada's Annual Crop Inventory was used to characterize and
estimate hectares of agricultural dykelands cultivated in Nova Scotia. The number of
hectares of wheat, barley, corn, forages and soybeans were compiled for each year and
compared to the previous year. This was accomplished using GIS software, satellite
imag e s , and geodata from the Nova Scotiads
that from 2015 to 2019, an average of 56%
to the production of field crops (wheat, barley, corn, soybeans) and forage. Resalts al
highlighted the importance of forage production on the dykelands. Forage was the largest
commodity grown, representing around 80% of the total crop land area of the agricultural
dykelands. Corn and soybeans were the second and third crops of aburdeistiéyting

12 and 4% of the total crop land area, respectively. This study represents the first attempt
to document the number of hectares of the principal crops grown on Nova Scotia's
dykelands using crop inventory and property boundaries. Given tligcpoms of rising

sea levels and the overtopping risks that the dykelands face, this study will facilitate more
suitable landuse policies by providing stakeholders with an accurate quantitative

assessment of the utilization of agricultural dykelands.



The work presented in this chapter has been published in the ISPRS International Journal
ofGeel nf ormation 10(12): 801, entitled AEstI:I

in Nova Scotia Using Land Property Boundar

2.2 Introduction
Dykelands are agricultural lands protected from coastal inundation via dyke

infrastructure and constitute some of the most agriculturally productive lands in NS,
Canada. Agricultural dykelands are used mainly to produce hay and pasture, corn, and
cereal cops(Nova Scotia Department of Lands and Forestry, 20i@yever, many other

crops have historically been found to be agriculturally viable on the dykelands, such as root
crops, soybeans, chives, sunflowers, salad greens, and caisaegu, 2013) Other
sources also reported that on wehlained dykelands, beans, beets, swedes, carrots, spinach,
and celery had been successfully grown on these (8aisd, 1954) It is estimated that
17,401 hectares of tidal land are being protected by the NSDA, which represents
approximately 10% of Nova Scotia's active agricultural [@elanney & Reinhardt, 2010;
Milligan, 1987)

In 1954, (Baird, 1954)estimated the total area of dykelands in the Maritime
Provinces ranged between 28,300 to 32,300 hectares and suggested that another 6000 to
8000 hectares could be reclaimed by the construction of mud dykes. He also noted that out
of this number, approxintely 4000 to 6000 hectares had a different soil texture from the
average dykelands soils and could be made very productive when properly drained and
cultivated(Baird, 1954)

In 1939, the Maritime Beef Cattle Committee funded a study on the dykelands to
understand the challenges that the dykeland owners of the Chignecto Isthmus area
(45.8482°N, 64.2881°W) were facing. As a results from this study, twelve elements were
highlighted to be of vital interest to dykelands owners at the time. These recommendations
can be summarized into two important themes: the importance of maintaining and
improving dyke infrastructure and associated drainage systems; and improving hay
production orgrazing land¢Baird, 1954) These recommendations shaped g land
management practices and are still prevalent to this day through the adoption of recent

federal and provincial government polic{€orman, 2019)Today, dykelands still play an

10



important role in Nova Scotia since they hold a diversity of public and private assets and
infrastructures, such as roads, malls, suburbs, and sewage treatmer(Sblamtn et al.,
2016)

A report on agricultural dykelands published in 2013 suggested that the importance
of dykelands in the province is attributable to the large production of forage on this land,
estimated at 24. 8% of t he (Agiedo, 200l Joees 20119 ver al
Other reports estimated that roughly 15% of marshlands (2610 hectares) are not being
farmed in Nova Scotia and are used for-agnicultural practices and developmé&aingh
et al.,, 2007) To date, these estimates remain vague and do not provide a clear

characterization of the state of agricultural situation on the dykelands.

This is especially pertinent in the context of current and future climate change
(Drever et al., 2021; Philp & Cohen, 2020; Webster et al., 2008 situation was outlined
in a study by van Proosdij and Pdgan Proosdij & Page, 201,2¥hich predicted a relative
sealevel rise in Nova Scotia, ranging from 70 to 140 cm over the next century and will
therefore increase the vulnerability of the dyke system to storm s{ugedroosdij &
Page, 2012)Within the next 50 years, approximately 70% of the 241 km of dykes in the

province could be at high risk of coastal erosion and overtojpamgProosdij et al., 2018)

Today, dykeland stakeholders are seeking to understand in which scenario
underutilized dykelands should be maintained, converted to agricultural use, or restored
into salt marshes. Knowing when and how to manage these scenarios is especially pertinent,
corsidering that most of these dyke infrastructures will have to be maintained in the coming
years due to rising sea levels. Unfortunately, very little information on what is being grown
and how many hectares of crops are being grown are currently avadaldgkelands
(Drever et al., 2021; Philp & Cohen, 2020; Webster et al., 2@i2¢n the predictions of
rising sea levels, challenges regarding a proper assessment of the resources of the dykelands
must be addressed. To develop suitable -lzs®l policies, there must be an accurate
guantitative assessment of the land utilizatiodydelands.

To address the challenges associated with quantifying land use in dykelands, remote
sensing techniques may be leveraged. The rich literature related-mhagrdmapping can
be mainly categorised into satelibased techniques and surdegsed methodolggy

Satellitebased techniques of lamdver mapping involves the interpretation of remotely

11



sensed data generally derived from satellite iméigegeland et al., 2000Early efforts of

land cover mapping used either a coarse resolution sensor and focused on the
characterization land cover for a single point in time (e.g., Loveland(&bakland et al.,

1991), or used moderate resolution imagery for single class magkae & Tucker,

1993; Sleeter et al., 2013)

2.2.1 Related Work
One of the first coarseesolution, global land cover databases used in global

environmental studies included the Matthews et al. and Wilson and Hend&siens
(Matthews, 1983; Olson et al., 1985; Wilson & HendetSeilers, 1985ylobal databases
(Loveland et al., 2000)n the early 21st century, Loveland et (&loveland et al., 2000)
developed a global land cover database with 1 km spatial resolution using AVHRR data.
This global database consisted of numerous seasonal land cover regions that could be used

in global environmental studies.

At present, few studies have used a combination of property boundaries and crop
inventory for agriculture analysis. Previous research focused mainly orcdaed
mapping or the development of automated process to delineate farnflimldtand et al.,

1991; North et al., 2019Related work by McCracken et @iicCracken et al., 199%jsed

400 property boundaries in the Brazilian Amazon to identify-@meer class patterns that
reflect farming differences. Results from the study demonstrated that the use of remote
sensing and GIS techniques integrated with information from propeutydaoes helped
explain deforestation at a very small scale.

Other similar work from Hanus et §Hanus et al., 2018hvestigated the accuracy
of cadastral parcel boundaries with GIS. Results showed that a good understanding of the
accuracy of cadastral data could contribute to regional development. Precise measurement
of parcel boundaries guarantees stability for fasmweno collect subsidies for agricultural

and forestry parcels from EU funds.

In recent years, the improvement capability of satellite sensors (e.g., Landsat 8,
World-view-3, and PlanetScope) allowed a more precise crop inventory and at higher
spatial resolutions. In Meyer et 8Meyer et al., 2020Q)hey investigated the possibility of
accurately splitting large areas of land into discrete fields usingrbggiution satellite
images as well as deep learning algorithms. Similarly, North €Natth et al., 2019)

12



developed an automated method of deriving closed polygons around fields fresetiese
satellite imagery. This technique was proven to be successful in mapping large agricultural
study sites (4000 kfj and for segmenting parcels of land containing different crops and
pasturgNorth et al., 2019)

The use of statistical surveys and census approaches to quantify land change
contributes valuable information to our understanding of crop change but does not offer a
comprehensive assessment at smaller scales. Data is often difficult to acquire and
incongstent due to the spatial and temporal complexity that are not adequately captured in
national agricultural censu$leeter et al., 2013)n Canada, crop insurance data have
historically been the most precise and comprehensive sources of information for crop type
information (Fisette et al., 2014)Unfortunately, this data, which is provided by crop
insurance agencies, can only be accessed in Alberta, Saskatchewan, andksetbeet
al., 2014) Additionally, Statistics Canada stopped collecting suhvased information on
land use in 2011, and started to use annual crop inventories derived from satellite imagery
(Fisette et al., 2014; Government of Canada., 2011)

Previous works that estimated dykelands in the province were conducted at a
smaller scale, which often resulted in fragmented information on cropping po{Bairal,
1954; Milligan, 1987; Singh et al., 2007)he use of satellite images and GIS allows
decisionmakers to have a more precise understanding of the agricultural potential on the
dykelands. Due to the lack of a comprehensive crop inventory of the dykelands, the
objective of this study is tdetermine the current acreage and spatial distribution of corn
(Zea mays L.), barley (Hordeum vulgar L.e), soybeans (Glycine max L.), wheat (Triticum
aestivum L.) and forages on the dykelands of Nova Scotia by analyzing crop inventory and
property boundarygatafrom 2015 to 2019. The goal of this paper is to document the
number of hectares of the principal crops grown on Nova Scotia's dykelands using crop
inventory and property boundaries data. Results of this paper are divided into three parts.
First, results fronthe Annual Crop Inventory analysis for the dykelands were compiled
from 2015 to 2019. Second, a fiyear average analysis of crops produced on the
dykelands was accomplished to define the most abundant crop. Third, the analysis was
broken down by countio understand better the most productive region for field crops and

forage.
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2. Materials and Methods

2.2.2 Study Area
Although predominantly agricultural lands, dykelands have also been used

historically for several other applications. The dykelands system in Nova Scotia protects
over 600 residential and commercial buildings, 25 km of railway, 80 km of paved roads
and tras, and more than 120 km of power lines from storm surges and flNodsa Scotia
Department of Lands and Forestry, 2018; Sherren et al., ZDi®major dyke systems in
Nova Scotia are located in four main regioRg(re2-1): Cumberland, Colchester, Hants

and Kings, and Annapolis and Diglpyan Proosdij et al., 2018 hese regions are Nova

Scotiads agricultural heartland, surpassi ngt

and the total crop ard®evanney & Reinhardt, 2010)

Colchester
Kings & Hants
Annapolis
& Digby
0 25 50 Kilometers Sources: Esri, HERE, Garmin, FAC, NOAA, USGS, © OpenStreetMap
P contributors, and the GIS User Community:

Figure2-1: Geographical distribution of analysis regions based on the provincial distribution of dykelands (adapted
from van Proosdij et al(van Proosdij et al., 2018)).

2.2.3 Datasets

2.2.3.1 Annual Crop Inventory
The AAFC Annual Crop Inventory from 2015 to 2019 was used as a primary source

of data. The annual inventory is published by the Earth Observation Team of the STB at
AAFC. The digital maps were created using optical (Lanrfis&@entinel2) and radar
(RADARSAT-2) based satellite images using a decision tree clag§ifsstte et al., 2014)
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The Annual Crop Inventory maps are useful in understanding the state and trends of

agricultural production at a high spatial resolution (30FRgure2-2).

Summerside

Charlottetown

Saint John

I Water Fallow [ Soybeans I Vineyards

I Exposed Land / Barren Barley N Peas Hops

I Urban / Developed Oats I Beans Sod
Greenhouses Rye [ Fababeans " Nursery
Shrubland B Sorghum Potatoes Buckwheat

I wetland I winter Wheat Other Vegetables B Hemp

I Peatland [0 Spring Wheat I Blueberry I Other Crops
Grassland Corn I Cranberry I Coniferous
Pasture / Forages Canola / Rapeseed [l Other Berry I Broadleaf

[ Too Wet to be Seeded Mustard [0 Orchards [0 Mixedwood

0

40

80 Kilometers

Sources: Esri, HERE. Garmin, FAO, NOAA, USGS, £ OpenStreetMap contributors,

and the GIS User Commu nity

Figure2-2: Agriculture and AgrFood Canada Crop Inventory Map of Nova Scotia in 2019.

To validate the satellite data analysis, AAFC acquired grdérutt information as
point observations as well as data from other provincial sources. For each year, tens of
thousands of points that identified crops across Canada were combined and ased@s tr
or reference site-isette et al., 2014However, the classification accuracy is not uniform
and tends to vary annually and provincially. The differences in accuracy were related to the
differences in the satellite data availability and the distribution of training site for each
province(Fisette et al., 2014Yable2-1 shows the overall accuracies of the Annual Crop

Inventory in Nova Scotia used in this analysis.

Table2-1: Overall accuracies of the Annual Crop Inventory in Nova Scotia (adapted Agriculture and AgriFood
Canada).

Year Overall accuracit
2015 85.2%
2016 90.6%
2017 89.5%
2018 92.5%
2019 89.1%
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2.2.3.2 Property Boundaries

The Nova Scotia property boundaries from the NSPRD were used to segment the

data from the cromventories and attribute the crop types to the property polygons. To

date, this dataset provides the most reliable GIS information on each property of the

province. Information such as land use, contained in the NSPRD, was useful in filtering the

data anckliminate outliers. The property boundaries used for this analysis were updated in

April 2019.

2.2.3.3 Marsh Boundaries

The boundaries of the dykelands were provided by the NSDA in a shapefile format.
digitized from the 1950606s
19906s. The boumddar i
defined under the Agricultural Marshland Conservation Act. This dataset was used to

This dataset

and compiled

wa s

i n

t he

identify which fields were parts of the dyke system and which were not.

2.2.3.4 Satellites Images

The PlanetScope satellite (Planet Labs Inc., San Francisco, CA, USA) takes images

of Earth's land surface daily at a 3 m spatial resolyttenet Labs., 2021Yhese images

were used to resolve ambiguity in the land usage associated with the property boundaries.

More specifically, it was useful to remove roads, forested areas, and bodies of water

features from the datasets. A series of satellite images wedeskbetween June and
August from 2016 to 2019 &ble2-2).

Table2-2: List of Planet satellite images used in the stuidy the region of Nova Scotia

Source Dates Day of Time Spatial Resolution

Year (m)

4-band PlanetScope Scer 01-Jutl6 183 12:12 3.2
4-band PlanetScope Scer 01-Jutl6 183 12:15 3.2
4-band PlanetScope Scer 23-Augl6 229 12:40 2.5
4-band PlanetScope Scer 26-Junl? 177 17:28 3.1
RapidEye Ortho Tile 06-Jutl7 187 15:33 6.5
4-band PlanetScope Scer 29-Augl7 241 15:09 3.7
4-band PlanetScope Scer 30-Junl8 131 14:41 3.8
4-band PlanetScope Scer 07-Augl8 219 14:40 3.9
4-band PlanetScope Scer 28-Augl8 240 14:12 3.7
4-band PlanetScope Scer 08-Jutl19 189 14:41 3.9
4-band PlanetScope Scer  16-Jutl9 197 14:58 4.0
4-band PlanetScope Scer 28-Jutl9 209 14:46 3.9
4-band PlanetScope Scer 15Augl19 227 13:26 3.5
4-band PlanetScope Scer 28-Augl19 240 14:50 3.9

16

es



2.2.4 Data Processing
To assign a land use to the property boundaries, the Annual Crop Inventory raster

layers were clipped to the edges of the marsh bodies. Here, the zonal statistics tool within
ArcGIS Pro(ESRI, Redlands, CA, USA) was used to identify the dominant crop type from
the crop inventory within each property boundary polydeigure 2-3). This approach
allowed each property unit within the NSPRD to be assigned a crop type within the marsh
bodies, thus enabling the possibility of estimating the number of hectares of crops produced
each year. All of the fields that were not assigned & el@se removed from the database.
Additionally, all the water, road, and rail polygon segments were selected and removed
from the dataset. The filtering process provided a stronger characterization of the crops
grown on the dykelands by eliminating ragicultural fields that could compromise the

rest of the analysis.

Hortonville

Sources: Esri, HERE, Garmin, FAO, NOAA, USGS, ©
__OpenStreetMap cantributors, and the GIS User
0.5 1 Kilometers Community

Hortonville
Sources: Esri, HERE, Garmin, FAD, NOAA, USGS, ©
§ OpenStreetMap contributors, and the GIS User
0.5 1 Kilometers Community

p ————
[ IBarley [ | Exposed Land / Barren || Soybeans I wetland
[ Icorn [ Pasture / Forages [ Spring Wheat [ Winter Wheat
[ T Fallow [l Rye I urban / Developed

Figure2-3: Examples of the Annual Crop Inventory in Gra, Nova Scotia (left) and assigned to property
boundary from the NSPRD (right).

2.2.5 Extraction of Crops and Data Filtering
The property boundaries containing the crop inventory information generated in the

previous steps were sequentially selected and extracted to a new dataset. Here, crops were
manually filtered using information from the assessment value classificatiortaicae

from the NSPRD Table 2-3). All the fields with a class other than resource taxable,
resource farm, federal farm, provincial farm and municipal farm were removed from the

analysis. The filtering process was especially helpful in removing the forage classes, which
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were not used for agriculture purposes but listed in the Annual Crop Inventory. This
situation was prevalent for the residential houses with large open grass fields that are not

used for agriculture.

Table2-3: Assessment Value Classification Code taken from the Nova Scotia Property Records Database. Adapted
from (Province of Nova Scotia., 2019).

Code Featureexplanation
1 Residential taxable
2 Commercial taxable
3 Resource taxable

21 Residential exempt
22 Commercial exempt
23 Resource exempt
24 Nonprofit land

25 Resource farm
26 Commercial forest
27 Resource forest
50 Federal farm

51 Provincial farm
52 Municipal farm
54 Federal forest
55 Provincial forest
56 Municipal forest

The area of each polygon was calculated using the calculate geometry tool within
ArcGIS pro. The resulting values were used to calculate the hectares of crops grown within
each polygon, assuming that the entire polygon was cultivated. To eliminate pessitde
caused by this assumption, field boundaries were visually assessed frosetiese
satellite imagery from PlanetScope and outliers were subsequently removed from the
analysis. Similar techniques of visual assessment are described in Nor{Netthlet al.,
2019)and Rahman et alRahman et al., 2019%atellite images were also used to reduce
ambiguity during the process of identifying the agricultural fields. Agricultural dykelands
can be identified from highesolution satellite images by locating series of open ditches
parallel to each other thateatypically spaced 45 to 60 m apf&artley et al., 1986)All

these steps were carried out on data from the Annual Crop Inventory for 2015 to 2019.
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2.3 Results

2.3.1 Analysis of the Agriculture and A§dod Canada Crop Inventory

Results from the Annual Crop Inventory dykelands analysis were compiledbie

2-4. These results show dykeland utilization before filtering using information from the

assessment value classification code. The analysis of the Annual Crop Inventory revealed
that out of the total 16,238 hectares of provincial dykelands, 60% of the leadvas

dedicated to the production of field crops and forage. Interestingly, the production of

vegetables, small fruits and potatoes has remained negligeable in comparison to other

crops. An average of approximately 11,735 hectares of dykelands weredadelorage

or pasture fields in the last five years.

Table2-4: Analysis of the Agricultureand AgB2 2 R/ I YI RIF Q& ! yydzt [/ NRLI LY@SyidzNE
Crops 2015 2016 2017 2018 2019 Average
Barley 52 68 11 42 149 64
Beans - - - - 9 9
Blueberry 67 13 - 2 6 22
Broadleaf 39 82 174 116 44 91
Coniferous 52 57 82 79 72 68
Corn 1123 1353 1311 1330 1125 1249
Exposed Land / Barren 7 40 250 259 119 135
Fallow 68 2 55 16 155 59
Grassland 8 19 6 189 20 49
Mixedwood 24 40 6 4 5 16
Nursery - - - - 12 12
Oats 35 13 20 64 2 27
Orchards 18 17 23 28 4 18
Other Vegetables 22 30 45 9 29 27
Pasture / Forages 11,790 11,838 11,720 11,028 11,925 11,660
Potatoes 99 148 33 - 11 73
Rye - - - 104 10 57
Shrubland 765 97 202 300 118 297
Sod 12 10 - 13 4 10
Soybeans 386 468 494 351 580 456
Spring Wheat - - 5 34 60 33
Urban / Developed 527 456 359 518 234 419
Water 64 57 50 55 50 55
Wetland 377 720 772 928 868 733
Winter Wheat 270 212 162 301 170 223
Roads/Railways 463 463 463 463 463 463

Total (hectares)

16,270 16,204 16,244 16,234 16,244 16,239
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2.3.2 Average Area of Crop Production from 2015 to 2019
From 2015 to 2019, an average of 9,880tares of field crops (wheat, barley, corn,

soybeans) and forage were cultivated on Nova Scotia's dykelgaialeZ-5). Over the last
five years, the production of barley has been limited in comparison to the other crops,

making up 0.65% of the area of crops grown.

Table2-5; Five year averages of crops produced on the dykelands of Nova Scotia.

Crops 20152019 averages (hectares)
Wheat* 242

Barley 64

Corn 1,247

Forages 7,870

Soybeans 456

Total (hectares) 9,880

* Average of Spring and Winter wheat.
On a 5year average, corn was the secomast abundant crop, with 1,247 hectares

grown annually, followed by soybeans and wheat with 456 hectares and 242 hectares
grown, respectively. This number varied marginally from year to year, ranging from 9,395
hectares in 2018 to 10,251 hectares in 20 Hble 2-6).

Table2-6: Hectares of crops produced within the marsh bodies of Nova Scotia.

Crops 2015 2016 2017 2018 2019
Wheat* 270 212 0 - -
Spring wheat - - 5 34 60
Winter wheat - - 162 301 168
Barley 52 68 11 42 149
Corn 1119 1353 1311 1330 1125
Forages 7908 8150 7946 7336 8011
Soybeans 386 468 494 351 580
Total (hectares) 9736 10,251 9929 9395 10,093

* This subcereal class is mapped only if the distinction of-stiteat covers Spring
Wheat or Winter Wheat is not possible.

2.3.3 Area of Crop Production by County
Over a period of five years, the dykelands from the Hants and Kings Counties

produced themost field crops and forage of all the other counties in the proviradge

227) . Al most 75% of the provinceds croplands
this county. Similarly, the production of soybeans and wheat was disproportionally high in

the Hants and Kings Counties, ranging from 81 to 91%. Dykeland fields in Clamter

County were mainly used to produce forage, which represented almost 25% of the

province's dykeland area.
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Table2-7: Hectares of field crops and forage produced by counties.

Kings & Hants Colchester Cumberland Annapolis
Ha % Ha % Ha % Ha % Total Hectares
Wheat* 236 87 13 4 0 0 22 7 270
Spring wheat - - - - - - - - -
Winter wheat - - - - - - - - -

2015 Barley 0 0 13 26 34 54 5 6 52
Corn 847 76 140 12 0 0 132 11 1,119
Forages 2770 35 1,662 21 2,000 25 1,477 19 7,908
Soybeans 314 81 65 15 6 1 2 0 386
Wheat* 212 100 0 0 0 0 0 0 212

Spring wheat - - - - - - - - -
Winter wheat - - - - -

2016 Barley 25 37 26 31 7 7 10 10 68
Corn 952 70 194 14 0 0 207 15 1,353
Forages 2699 33 1,578 19 2,317 28 1,555 19 8,150
Soybeans 378 81 75 15 0 0 15 3 468
Wheat* - -

Spring wheat 0O 0 5 100 0 0 0 0 5
Winter wheat 162 100 0 0 0 0 0 0 162
2017 Barley 11 100 0 0 0 0 0 0 11
Corn 979 75 248 19 0 0 83 6 1,311
Forages 2544 32 1,538 19 2,232 28 1,631 20 7,946
Soybeans 428 87 38 7 24 4 4 1 494
Wheat* - - - - - - - - -
Spring wheat 34 100 0 0 0 0 0 0 34
Winter wheat 274 91 0 0 0 0 28 8 301
2018 Barley 32 77 10 13 0 0 0 0 42
Corn 971 73 189 14 0 0 171 13 1,330
Forages 2457 33 1,393 19 1,967 27 1,520 21 7,336
Soybeans 321 91 30 8 0 0 0 0 351
Wheat* - - - - - - - - -
Spring wheat 11 19 10 16 23 39 15 26 60
Winter wheat 168 100 0 0 0 0 0 0 168
2019 Barley 41 27 5 3 104 69 0 0 149
Corn 754 67 250 22 0 0 121 11 1,125
Forages 2594 32 1,552 19 2,207 28 1,658 21 8,011
Soybeans 515 89 65 11 0 0 0 0 580

* This sub-cereal class is mapped only if the distinction of sub-wheat covers Spring Wheat or Winter Wheat is not possible.

2.4 Discussion
The indepth analysis of the Annual Crop Inventory revealed that roughiyhmnae

of the approximately 11,73%ectares of forage inventoried on the dykelands were classified
in the NSPRD as neagricultural fields. This represents approximately 3,844 hectares of
forage fields that were not utilized for agricultural production. Although this represents a

large areatwo factors can explain the main causes of this discrepancy.
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First, the zonal statistics tool used to calculate the dominant class within each
polygon tended to categorize residential and commercial property fields as forages. Large
areas of lawn grass in rural areas often resulted in these areas being categdozgka
fields. However, this issue was corrected by filtering out these fields using property records
from the NSPRD and satellite images. Additionally, the overall accuracy of the Annual
Crop Inventory model used to generate the inventory foragpitdtural land cover was
approximately 70%, yearl{Agriculture and AgriFood Canada. & Secretariat, 202Ihe
presence of large lawn areas and a reduced accuracy fagrioualtural cover could mean
that this analysis underestimated the number of hectares of fields used for residential and
commercial applications, thus overestimating the total forage leectar

The second factor that may explain the discrepancies between the number of
hectares of forages from the Annual Crop Inventory and the calculated values could be that
some forage fields were isolated, inaccessible to farmers, or owned by provincial and
fedaal agencies who are not farming these fields. For example, the Minudie dyke system
(45.8086°N, 64.3229°W) represented 1,422 hectares of forage dykeland that was not
utilized for farming(C. Esau, personal communication, December 5, 20213 large land
area was removed from the analysis since it was not currently used for agricultural

production.

2.4.1 Fields Crops and Forages on the Dykelands
Historically, there was no significant difference in which crops could be

successfully produced on the uplands versus the dykglBledgkney, 2004)The problem

with high value cash crops was not so much that dykelands could not support the crops but
resides in the inherent difficulty associated with drainglye Juurlink, personal
communication, February 24, 202Dykelands soils have low permeability and poor
surface drainage, thus requiring land forming to maximize their pot€ktitdtee et al.,

1994) Over time, however, plowing causes soil redistribution and thereby modifies the

topography; hence, dykeland fields must be refofimagrocess known as "recrowning".

In Nova Scotia, field drainage is often the limiting factor on the types of crops that
may be successfully growkigure2-4) (Gartley et al., 1986)Gartley et al. noted that it is
generally difficult to grow valuable cash crop on recently drained (@adtley et al.,
1986) It is advised to grow grain or hay crop for several years following an initial re
crowning to help improve the soil structure. This management practice will in turn, improve
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soil drainage and aeration over time, as the crop rooting zone extends deeper into the soil
profile (Gartley et al., 1986)

Figure2-4: Dykeland field in Truro, Nova Scotia (45.3729°N, 63.2954°W) with wsdturated areas. Image was
captured on the morning of November 11, 2020.

High value cash crops often require more intensive machinery use, which may
increase the risk of soil compactig@artley et al., 1986)intensive farming of row crops
may then lead to the degradation of soil structure, which will negatively impact the mobility
of water and reduce the effectiveness of the draif&g# Conservation Service, 1973)
This creates a cycle that is difficult to recover from without a complete recrowning of the
field. On poorly drained dykelands, farmers are often cautious to seed field crops since they
are concerned that they will not be able to harvest their fieldeifall (C. Esau, personal
communication, December 5, 202T)his could explain the prevalence of forage and
pasture on the dykelands, relative to other crops. Forages makes up the largest commodity
grown, representing around 80% of the total agricultural dykelands. This production is even
more essential considag that dykelands are usually more productive than the uplands
(Langille & Warren, 1961)

Langille and Warren demonstrated in their study that oveyeaB period, forage
yields on dykelands were 20% greater as compared to upland crops. Furthermore, they
noticed that seasonal distribution of forage was better on the dykelands than the uplands,
which allows them to excel in the production of timotRyhleum pratenge orchard grass
(Dactylis glomeratd..), red clover Trifolium pratensd..), alfalfa (Medicago sativa..) or

Ladino clover foragesTtifolium repend..) (Langille & Warren, 1961)
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Information from the federal census of agriculture also revealed that forage
production in Nova Scotia represented 60% of the total agricultural land in the province
(Government of Canada., 2011, 2016)s important to note that 80% of the agricultural
dykeland fields in the province are used to grow forage, which far surpasses forage

production on provincial upland fields.

2.4.2 Limitations
The strength of this methodology depend:s

Annual Crop Inventory and the NSPRD. The NS property boundaries can eitheorover
underestimate the hectares of land cultivated. A medepth segmentation of the field
boundaries, followed by field surveys, could increase the overall accuracy of the
estimations. Additionally, if not up to date, the property boundaries database could lead to
discrepancies between estimation of lands cultivated and reality. For instaheelaifid

use of a property boundary has changed from agricultural production to residential and the
information has not been updated to the database, this could misrepresent the results. This
type of discrepancy can be minimized by using the latest dateaiéable and, if possible,

by ground proofing the results to reduce ambiguity.

Another limitation of this analysis lies in the fact that it only contained the results from the
last five years. Unfortunately, the 2020 AAFC Annual Crop Inventory could not be
completed in Nova Scotia due to COVID travel restrictions. These restrictio
prevented the collection of ground data collected, making it impossible to define an
agricultural class preciselfAgriculture and AgrFood Canada. & Secretariat, 202An
in-depth analysis over a more extended period would provide a detailed representation of
the agricultural situation on the dykelands. Finally, the technique presented in this analysis
requires users to have a fair understanding of GIS software,afusing qualified GIS
professionals to conduct the analysis.

2.5 Conclusions
To make more informed land management decisions on dykelands, a detailed

inventory of corn, barley, soybeans, wheat, and forages was compiled. This paper aimed to
determine the current acreage and spatial distributidirelaf cropsand forages on the
dykelands of Nova Scotia by analyzing crop inventory and property boundarfratata

2015 to 2019. Evidence from previous report on agricultural dykelands by ([Baiirdi,

1954) Milligan (Milligan, 1987)and Singh et &Singh et al., 2007Jemonstrated a vague
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understanding of the state of agricultural situation on the dykelands . This research is
particularly important in today's context, where challenging decisions will have to be made
in the upcoming years when considering the future of the Nova Scotia yhtieens thus
affecting agricultural dykelands. If it is not casffective to maintain dykelands, it may be
necessary to compensate landowners with upland lots. Knowing when and how to manage
these scenarios requires more study on the-femg economic vale of agricultural
dykelands, which requires a deep understanding of the cropping potentials. To date, there
has been no comprehensive crop inventory of the dykelands. Understanding cropping
potential on the dykelands will help prepare for kdegn food ecurity for the region,

which is essential given the possible impacts of climate change. This study provides
guantifiable information on the land usage of the dykelands, thus helping government
agencies to make informed decisions regarding agriculturgggiron on the dykelands.
Furthermore, the work presented in this paper lays the framework for how this method can
be duplicated for future years. This would allow the possibility to evaluate changes in
production and the number of acres farmed over timeddition, this work could be
beneficial to local authorities for decision making. The model presented in this analysis
could also be expanded to other regions of Canada. For example, the province of New
Brunswick, Canada, is currently facing similaruss to Nova Scotia and is protecting
almost 15 000 hectares of dykelands in which 41% are not being farmed. This analysis
could improve decision making by increasing the knowledge on crops cult{&tegh et

al., 2007)

This analysis provides a more precise representation of the agricultural utilization
of the dykelands. To date, this work represents the first robust crop inventory of the major
crops grown on the dykelands. Results from theyiwar averages of this agais revealed
two significant trends. First, more than half of the Nova Scotian dykelands are being used
for agricultural production. Second, the production of forage is predominant on the
agricultural dykelands constituting approximately 80% of the tiab land area. This
finding is important considering that the second (corn) and third (soybeans) crops of
abundance only represent 12 and 4% of the total crop land area, respectively.

Further research will be conducted to improve the field boundaries segmentation
and provide recommendations for future cultivation based on the information gathered in

this analysis. This will be accomplished by refining the resolution of the crop inydaytor
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using highetresolution satellite images (e.g., Sentinel 2) and conducting field interviews
with dykelands farmers to understand the economics of dykelands farming.
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3.1 Abstract:
Agricultural dykelands in Nova Scotia rely heavily on a surface drainage technique called

land forming, which is used to alter the topography of fields to improve drainage. The
presence of lanformed fields provides useful information to better understamnd
utilization on these lands vulnerable to rising sea levels. Current field boundaries
delineation and classification methods, such as manual digitalization and traditional
segmentation techniques, are labéwntensive and often require manual and time
consuming parameter selection. In recent years, DL techniques, including convolutional
neural networks and Mask-GNN, have shown promising results in object recognition,
image classification, and segmentation tasks. However, there is a gap in appbgeg th
techniques to detecting surface drainage patterns on agricultural fields. This paper
develops and tests a MaskdRIN model for detecting larfdrmed fields on agricultural
dykelands using LiDAJerived elevation data. Specifically, our approach focuses
identifying groups of pixels as cohesive objects within the imagery, a method that
represents a significant advancement over pyebixel classification techniques. The DL
model developed in this study demonstrated a strong overall performance, wiR of

0.89 across loU thresholds from 0.5 to 0.95, indicating its effectiveness in detecting land
formed fields. Results also revealed that 53% of Nova Scotia's dykelands are being used
for agricultural purposes and approximately 75% (6,924 hectareshaxe fields were
land-formed. By applying deep learning techniques to LiE¥eRved elevation data, this
study offers novel insights into surface drainage mapping, enhancing the capability for
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precise and efficient agricultural land management in regions vulnerable to environmental

changes.

The work presented in this chapter has been published in the open access journal Scientific
Reports DOI 10.1038/s415924-605255 entitl ed AEnhancing
mapping in eastern Canada with deep learning appliedto LHdARr i ved el evati o

3.2 Introduction
Agricultural dykelands in Nova Scotia are an essential component of the agricultural

landscape, providing fertile land for cultivation and supporting diverse ecosystems
(Sherren et al., 2021These lowlying areas have unique drainage characteristics and land
formations. Dykeland soils are highly mineralized, high in silt content, and very compact,
making them difficult to draifRodd et al., 1993) ow permeability of the soil often makes

the fields watetogged due to high precipitation early in the {&lesplanque, 1983High
rainfalls are a consequence of the coastal effect on Nova Scotia's weather and its
geographical vulnerability to hurricangBavis, 1996) During winter, snow and ice
prevent the lowering of the water table resulting in saturation of the top soil layers when
snow accumulations melt in the sprifi@esplanque, 1983 hese conditions create acute

drainage problems on the dykelands, resulting in difficult farming conditions.

In the 1700s, Acadians settlers solved drainage problems by digging ditches that
followed the natural slope of the land. In flat areas, they built small excavated channels
separated by parallel ditches approximately 20 meters @pactntyre & Jackson, 1975)

The length between the ditch areas would vary depending on the location but could extend
up to several hundred meters. On uneven groundiiog areas were drained by digging
ditches along the path of least resistance and would be connected to és¢ diezr. This

often resulted in agricultural dykelands with irregular ditch lengths, uneven surfaces, and
small flats. Although efficient for hand and horse work, this arrangement later posed a
challenge for modern farm equipment and proper usage oflasyse(Macintyre &
Jackson, 1975)

Accurate mapping and characterization of these fields remain a significant challenge
due to their irregular field boundaries, Alomear drainage patterns, and variable surface
topography. Recent advancements in remote sensing techégbagtcularly the

availability of highresolution airborne LIDAR data across Car@adfer promising
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opportunities for improved landse analysis and agricultural managen{&ava Scotia
Department of Natural Resources and Renewables, 20k&)hine learning and deep
learning algorithms have gained significant attention for their potential to process and
analyze largescale highdimensional datasefdordan & Mitchell, 2015; Yu et al., 2017;
Zhang et al., 2016 hese techniques have been increasingly applied to various agricultural
tasks, such as crop type classification, yield prediction, and field boundary delineation
(Maggiori et al., 2017; Mohan & Giridhar, 2022; F. Zhao et al., 20R&¥ent advances in
delineating field boundaries using deep learning algorithms have demonstrated remarkable
results with an average loU accuracy score of ((8dgiFarm, 2022a) This represents a
significant milestone since the precise identification of boundaries within agricultural fields
is a critical prerequisite for any meaningful land use andyalthough the full scope of
their utility remains to be tested. For instarfoeeld boundaries delineation algorithm can
play a significant role for growers since they can use them to optimize implement size,
which contributes to a better efficiency in the field management processes. Additionally,
field boundaries are crucial in éhdevelopment of GNSS guidance maps, offering

invaluable spatial data for precision farming practices.

DL is a subfield of machine learning that uses neural networks with multiple layers to
model and understand complex patterns in datasets. These characteristics enables
computers to make predictions. DL have multiple layers between input and output nodes,
granting it distinct advantages which include the ability to learn from data with minimal
human intervention, robustness to natural variations in data, and efficient handling of high
dimensional datdGoodfellow et al., 2016)Most DL models are trained using labelled
datasets, with each example comprising an input vector and an associated output label. The
model learns to map inputs to outputs, adjusting its internal parameters based on the error
it made during backpropagatid®Cun et al., 2015)

These DL models, have demonstrated promising results in various applications, such
as underwater archaeology and damage detection in buildings. A st(@gdracter et al.,
2021)provides a compelling example. They demonstrated the effective use of the YOLOv3
architecture, combined with togmathymetric data, to detect shipwrecks. Their results
exhibited high accuracy, with an F1 score of 0.92 and a precision of 0.90, highligpeting
potential of using DL models in underwater archaeology. Similarly, other researchers have
applied machine learning techniques to aerial imagery for damage de{dttioawar et
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al., 2022)revealed the efficacy of drone imagery for identifying cracks and structural
damage in buildings, achieving a remarkable global accuracy of 0.990. Their approach
employed a CNN architecture and integrated GF to-tfime predicted outputs. This
methodolog yielded numerous benefits, including noise reduction, -tegal feature
supervision, and the incorporation of both mattale and mukievel features during the
training process. In a different context, Corbane et al., 2021, adopted a deep{easathg
framework for extracting human settlements from Sen@nséhtellite imagg€orbane et

al., 2021) Their work highlighted the vast potential of deep learning in remote sensing
applications across an extensive geographic extent. The results presented by Corbane and
his team underscore the exciting promise of utilizing deep learning techniques in remote

sensing to tackle an array of complex tasks.

CNNs, a subset of deep learning, have also shown impressive results in image
classification tasks, such as recognizing patterns and features in remotely sensed images
that can be used to accurately identify and map field bound&tighao et al., 2021Jor
instance, CNNs can classify land cover types from rspktictral satellite images by
learning distinctive spatial and spectral features. CNNs can also detect specific objects,
offering valuable insights for urban planning, environmental monitoring, disaster

managementMehmood et al., 2022)

Expanding on the capabilities of CNNs, MasiCRIN has been developed for instance
segmentation tasks, providing a pigbke classification of objects in an ima@éresson,
2020) Evolving from Faster ’CNN, this technology uses a RPN to identify potential
objectcontaining Rols within an image. These Rols are then passed through a
convolutional network, generating independent feature maps for ea¢H&et al., 2017)
This method facilitates localized feature extraction and leads to more precise mask
predictions, yielding binary masks for each object instance. Ma€iNR has shown
potential for automating the mapping of topographic features from digital elevatiomdata
task traditionally riddled with timeonsuming and labotntensive manual interpretation
(Passalacqua et al., 2010\Vhile deep learning, CNNs, and Mask-CRIN have
revolutionized tasks such as feature extraction, classification, and detection on large
geographic extents, their application to the detection of surface drainage characteristics on

agricultural fields remais a gap that needs to be addressed.
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The primary objective of this research wadrton andtest a Mask RCNN model for
detecting landormed fields on agricultural dykelands using high resolution DEMs derived
from LIDAR data. By incorporating DEMs and training the model with representative
samples of landormed field, we expect to achieve posstdetection of surface drainage
patterns on agricultural dykelands. Our technique concentrates on grouping pixels into
objects within the images, which differs from methods that classify eachsepatately.

This research will contribute to a better understanding of land use, leading to more efficient
management practices and policies. This novel research also showcases how other deep
learning algorithms, namely field boundary delineation, cande®l s the foundation

blocks to characterize other land features on large geographic extents, thus further

expanding on their potential uses in agricultural studies.

3.3 Materials and Methods
3.3.1 Historical Context

3.3.1.1 Landforming
The first experiment in drainage and reformation of dykelands in Atlantic Canada

was initiated in 1922 at the Experimental Farm in Nappan, Nova Scotia. At the time,
researchers at the farm had to increase the distance between the ditches to accommodate
thetrafficability of small motorized farming equipment. This decision resulted in increased
cultivated areas and fewer drainage ditches, and they observed little to no impact on the

effectiveness of drainag€alder et al., 1986)

This phase of experimentation continued until the 1950s and involved the
construction of multiple field sections, each 23 m in width and ranging from 106 to 274 m
in length. Shallow depressions between the ditch areas carried off the water, allowing
machires to operate in any direction across the |@ddcintyre & Jackson, 1975)
Although these draining and reforming experiments were an improvement over previous
methods, they were designed for the horse age and were still unsuitable for larger farm
machines due to limited distances between ditches. As a result, a new dyketaautbfor
and drainage pattern was required to accommodate modern machines and farming
practices. This led to a new series of experiments at the Nappan farm involving land

forming.

Land forming is a technique used to alter the topography of fields through the

mechanical movement of soil to improve surface drainage. This process involves
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excavating a series of parallel ditches which are then filled in to create hills called "crowns."
The surface water on the crowns then drains off to the two adjoining d{i2esglanque,

1983; Kolstee et al., n.dJhe first land forming studies began in 1950. These studies aimed
to determine the impact that crowning the fields had on drainage and prodizicsh

1954) These experiments ultimately led to the crowning of dykelands on larger plots of
land (>2 hectares) with larger ditches 8® m wide) and lengths exceeding 457 meters.
This demonstration showed that wide dykeland ditches (<30 m) provided adequate
draingge and were easier to work with heavy farm equipment, as they improved field
trafficability. These surface drainage improvements resulted in a longer growing season
and increased crop yiel@Bleakney, 2004)

In 1986, a report titled "Farm Drainage in the Atlantic Provinces" summarized the
results from the experiment at the Nappan farm and recommended a distance between open
ditches to be between 35 to 60 m with a gradient 6001% to an open collector ditch
(Gartley et al., 1986)These recommendations have been in place for more than three
decades and have propagated across the maritime provinces, making it the modern method

of land forming agricultural dykelandblova Scotia Environmental Farm Plan, 2020)

3.3.1.2 Subsurface Drainage
Subsurface drainage trials were conducted on Nappan Farm's dykelands in the

1950s using tile drains, a system of underground pipes removing excess water from the
soil. Initially, attempts with fournch drainage tiles placed in a field ditch and covered wi

clay proved to be inadequate to remove excess surface(Maigntyre & Jackson, 1975)

In 1954, a new trial was conducted on different types of ditches and drains. Results from
this experiment showed that the tiled drains were not functioning properly, as water
remained on top of the tile drain in several locations. It was determinetthéh@lies were
unobstructed, but the water was unable to percolate through the soil that covered the tile.

Further trials on tile drains were carried out at the Nappan Farm in 1968 on a wet
and poorly drained one hectare area bordering the uplands. The area had several springs at
the base of the uplands, which posed a significant issue in this field. To addnessblem,
the tile drains were connected to the springs to eliminate the water seepage at the surface.
The field was also sloped to facilitate water movement towards the area over the tile
(Macintyre & Jackson, 1975)Observations over the next six years following the
installation revealed that the tile functioned well and effectively drained the field. This
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drainage and land levelling method offers a viable approach to addressing problematic
small wetland areas located proximal to uplands, thereby converting them into more
extensive fields free of ditches. Additionally, the elimination of ditch maintenance

translates to reduced operational c¢BtsBiggs, personal communication, April 8, 2022)

Understanding this historical context makes it possible to infer land usage based on
its forming state. Fields with open ditches spaced 35 to 61 meters apart were most likely
built later than the 1950s and suggest intensive farming activities. Oppdbiegbyesence
of parallel ditches spaced 15 to 23 meters apart indicates that older drainage techniques
were used before the 1950s and suggest limited agricultural activities due to their
inefficiency in carrying large farming equipment. Finally, the preseaf unrformed
agricultural dykelands and the use of tile drains have also proven to be a viable solution for

fields closer to the uplands.

3.3.2 Study Area
The study area, situated on the East Coast of Canada, encompasses the entirety of

Nova Scotia's dyke system, as defined by the Nova Scotia Agricultural Marshland
Conservation ActKigure 3-1). This system spans an impressive 17,401 hectares. Most
dykelands in Nova Scotia are situated along the Bay of Fundy, illustrating the interaction
of coastal and agricultural landscapes in this part of Canada. These dyke systems spread
throughout the couies of Annapolis, Colchester, Cumberland, Digby, Hants, Kiagd,

Yarmouth(Figure A-1Error! Reference source not found).
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Figure3-1: Geographical distribution of Nova Scotia's dyke systems by counties.
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3.3.3 Datasets

3.3.3.1 Automatic Detection of Field Boundaries
To distinguish the boundaries of agricultural fields so they could be used to assess

the drainage type, DigiFarm (DigiFarm, Inc., Oslo, Norway) provided a dataset of all the
field boundaries within the dyke systems. DigiFarm has developed an API thaysraplo
deep neural network model capable of detecting field boundaries from satellite imagery.
The model uses higlesolution orthophotos (25 cm spatial resolution) in conjunction with
enhanced Sentin@ images, upscaled from a 10 m spatial resolution26 fn using a
proprietary algorithn{Digifarm, 2022b Figure3-2). DigiFarm's APl was applied to Nova
Scotia's dyke systems, resulting in the digitization of 3,421 vector polydabte@-1).

The extent was confined to the limit of the study area and was used to exclude agricultural
fields that are not inside the dyke systems. DigiFarm's deep learning model was exclusively
employed for delineating the boundaries of agricultural fields. Thguts from this model

were subsequently utilized as reference data (ground truth) to evaluate and enhance the

performance of the deep learning model discussed in this manuscript.

TN /
0 0.13 0.25Km

Figure3-2: Sample of the field boundaries delineated with the DigiFarm API on@andPré dyke system.

3.3.3.2 Manual Digitization of Field Boundaries
DigiFarm field boundary delineation APl was trained from satellite images of

agricultural dykelands and thus struggled to identify boundaries of abandoned agricultural
fields due to the presence of dense vegetation. Therefore, the remaining agriceltural fi
boundaries were manually digitized in ArcGIS Pro (ESRI, Redlands, CA, USA).
Multitemporal satellite images were used for digitizing missing field boundaries manually.

Manual digitization on higiiesolution images is a common approach for boundary
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delineation but has proven to be labmiensive and time&onsuming for large areas
(North et al., 2019)

This digitization process was performed on approximately 3,820 hectares of
dykelands, representing 399 polygons. To maintain a consistency during the digitization
process, three rules of image interpretation were defiRathe & Kiser, 2012)Firstly,
tree lines, streams of water, ponds and roads were used as natural boundaries to delineate
fields (Lillesand et al., 2015Secondly, changes in pattern consistency from aerial images
were used as indications of new field boundaries. Thirdly, satellite images from the
Sentinel2 and PlanetScope constellations, taken at different dates, were used to reduce
ambiguity during thalelineation procesd-ranklin & Wulder, 2002)The total number of
field boundaries delineated from DigiFarm APIs and manually amounted to 13,262
hectares. Roads, railroads, and urban areas, particularly common in Truro, Stewiacke,

Windsor, Wolfville, and Annapolis Royal were excluded from the dtdase

Table3-1: Total number of field boundaries digitized from a deep learning APl and manually within Nova Scotia's
dyke system.

Digitized Features  Manually Total Number Total Total

County from DigiFarm's Digitized of Digitized Digitized Land

API Features Features (ha) (ha)

Annapolis 422 148 570 1491 2296
Colchester 604 28 632 1994 2730
Cumberland 749 36 785 4228 5166

Digby 12 41 53 237 328
Hants 746 28 774 2177 2947
Kings 847 80 927 2925 3642

Yarmouth 41 38 79 210 292
Total 3421 399 3820 13,262 17,401

3.3.3.3 Digital Elevation Models
A variety of products derived from LiDAR data were utilized to identify agricultural

fields within the dykelands and generate training data for the DL model. LIDAR data are
suitable for identifying agricultural fields on dykelands as theypzams througlopenings

in the vegetation canopy cover commonly found in these &Btaskney, 2004; Thiel &
Schmullius, 2017)

LEG was contracted by the province of Nova Scotia to collect LIDAR data as part
of an initiative aimed at gathering LIDAR data over a fy&ar period, with each year

focusing on various regions of the province. This research project drew upon dataaollect
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during 2019 and 2020. The 2019 phase of data collection covered roughly 35%00 km
encompassing the western and southwestern counties of Nova Scotia, while the 2020
survey targeted approximately 10,000 %kwmithin Cumberland countyfLeading Edge
Geomatics, 2021, 2022fror the execution of these surveys, LEG utilized a Riegl Q780,
Riegl VQ-1560i, and a Riegl V€560ii scanning system. These aerial surveys were
complemented by ground verification efforts by a ground team dispatched across the survey
sites to collect RTKjround control points. These control points were used during the post
processing of the data to validate the precision of the LIDAR surveys. For NVA, the
average difference between the ground control points and the LIDAR survey was 0.005
meters in 2019 ah-0.022 meters in 2020, suggesting a very high level of accuracy. The
precision details about these surveys a@ulined in Table 3-2. Additional information
regarding the methodologies and outcomes of the 2019 and 2020 Nova Scotia LiDAR
surveys can be found in the acquisition reports, accessible via the Nova Scotia Geographic
Information ServicegGovernment of Nova Scotia, 2024a)

Table3-2: Description of LIDAR data and positional accuracy metrics for surveys conducted in Nova Scotia during
the years 2019 and 2020.

LiDAR Dataset

Specification 2019 Collection 2020 Collection
Collection Dates May-October JulySeptember
Sensor VQ1560i, Q780 VQ1560i, VQ1560ii
Sidelap 20%, 55% 20%
Average Post Spacin( 6 ppsm 6 ppsm
Metric - NVA Average Difference (m): 0.005 Average Difference (mj0.022
RMSEz (m): 0.055 RMSEz (m): 0.057
NSSDA (m{.107 NSSDA (m): 0.112
Metric - VVA Average Difference (m): 0.078 Average Difference (m): 0.008
RMSEz (m): 0.119 RMSEz (m): 0.046
NSSDA (m): 0.233 NSSDA (m): 0.091

ppsm= points per square meter, NVA=Ndegetated Vertical Accuracy, VVA=Vegetatec
Vertical Accuracy, RMSEz=Vertical Root Mean Square Error, NSSDA=National Stand
Spatial Data Accuracy

To improve the data handling efficiency, datasets were partitioned into 14 km by
14 km scenes encompassing the study area. A total of 20 scenes covering the study area,
were employed during the assessmgidse Table AlError! Reference source not

found.). All LIDAR points were projected onto their respective UTM zones and, where
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necessary, adjusted to conform to the Canadian Geodetic Vertical Datum of 2013
(CGVD2013)Government of Nova Scotia, 2024rom the LIDAR data, a DTM was
created with a spatial resolution of 1 meter. This model inclymadts identified as
Ground, Water, and Kepoints. The blast2dem tool from the LAStools (rapidlasso GmbH,
Gilching, Germany) software suite, was employed for this pufpeading Edge
Geomatics, 2021)This tool facilitated the triangulation of the point cloud, creating an
initial TIN with the longest triangle edges capped at 50 m@&ersernment of Nova Scotia,
2024b; Leading Edge Geomatics, 2022p address small datevid regions, typically
characterized as 'nodata’ zones, an interpolation approach using the gdal_fillnodata tool was
applied, allowing for the filin of these gaps by extrapolating from adjacent valid pixels,
with the interpolatia radius set to a maximum distance of 400 m@Bargernment of Nova
Scotia, 2024hb)

The aspect and slope functions in ArcGIS Pro were used to create two raster layers
from the DEM using the composite band function. The aspect represents the downslope
direction of the maximum rate of change in value from each pixel to its neighbourifgy pixe
(ESRI, 2024a)lt is reflected as the compass direction and symbolized by varying hues.
Slope, on the other hand, measures the rate of change in elevation for each DEM pixel. For
this study, the slope inclination was calculated using degree values ranging from 0 to
90(ESRI, 2024h)Figure3-3 representshe general workflow used to generate the training
data for the DL model from the LIiDAR data.

LiDAR Data

Y

Multiband Raster
Dataset

Train Deep Learning
Model

Derived Elevation
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\/_\
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Figure3-3: Utilization of LIDAR Data for the generation of multiband raster datasets for the training of a deep
learning model.
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3.3.4 Assessment and Classification of Surface Drainage
Fields were evaluated for land forming by two RAs employed by Dalhousie

University. RAs were proficient with the use of GIS and were trained during workshop
sessions on recognition of lafmrmed fields. Trainings sessions were designed to help RA

to be cmsistent in the image interpretation and expose them to ambiguous scenarios. To
minimize inconsistency errors, the same RAs were used during the digitization process and
two rules were established during the workshop sessions. Firstly, the classifiCtdith o
formed fields should be made only on positively identified fields. Secondly, any ambiguity
in relation to the size, shape, texture or height of -famthed dykelands should be
classified in a different category for further assessnf&@atko, 2019) This manual
assessment method was inspired by Marshall et al., 2019, who showed a similar mapping
initiative using a crowdlriven manual digitization approa¢klarshall et al., 2019)

The DEMs were the primary data source for manually assessing if agricultural dykelands
were landformed. This was achieved by creating a new column within the field boundaries
vector file's attribute table and editing the value for each field boundarggolyased on

the drainage types. This helped organize the data for each polygon, which was used in later
stages for further processi{@orbin, 2020) To facilitate the identification of lantbrmed

fields, DEMs were enhanced during image interpretation using the dynamic range
adjustments within ArcGIS Pro (ESRI, Redlands, CA, USA) to stretch the pixel values
within the display's exter{Burrough et al., 2015)ields with open ditches spaced 35 to

60 meters apart were classified as L#émwined. Figure 3-4A shows a sample of three

agricultural field identified with landormed features.
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[ stance 1 M Instance 2 [HIM Instance 3

Figure3-4: Example of laneformed fields in the study area. Image (A) presents a hillshade visualization derived
from LIDAR elevation data. Image (B) displays the corresponding training mask utilized in developing the deep
learning algorithm.

Agricultural fields that did not present with signs of land formation were classified as Not
Formed or Old Formed/Underutilizedable 3-3 contains a brief explanation of each
categories used to classify agricultural dykelands and an explanation of the drainage type

used to make these determinations.

Table3-3: Category of fields used to classified agricultural dykelands in Nova Scotia based on their drainage
characteristics.

Category Description Short Description
1 Fields are landormed with open ditches spaced Land Eormed
35 to 60 meters apart.
5 Flel_ds are relatively flat with no signs of surface Not Formed
drainage.
3 Fields are landormed with ditches spaced 153 Old Formed &
meters apart. Underutilized

Figure 3-5A,B shows land formed fields presented on satellite images and hillshades
generated from the Lidar data datasets. Fields with open ditches 35 to 60 meters apart were
classified as Land Formed while fields with dales separated by parallel ditcB8sridies

apart were classified as Old Formed/Underutilizgdre3-5C,D). Additionally, presence

of dense shrubland vegetation on land formed fields were used as an indicator of

underutilized agricultural lands and were characterized as Bigehr¢3-5E,F). Remaining
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agricultural dykelands were classified as Not Formed. Ambiguity in classifying land
formed fields were resolved using mukimporal satellite images, from field visits or from

consultations with members of the NSDA land protection division.

Figure3-5: Examples of agricultural dykelands in Nova Scotia, Canada, illustrated through satellite imagery (left)
and hillshade visualizations derived from LiDAR elevation datght): (A) & (B) show landormed fields shaped

with evenly spaced, open parallel ditches; (C) & (D) depict a pattern of closely spaced parallel ditches,
characteristics of surface drainage techniques used before the 1950s; (E) & (F) presentfatared field currently
used for agriculture (left side of the image) and adjacent to an underutilized dykelands distinguished by shrubland
(highlighted in blue).
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3.3.5 Images Chip Generation
In deep learning techniques that employ convolution, models must be trained on

rectangular sections of images rather than individual pixels. This is because convolution
effectively captures the spatial relationships between pixels in an image, which lwannot
achieved by training on single pixels or isolated components. Therefore, the Export
Training Data for Deep Learning tool in ArcGIS Pro was used to generate image chips
consisting of 512 x 512 pixel dimensions. These image chips were generated from the
aspect and slope raster datasets, and a width and height of 256 pixels in both X and Y
directions was applied when exporting them. This created a 50% overlap with adjacent

chips.

Using digitized polygons, agricultural fields classified as {tordhed were
employed as a mask to label features on the imags ¢figure3-4B). Table3-4 displays
the names of the dyke systems utilized for training, testing, and validating the deep learning
model. These areas were roverlapping and chosen based on their distribution across the
province and the number of lafiodrmed fields per dyke system. Dykesssm with a high

concentration of lanfbrmed fields were prioritized for training the model.

Table3-4: Number of landformed fields digitized by dyke system and image chips used to train, test and validate
the deep learning model.

LF Area Img
DykeSystem County Total Area (ha) g]?o)un d Nll_JFn]:itéledrsof Vc\:,/hEJE T;_Z;I;
Truth fields
Grand Pré Kings 1206 984 222 856 Tr-Val
Converse  Cumberland 260 153 40 600 Tr-Val
John Lusby Cumberland 353 223 73 718 Tr-Val
FortLawrence Cumberland 826 337 60 1746  TrVal
Annapolis 2296 486 166 N/A Test
Colchester 2730 1381 395 N/A Test
Cumberland* 3727 856 192 N/A Test
Digby 328 34 13 N/A Test
Hants 2947 1374 436 N/A Test
Kings* 2436 1013 362 N/A Test
Yarmouth 292 81 34 N/A Test
Total 17401 6922 1993 3920

*Excluding dyke systems used to train and validate the model. LF ¢ Land Formed;
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Data augmentation has proven to minimize overfitting by increasing the number
and variety of training samplékisia et al., 2022; Stewart et al., 2019; Yu et al., 2017)
Hence, augmentation was implemented on the original image chips using angular rotations
at 90°, 180°, and 270°, by adjusting parameters within the Export Training Data tool
(Maxwell et al., 2020; F. Zhao et al., 202This approach resulted in three additional
augmented images per image, aiming to provide the model with more training data that
represents the dynamic nature of dykelands fields, which are often found in various
orientations, sizes, and shapes. Employirigymethod, 3920 image chips of digitized land
formed fields were used (80% training, 10% validation, and 10% testing) for training and
evaluating the model.

3.3.6 Model and Training
ArcGIS Pro incorporates deep learning capabilities through the utilization of the

ArcGIS API for Python. This API is built on top of already established deep learning
frameworks such as TensorFlow and PyTorch. This offers a comprehensive interface that
fadlitates the integration of geospatial data with deep learning models. For object detection
tasks, such as those executed with a MagkNR model, ArcGIS Pro employs the deep
learning library, ArcGIS LearfESRI, 2023a) This library streamlines the process of
training, finetuning, and deploying deep learning models tailored for geospatial data
analysis. ArcGIS Learn offers an array of{m&ned models suited to various tasks like
object detection. These pmained nodels serve as an initial foundation for transfer
learning, enabling the training of models on specific datasets with reduced sample sizes
and training durationfAbd-Elrahman et al., 2021)

The Train Deep Learning Network tool in ArcGIS Pro was utilized for the process
of model training. This tool enables the user to specify parameters such as the maximum
number of epochs, the batch size, the chosen deep learning architecture, and therproport
of data used for validation. The training of the model occurs iteratively, leveraging the full
dataset for each training cycle. However, given computational constraints, only a random
subset of the training dataset was fed into the training algoribnthis study, the epoch
count, which regulates the number of times the dataset was processed during the training
phase was set to 500. ArcGIS Pro features a-ipuiétarning rate finder tool that assists in
identifying a suitable learning rate by traigi the model for a few epochs while
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progressively increasing the learning rate and plotting the training loss against the learning

rate.

In this study, a sequential training approach was adopted. Initially, the model was
trained using datasets from Kings county for 500 epochs at a learning rate ranging from
0.0001 to 0.00001. Following the effective tuning of this initial training phasepith
trained model was used as a starting point to further train it for another 500 epochs on
datasets from Cumberland county. The learning rates during the training process for
Cumberland county were a slightly lower than those of Kings county, vargimgebn a
minimum and maximum boundary of 9 xA® 9 x 10°. This training approach leveraged
the learned features from the Kings county datasets to accelerate and enhance the learning
process for the Cumberland county datasets. ResIN&tas used as the preconfigured
neural network backbone and used as the aahite for training the new model.
Experimentation with newer backbones, such as Resbletand ResNet52 were also
conducted but yielded lower accuracy. It was theorized that several reagbm&xpilain
this. Indeed, while deeper networks can sometimes provide better performance, they also
introduce more complexity, which is not always beneficial. In some cases, the additional
layers in ResNet52 may not contribute to the overall performabgeincrease the chance
of issues such as vanishing gradients, exploding gradients, or poor weight initialjzation
et al., 2016) The computational tasks were carried out on a-pagformance workstation
furnished with a 1@ore Intel iI910900K processor running at 3.70 GHz, an extensive
memory capacity of 128 GB RAM, and a robust GeForce RTX 3090 graphics card with 24

GB of ontboard memory.

The evaluation of the model's performance was made using a metric called 'loss,’
which quantifies the discrepancy between the model's predictions and the reference dataset
(Alpaydin, 2020) The aim during training was to minimize this loss, thereby optimizing

the model's predictive accurafishop & Nasrabadi, 2006)

3.3.7 Model Prediction
Once the model was trained, it was employed towards detectindgdandd fields

within the testing extent of the study ardaljle 3-4). The Detect Objects Using Deep
Learning tool in ArcGIS Pro was used to create polygons on detectetbtamed fields.

Created polygons had a confidence score and class labels associated with each feature. To
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improve the accuracy of the results, adjustments were made by refining the confidence
threshold at 70% and merging overlapping detections using the dissolve tool. The
confidence threshold determined the level of confidence required for a delineated land
formed field to be accepted as a successful deline@bd-Elrahman et al., 2021 An
analysis mask polygon of the geographic extent was also used to limit the processing and
target only agricultural fields within the dyke system. This adjustment ensured that the final
results were more precise and reliable, providing a better repagsarof the landormed

fields in the study area.

3.3.8 Validation
The accuracy of the model was calculated using the Compute Accuracy for Object

Detection tool in ArcGIS Pro by comparing vector polygons generated from the trained
model against the manually classified ground truth data. Five metrics, namely loU, AP, F1
swre, mAP, and Precision/Recall curve were used to evaluate the (B8] 2023b)

The loU ratio was used to measure the agreement between the predicted and
manually digitized landormed field. The loU ratio is the amount of overlap between the
vector files generated from the predicted field boundaries and the vector file around the
refererce data manually digitized. The following formula was used to calculate the loU:

"0O¢ *Ya le@eo Q' ,i ‘!Q o p
01 BuYE Q¢ ¢

In object classification, a model can predict a positive class or a negative class, and the

predictions can be true or fal@dehmood et al., 2022Jor example, when detecting the
presence of surface drainage on an image, the positive class may bddinaed’, while
the negative class would be "Not Formed". A TP occurs when the prediction is correct, and

a FP occurs when the prediction is incotrec

Precision, Recall, and F1 score are calculated using TP, FP, and FN to provide a
comprehensive evaluation of the model's performance in detectinfplameld agricultural
fields. Precision represents the portion of the {ammthed fields that were lardrmed and
is equivalent to I commission error. Recall represents the ratio of correctly mapped

formed fields relative to the total number of formed fields and is equivalerit déonission

48



error(ESRI, 2023b; Mehmood et al., 202Zhe F1 score is the harmonic mean of precision
and recall and ranges from 0 to 1 where 1 means highest accuracy. The following formulas

were used to calculate the Precision, Recall and F1 score:
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3.4 Results

3.4.1 Mask RCNN Model
The training phase for Kings county demonstrated a good leygEoision, achieving an

average precision score of 0.973. This score, which assesses the model's aptitude in
distinguishing between positive and negative instances of the target class, suggests the
model's performance of higher values indicates betteoymeaince. Furthermore, there was

a consistent decrease in both training and validation losses over time, indicating the model's

increasing ability to accurately recognize target objdetpife3-6).

During the initial 200 epochs, we observed an encouraging trend: the model was
learning effectively, with losses decreasing and average precision improving consistently.
This suggests that the model was continually improving its capacity to correctlyyclass
land-formed fields in the images. However, we also noted that the model's performance

plateaued after the 200th epoch, with validation and training losses stabilizing thereafter.

The training phase for Cumberland county shared a similarly encouraging outcome
but achieved a lower level of precision at 0.895. As the epochs increased, we observed a
general trend of decreasing training and validation losses, coupled with a consistent
improvement in average precision. This combination of factors points to the model
effectively learning and enhancing its performance over time. Until the 240th epoch, the
model continued to demonstrate improvements. Both losses were decreasing, and the
avemlge precision was increasing, indicating no issues with overfitting or underfitting up to

this point.
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Figure3-6: Overall loss values and precision for training and testing data in Kings county (A) and Cumberland
county (B) across all epochs. The training loss semsure of the difference between the predicted output and the
ground truth. Lower values indicate better performance. The validation loss is a measure of how well the model
generalizes to unseen data. Lower values indicate better performance.

3.4.2 Validation
Table 3-5 shows the performance of the evaluation metrics of the DL model for land

formed field detection. The model performed best in Digby county with a precision of

0.792, recall of 0.834, and an F1 score of 0.812, while Yarmouth county exhibited the
lowest pretsion of 0.595. In counties with over 350 accurately mapped fields, namely

Kings, Colchester, and Hants, Colchester county stood out by achieving a high model
performance with an F1 score of 0.772 at an loU threshold of 0.5, based on 395 verified
fields. Smilarly, Hants county demonstrated strong model effectiveness, with an F1 score
of 0.754, supported by 436 verified fields. Kings county also showcased efficient model

usage, obtaining an F1 score of 0.791 with 362 verified fields.
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Performance generally declined at higher loU thresholds across all counties, indicating a
decrease in model accuracy for more stringent overlap criteria. Across the counties, the AP
metric remained consistently high, with a mean AP of 0.898 and a weigRted 0.912

for loU thresholds ranging from 0.5 to 0.95, underscoring the overall robustness of the

Mask RCNN model in detecting lanfibrmed fields.

Table3-5: Performance Evaluation of the Mask®\N deep learning model for the detection of agricultural land
formed fields across various counties in Nova Scotia: Highlighting the Precision, Recall, F1 Score, and Average
Precision (AP) metrics at multiple Interstion over Union (loU) thresholds.

County loU Precision Recall F1 AP TP P S\ Fglrds
0.5 0.654 0.772 0.708 0.848 109 57 32 166

Annapolis 0.75 0.554 0.654 0.600 0.848 92 74 49 166
0.95 0.401 0.474 0.435 0.848 67 99 74 166
0.5 0.743 0.804 0.772 0.918 293 102 72 395

Colchester 0.75 0.628 0.675 0.651 0.918 248 147 119 395
0.95 0.455 0.487 0.470 0.918 180 215 190 395

cumberland 0.5 0.760 0.826 0.792 0.897 146 46 31 192
N 0.75 0.660 0710 0.684 0.897 127 65 52 192
0.95 0470 0511 0490 0.897 90 102 86 192

0.5 0.792 0.834 0.812 0.955 10 3 2 13

Digby 0.75 0.686 0.734 0.709 0.955 9 4 3 13
0.95 0494 0548 0520 0.955 6 7 5 13

0.5 0.729 0.781 0.754 0.934 318 118 89 436

Hants 0.75 0.610 0.654 0.631 0.934 266 170 141 436
0.95 0443 0474 0458 0934 193 243 214 436

0.5 0.765  0.819 0.791 0.922 277 85 61 362

Kings* 0.75 0.665 0.705 0.685 0.922 241 121 101 362
0.95 0472 0508 0490 0922 171 191 165 362

0.5 0595 0.699 0.642 0.817 20 14 9 34

Yarmouth 0,75 0457 0557 0502 0.817 16 18 12 34
0.95 0.328 0403 0.362 0.817 11 23 17 34

*Values calculated excluding dyke systems used to train and validate the model.

mAP @ loU [0.5: 0.95] @ Lafumed = 0.898, Weighted AP @ loU [0.5: 0.95] @ {famded = 0.912

Figure 3-7 illustrates the predicted landform fields juxtaposed against those
manually digitized in Hants county. The visual comparison indicates a generally accurate
detection of the lanfbrmed fields, with a minimal number of false positives and false
negativesHowever, there was a noticeable difference in boundary lines, which did not
perfectly align with the reference datasets. While the deep learning model proved to be
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largely successful in its detection capabilities, it encountered some difficulty in identifying
land formations along the peripheries of the fields.

[ Detected Fields

= Dyke System Legal

Boundaries

Figure3-7: Examples of detected lanfbrmed fields in Hants county, NS. The blue lines represent the objects
detected by the MasiRCNN algorithm, while the red lines indicate the ground truth results that have been
manually outlined by researchers for comparisondgmalidation purposes.

Figure3-8 presents common examples of FN and FP in relation toftanted
fields. For instancerigure3-8A demonstrates a shorter section of loned fields that
was divided by a larger, atypical ditch. Ordinarily, these fields would be formed with an
eastwest orientation, and this divergence could potentially be the cause of the false
negatives. Similayl, Figure3-8B displays a field with an uncharacteristic orientation,
namely soutksoutheast, which was not included in the model's training datasets and could
thus be a contributing factor to a false negafirgure3-8C features a field with an unusual
relief pattern that might have confounded the model's detection capabilifiéguied-8D,
the upper part of the field showcases a minor slope located between the ditches, a
characteristic reminiscent of typical landform fields. This similarity may have confused the
model. However, the lower section of the same field displays a varyingpattefn that
the model might have struggled to interpret correctly.
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[] Ground Truth

Figure3-8: Example of False Negative (A), (B) and False Positive (C), (D).

3.4.3 Nova Scotia Dykelands
Expanding beyond the deep learning models results, this work also allowed a precise

characterization of the size and agricultural use of Nova Scotia's dykelands. A total of
13,262 hectares were classified across four different categories. The land eategori
included Land Formed, Not Formed, Old Formed, and Freshwater Marshes/Shrubland. We
contrasted the categorized land versus the total amount of land protected by the NSDA.
Results revealed that 9,272 hectares of dykelands were used for agriculturecatd 2%

(6,924 hectares) were laiidrmed while the remaining were not (2347 hectaréaple

3-6). Land utilisation also varied significantly between counties, with Cumberland county
having the most underutilized dykelands in firevince [Table A2Error! Reference

source not found).
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Table3-6: Number of hectares of dykelanddassified by drainage types and agricultural utilisation within the
dykelands of Nova Scotia.

Category Description Field Size (ha) Used for Agriculture  Underutilized
1 Land Formed 6,924
2 Not Formed 2,347 9,272
3 Old Formed 2,899
4 Marshes/Shrubland 1,090 3,989
Total 13,262
Total land protected by NSDA 17,401

3.5 Discussion

3.5.1 Interpretation and Significance of Findings
The present study's findings align with preceding research, which demonstrated the utility

of CNNs in feature extraction from elevation mod@sxwell et al., 2020; F. Zhao et al.,
2021) For instance, Maxwell et al., 2020, employed MaskRNRN for extracting valley fill
faces from elevation data, achieving high Precision, Recall, arsd¢dt& exceeding 0.85.
Likewise, Zhao et al., 2021, demonstrated the flexibility and adaptability gb dee

convolutional networks in mapping complex terraces.

Expanding the perspective to a wider scope, the present study reinforces the
importance of CNNs in mapping features that possess distinctive spatial, contextual, or
textural signatures. This is particularly relevant when these features are not spectrally
separable from other classes or features, further solidifying the value of these techniques in
the field of remote sensiryou et al., 2019)

Although the use of an automated approach, as presented in this study, can offer
less effort than manual delineation, the practical application of an automated solution is
always a sermautomated solution where humans revisit the results and adjust the
problemgAbdelJaber et al., 2022 onsequently, the proposed model should function as
a preliminary screening tool, aiding geospatial analysts in refining the classification
process. Analysts should validate the model's outputs, eliminating inconsistencies and
outliers. Therefore, the agtion of this deep learning solution would transform the task
into one focused on quality assurance rather than traditional manual digitization. This was
an important takeaway from the study, where, during the validation phase, fields not
classified as lad-formed were manually classified into one of the categories listeakile
3-3. This process, therefore, had to be completed manually. Althougiténseming and

labourintensive, this process was still more efficient than a complete manual classification.
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Out of the total 1,598 lanfibrmed fields in Nova Scotia, 1173 were correctly classified by
the algorithm at an IoU of 0.5, indicating that 73.40% of the fields did not necessitate
manual corrections. For all of the dyke systems, representing 3,820 3&ld2% of the
features required manual intervention to complete a full classification into the four

categories.

Advancements in instance segmentation techniques, such as Ma<k Rhave
brought significant enhancements to the field of remote sensing by providing new tools to
interpret aerial images versus more traditional techniques, such as OBIA. OBIA operates
by segmenting images into objects based on spectral, spatial, and textural characteristics,
which are then classified into different catego(tégssain & Chen, 2019However, OBIA
often requires manual and tigensuming parameter selection. Alternatively, deep
learningbacked techniques like Mask-@GNN can automatically delineate individual
objects within images. These techniques also provideinealimage processy, a vital
capability in urgent applications such as disaster resg&eseet al., 2015Furthermore,

Mask RCNN vyields pixellevel object masks, offering more granular and accurate results
than OBIA's typically broader object classificatiqitossain & Chen, 2019Pespite the
computational and data requirements, continuous advancements in computing
infrastructure help mitigate these challenges. Thus, instance segmentation techniques, in
compensating for the shortfalls of OBIA, are revolutionizing the efficiendypaacision

of remote sensing image analysis.

In parallel with these considerations, this study showed that the aspect and slope
raster datasets used for preprocessing the training data performed best as it offers several
advantages that contribute to better model performance. This representatimd meth
captures the intricate morphological variances of terrain, an asset of paramount importance
for tasks like landform detection, terrain analysis, and hydrological mo{Emwnetkov,

2018) This representation enables the model to discern subtler features and variations,

thereby potentially increasing its predictive performance.

3.5.2 Limitations
One of the biggest limitations of the model is that it was trained exclusively cfolamed

fields. A more nuanced distinction between old and newly formed fields would have been
advantageous, but the scarcity of training areas made this difficult tenmapt. The
potential solution lies in employing newer instance segmentation algorithms or enlarging
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the dataset to encompass broader study areas. Such an expansion could improve the model's
flexibility, enabling it to differentiate these fields effectively.

The study area stretches 250 km, from the easternmost to the westernmost dyke
system. The enormity of this area is not the only challenge; certain systems are
disproportionately affected by tidal changes due to the Bay of Fundy's unique
geomorphology. Vaations in dyke system, from those directly on the Bay of Fundy to
river systems, contribute to diverse land features. Consequently, dykeland fields differ from
one dyke system to another. This variability makes it challenging to generate substantial,
representative training data needed for training deep learning models. The authors propose
that these conditions may partly explain the model's lower performance with the training
data from Cumberland county. This dataset, which accounted for nearly 80%tatathe
image chips used, was significantly larger than the Kings county dataset. In contrast, the
Kings county dataset was limited to the Grddré area, characterized by its homogeneity
as most fields are larfdrmed. Although incorporating the Cumberlacounty dataset
reduced the overall accuracy, it enhanced the model's robustness and made it more capable
of distinguishing landormed fields across the dykelanésnally, despite diligent efforts
to minimize errors during the manual classification of t&thed fields, the authors
acknowledge the inherent subjectivity of the image interpretation process. Influencing
factors may encompass the interpreter's traiming experience, the complexity of the

objects being interpreted, and the quality of thegesautilizedMarshall et al., 2019)

3.6 Conclusions
The findings of this study demonstrate the precision of Ma€i\RI in discerning surface

drainage characteristics from digital elevation data, achieving a mAP of 0.93 across loU
thresholds ranging from 0.5 to 0.95. This finding highlights the potentidiask RCNN
as a reliable tool for this purpose. Moreover, boundary delineation algorithms that leverage
deep learning models offer a rapid and effective approach to characterizing large
geographic areas while offering the possibility to conduct ryelir analysis. By
employing these algorithms, we gained valuable insights into drainage patterns and

enhance our understanding of land utilization on agricultural dykelands.

However, our model currently falls short in detecting fields that were originally

land-formed but have lost their crowned aspect due to poor maintenance. Enhancing this
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aspect of the model could open up new opportunities for automatically detecting fields in
need of reformation, more effectively serving the farming community. It is also worth
considering the extension of this training concept to include elevation mesesated by
drones using photogrammetoased DEMs. These are generally more-effgictive than

their LIDAR-derived counterparts and could provide a valuable resource for refining the
proposed algorithmAdditionally, challenges persist when integratirigede advanced
algorithms into standard GIS software. These challenges typically stem from the need for
custom coding to transform training data into a data type that newer models can process.
Consequently, this complexity hinders the ease of incorporaanged models into GIS
software, thereby impeding the technology adoption rate in remote sensing ai@hGilS
2023)

Future research avenues could include comprehensively characterizing fields
classified as 'Old Formed.' This might offer novel insights and deepen our understanding
of agricultural dykelands in Atlantic Canada. Moreover, it would be intriguing to examine
the applicability of our current model in diverse contexts that implementféairmdng
techniques. For instance, an immediate area of interest could be the provinces of New
Brunswick, which is geographically proximate to Nova Scotia. Indeed, New Brunswick
alone boasts over 15,000 hectares of dykelands that could be characterized using our
proposed algorithniSingh et al., 2007)Moving beyond regional boundaries, it could be
beneficial to extend the application of our model to global locales that utilizédemthg
techniques. A notable example is the flat land of the Red River Valley located in Northwest
Minnesota, USA(Soine, 1972) Analyzing such varied geographic regions would
undoubtedly strengthen our model's robustness and generalize its applicability at a wider

scale.

Finally, exploring how alternative instance segmentation algorithms, such as the
YOLO series could be an interesting avenue of resdaradt al., 2022) This particular
algorithm has shown remarkable results in previous studies and could offer valuable
insights into better ways of characterizing land features from elevation m8add&ys et
al., 2019; Mohamed et al., 2021; Z. Zhao et al., 2022)
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4.1 Abstract:
Agricultural economic analysis tools such as crop profitability analyzers developed by

academic institutions and governmental agencies have thrived in recent years. These tools,
which incorporate various quantitative variables, have proven accurate iectigf)
production costs and helping farmers with budgeting. Despite their utility, their application
has been limited to smadcale economic analyses rather than being deployed on large
geographic extents. This study aims to broaden the scope of ecoapalysis in
agriculture by integrating three datasets:-éénerated field boundaries, annual crop
inventories, and a budget calculator for crop and forage production. Focusing on the Nova
Scotia dykelands, an agriculturally rich area vulnerable to clinctange, this research
explores the utility of combining these datasets for macede economic analysis. These
datasets were integrated within a geographic information system environment to assess
agricultural productivity and land use. Results from thedg uncovered significant
heterogeneity in field sizes and profitability, indicating that some agricultural fields were
notably more profitable than others. The Grand Pré, Wellington, and Annapolis River dyke
systems were the top performers with average pmofits of $822,152, $780,587, and
$479,151, respectively. Results also revealed alinear relationship between dyke
systems' size and profitability, suggesting that factors beyond size play a role in
determining economic returns. This underscoresribed for a multifaceted approach to
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optimize dykeland profitability and lortigrm management. This approach provides a
broader perspective on land management, considering the economic specifics of each field.

4.2 Introduction
As of 2024, crop budgeting tools designed to assist farmers have been developed by

government agencies across every province within Central Canada and the Canadian
Prairies(CECPA, 2023; Government of Alberta, 2023b; Government of Manitoba, 2022;
Government of Ontario, 2023; Government of Saskatchewan, .20k8ke tools are
customized for the respective region's unique soil types and climate conditions, providing
farmers with a valuable resource for financial plan{\iMipf, 2008) Unfortunately, these
budgeting tools often lack the capacity to incorporate broader economic considerations,
potentially overlooking the lonrterm sustainability of land management strategies.
Consequently, a case study was conducted on the agricdyeedhnds of Nova Scotia to
explore an innovative framework that helps estimate the cost of production and economics

of agricultural fields over a period of seven years.

Dykelands are agricultural lands protected from coastal inundation by dyke
infrastructure and constitute some of the most agriculturally productive lands in Nova
Scotia(Milligan, 1987) Dykes and aboiteaux were first developed by the French settlers
in the 1700's to allow fresh water to drain from the marshland during low tide and to prevent
saltwater intrusion during high tid¢Bleakney, 2004; Milligan, 1987)n Nova Scotia,
Canada, the management of the provincial dykeland system presents a series of challenges
(de Bruin et al., 2009)Stakeholders, including the NSDA, are tasked with evaluating
various options for dykelands that are currently underutiliZéey must decide whether
to maintain them, repurpose them for agricultural activities, or revert them to salt marshes.
Effective decisiormaking in this area is crucial given the anticipated impacts of climate
change(Drever et al., 2021; Philp & Cohen, 2020; Webster et al., 20Re&jearch by van
Proosdij and Page (2012) has highlighted concerns about a projectededesse of 70 to
140 cm over the next century in Nova Scotia. Such an increase could heighten the
susceptibility of dyke systems to storm sur@em Proosdij & Page, 2012yurthermore,
within the upcoming five decades, it is estimated that about 70% of the 241 km of dykes
across the province will face significant risks related to coastal erosion and overtopping
(van Proosdij et al., 2018)
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Farmers represent the most prominent{baased owner of dykelands in the Bay of
Fundy, which makes them more likely to be impacted by rise®levels. This situation
puts them at a greater risk of having to manage the negative impacts of land renlamatio
caused by dyke realignment projects, which are at the forefront of governmental initiatives
(Gorman, 2019; Government of Nova Scotia, 20FY)r these farmers, the challenges
stemming from land reclamation due to dyke realignment are complex and put dykelands
stakeholders in an ambiguous situation with limited options. Farmers can reclaim adjacent
land and purchase new pieces of uplands dilakile, reduce the scale of their farming
operation, or relocate their farm in more extreme cases. While research indicates that
scaling down farming operations can optimize practices and enhance operational efficiency
in some instances, this improvemenspecific to certain farming activities and is limited
in scopg/Asgedom & Kebreab, 2011; Fortier, 2014)

The longterm impact of diminishing agricultural production extends beyond
immediate financial consideratioffsrancis et al., 2012As societal demands for food and
agricultural products continue to grow, the significance of local production becomes
increasingly apparent. This is particularly relevant in Nova Scotia, where a staggering 87%
of consumed food is importdtHRM, 2020) resulting in substantial environmental costs.
While imports are often associated with a substantial carbon footprint due to transportation,
they can also contribute positively to emissions reduction by sourcing products from
regions where production isare efficient(Baylis et al., 2021)Thus, the relationship
between local production and sustainability is complex and cespexdific. Nevertheless,
enhancing local food systems can offer advantages in terms of fostering regional economic
growth (NSDA, 2020) The economic viability of agricultural utilization within the
dykelands is an essential factor influencing land use decisions. In this context,
understanding the net profitability of different dyke systems becomes crucial. This can
influence policymakers their evaluation of the ROI of maintaining dyke infrastructures
vulnerable to rising sea levels or planningaiggnment projects. Hence, this study aims to
shed light on the financial outcomes associated with various dykeland systems in the
province ly analyzing the net revenue of agricultural fields from 2016 to 2023.

To date, other similar land characterization work has mainly focused on the non
economic analysis of agricultural land. Work BptzasColuni & Andrews (2023)

presented an ecosystem accounting framework to assess Canada's agroecosystems and the
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ecosystem services they provide. This approach to track the area and state of
agroecosystems has the potential to provide important information to link economic and
environmental data for policymakers. Unfortunately, this work is still in progress, and
official results have yet to be published. Other worlBbpami et al. (2021)ighlights the
integration of remote sensing, crop modelling, and economics to manage agricultural risks.
It examines how risk management influences production decisions and the impact of
agricultural insurance on mitigating risks, which could offer insigito broader economic
analyses in agriculture. Similarly, work frorunt et al. (2023attempted to address the
need for more detailed and practical agricultural data by developing CSBs. This approach
was used to aggregate gridded landcover data into-l&e& insights by utilizing
geospatial polygons that delineate areas of homogenempsg sequences. This method
provided a scalable solution for largeale crop mapping, although it does not include

economical assessment.

This study introduces an innovative approach that leveragegdrated field
boundaries to enhance the precision of agricultural economic assessments. Unlike
traditional methods, this approach uses Higgolution delineations of agricultural fields,
enaling a more accurate calculation of field areas. This granularity allows for capturing
spatial heterogeneity and nuanced differences in land use and management practices, which
are often overlooked in aggregate analyses. To achieveviideveloped andpplieda
budgeting tool designed to calculate the cost of production per hectare of crops and forage
on the dykelands of Nova Scotia. The tool was then used to evaluate the total net revenue
for each agricultural field within the dyke systems. This was helpfafygregating and
analyzing data across various dyke system in the province, enabling a comparative

assessment of their economic viability.

By focusing on Nova Scotia's dykelands, this research contributes to the broader
field of agricultural economics by demonstrating how spatial analysis and remote sensing
techniques can be integrated into economic modeling. The findings have implications fo
policymakers, stakeholders, and researchers interested in optimizing land use, improving
agricultural profitability, and developing adaptive strategies to mitigate the impacts of

climate change.
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4.3 Methods

4.3.1 Analysis Regions
The analysis covered all of Nova Scotia's dykelands, encompassing 17,401 hectares

along the Bay of Fundy, Canad&adure4-1). The NSDA identifies each dyke system with
a unique identification number and name. There are 82 dyke systems in total within the
province, and 77 of these were examined in this study. The remaining five dyke systems

were excluded as they did not contaatively used agricultural fields.
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Figure4-1: Geographical distribution of Nova Scotia's dyke systems by counties.

4.3.2 Analytical overview
The approach taken in this study integrates oumary components, which include

a budgeting tool, Abenerated field boundaries of agricultural dykelands, the AAFC
Annual Crop Inventory from 2018023 and the legal boundaries of the dyke systems
(Figure4-2). By combining these datasets within a GIS, the agricultural productivity and

profitability of dyke systems were assessed at a detailed spatial scale.
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Figure4-2: Workflow employed in the analysis to link agricultural productivity and land use of Nova Scotia's dyke
systems with an economic value.

4.3.3 Budgeting tool
The budgeting tool was developed to calculate the cost of production per hectare

for various crops and forage on the dykelands. It details cost projections for the main crops
grown on dykelands: barley, corn (for both grain and silage), soybeans, whetat, wi
wheat, dry hay, and baled silaffgilodeau et al., 2021)The tool incorporates over 130

input variables, including seed costs, fertilizer, chemicals, fuel consumption, labor, and
surface drainage costs. Cost are estimated utilizing either the provided default data or inputs
specified by the userTéble4-1) outlines the structure of the budgeting tool.

Table4-1: Overview of the structure of the budgeting tool: Each sheet is designed to gusdes through different
aspects of farm budgeting, ranging from introductory instructions to detailed financial and production analyses.

Sheet Name Sheet Number Content Description

Intro 1 Introduction to the workbook, usage instructions

User Guide 2 Instructions on how to use the workbook

Fieldl to Field5 37 Fieldspecific data, crop management

Op Costs 8 Operating costs, labor, fuel, machinery, storage, drainage

Land & Equip 9 Land and equipment loans, rentals, payments

Product 10 Productmanagement, seed, grain

Fertilizer 11 Fertilizer types, costs

Assumptions 12 Crop seeding, chemical use, yield forecasts, and pricing assumg
SummaryTotal 13 Analysis of production costs, profitability, and revenues per crop
SummaryAcre 14 Farm summary by acre, detailed financials
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Appendix Bcontains a comprehensive guide that provides a detailed understanding
of the functionality and calculation methods of the production cost estimator. This resource
outlines all variables, considerations, amdsumptions incorporated into the model
framework, ensuring transparency and supporting users in makinginfeeihed

interpretations of the tool's results.

4.3.3.1 Cost of production per hectare
The budgeting tool generated estimations of production cost per hectare for crops

and forageTable4-2 lists the input cost used to calculate the net profit used in the analysis.

Table4-2: Cost of production per hectare generated from the dykelands crops and forage budgeting tool showing
input cost used to generate the analysis.

oy G et Sopeans whea_lper DY Ead
A. Operating Costs
Seed & Treatment $114  $253  $285 $107 $163  $151 $125 $125
Fertilizer $379 $720 $720 $277  $442 $545  $267 $267
Herbicide $62 $99 $99 $93 $62 $62 $0 $0
Fungicide $49 $0 $0 $40 $49 $49 $0 $0
Insecticide $0 $0 $0 $0 $0 $0 $0 $0
Fuel $76 $83 $147 $62 $79 $79 $71 $71
Hired Labour $271 $271 $271 $271 $271 $271 $271 $271
Machinery Operating $25 $25 $25 $25 $25 $25 $25 $25
Crop Insurance $19 $2 $4 $4 $25 $25 $0 $0
Other Costs $19 $19 $19 $19 $19 $19 $0 $19
Twine/Net Wrap $0 $0 $0 $0 $0 $0 $0 $16
Bale Plastic Silage Wra $0 $0 $0 $0 $0 $0 $0 $57
Interest on Operating $25 $37 $39 $22 $28 $31 $20 $21
Total Operating $1,039 $1,508 $1,608 $920 $1,164 $1,258 $808 $872
B. Fixed Costs
Land Cost $0 $0 $0 $0 $0 $0 $0 $0
Machinery Cost $0 $0 $0 $0 $0 $0 $0 $0
Machinery Depreciatior $0 $0 $0 $0 $0 $0 $0 $0
Total Fixed $0 $0 $0 $0 $0 $0 $0 $0
Total Operating & Fixec $1,039 $1,508 $1,608 $920 $1,164 $1,258 $808 $872
C. Ownership
OwnerWithdrawal $62 $62 $62 $62 $62 $62 $62 $62
Total Costs $1,101 $1,570 $1,670 $982 $1,226 $1,319 $869 $934

Profitability Analysis

Avg. Market Price $277  $329 $82 $610 $362 $362  $162 $120
Yield per ha (MT) 4.2 9.6 38 3.4 59 59 6.8 134
Unit type MT MT MT MT MT MT MT MT
Other Crop Income $0 $0 $0 $0 $0 $0 $0 $0
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Gross Revenue $1,164 $3,171 $3,120  $2,110 $2,147 $2,147 $1,117 $1,616
Marginal Returns

Over Operating Costs $124 $1,662 $1,512  $1,190 $983  $889 $309 744
Operating & Fixe€osts  $124 $1,662 $1,512  $1,190 $983 $889 $309 $744
Total Costs (Net Profit) $62 $1,600 $1,450 $1,128 $921 $827  $247 $682

Considering that many factors can influence the production cost of forage,
discussed in Sectiof.5.1, several assumptions were made to streamline the evaluation
process. First, the analysis presumes that all forage was grown in a production year, thereby
excluding costs associated with seeding. Secondly, it incorporates the expectation of two
harvests amually, effectively doubling the net profit per hectare to account for the
increased yield. Lastly, all fields were assumed to be seeded with-gifatfs, which is a
typical seeding mixture on the dykelan{Berennia, 2021b)Table 4-3 provides a
summarised version of the net profit per hectare for the crops and forages for the year 2023

and used in this analysis.

Table4-3: A summarized table of the net profit per hectare of the crops and forage generated from the budgeting
tool.

Crops Net profit per hectare (2023)
Wheat $921

Winter wheat $827

Soybeans $1129

Barley $61

Corn(Grain) $1601

Corn (Silage) $1450

Dry Hay (Alfalf&Grass) $370

Baled Silage (AlfaHarass) $805

4.3.4 Datasets

4.3.4.1 Historical yields and average market price per hectare
Yield per hectare was calculated from data provided by the NSCLIC. This

commission offers crop insurance plans to Nova Scotian farmers that help them manage
risk on their farms by maintaining cash flows during poor crop Y&SELIC, 2023) As

part of their services, the NSCLIC compiles historical yield data on crops provided by
producers and are used to price insurance policies. Drawing from the NSCLIC dataset, a

period of 5 years from 2018 to 2022 was used to compile the average yie&tfocrop
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(Table 4-4). Since data from the NSCLIC only comprises information on insured crop
owners, the data was also cross validated with information from the Atlantic Grain Council
factsheets and seeding rate trials from 2021 and 2A&@ntic Grains Council, 2021,
2022c)While regional variability in yields and prices can influence profitability, data
limitations require the use of provincial averages. We acknowledge this limitation and
discuss its potential impact on the resultSaction4.5.

The market prices were derived by computing data published by Statistics Canada
on the average monthly price of cash crops targeted in this study from January to June 2023
(Government of Canada, 2023&pr soybeans, data from the nearest geographical area
with available information, Prince Edward Island, was selected from the same dataset.
Lastly, the market prices for corn silage, dry hay, and baled silage were sourced from the
Manitoba Agricultural 8rvices CorporatioMASC, 2023) Table4-4 shows the average
market price for agricultural commodities used in the budgeting tool.

Table4-4: Average crop yields and market prices for agricultural commodities used in the tool.

Crops MT/ha 15%M Market Price ($/MT)
Soybeans 3.4 $610
Wheat 5.9 $362
Wheat- Winter 5.9 $362
Barley 4.2 $277
Corn (Grain) 9.6 $329
Corn (Silage) 38 $315
Dry Hay (Alfalf&Grass) 6.8 $162
Baled Silage (AlfaHarass) 13.4 $120

4.3.4.2 Digitizedfield boundaries of agricultural dykelands
Agricultural dykelands rely heavily on a surface drainage technique called ‘'land

forming’, which alters the topography of fields to improve drainage. After the initial
forming, farmers perform maintenance work every couple of years to maintain the initial
slope. This type of work is referred to as secondary forming and involves maintaining the
ditches and reshaping the crown of the fields using the ditch {poilstee et al., 1994;
Macintyre & Jackson, 1975)

In this analysis, we utilized the dataset presenteBilmdeau et al. 2024phich
offers a comprehensive overview of the agricultural dykelands in Nova Scotia. The dataset
uses precise field boundaries of every field in Nova Scotia's agricultural dykelands,
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generated using existing Al technologies developed by Digifarm (Digifarm, Inc., Oslo,
Norway). Digifarm has developed an API that uses a deep neural network model to detect
field boundaries from satellite imagepigiFarm, 2022) These Algenerated field

boundaries are secondary data that were sourced and not developed as part of this study.

To enhance the dataset, these field boundaries were supplemented by a-Mask R
CNN model trained to detect lafidrmed fields using LiDARderived DEMs. The
presence of land formed fields helped to differentiate fields that were actively used for
agriculture versus underutilizedBilodeau et al. 2024)assified 13,262 hectares of
agricultural dykelands into four distinct categories: Land Formed, Not Formed, Old
Formed, and Freshwater Marshes/Shrubldrahle 4-5 summarizes the classification of
these fields. In this study, only fields actively used for agriculture were used, representing

9,272 hectares in total.

Table4-5: Number of hectares of dykelands classified by drainage types and agricultural use within Nova Scotia's
dyke systems. (Adapted frorBilodeau et al., 2024)

Category Description Field Size (ha Used for Agriculture Underutilized
1 Land Formed 6,924

2 Not Formed 2,347 9,272

3 Old Formed 2,899

4 Marshes/Shrublanc 1,090 3,989
Total 13,262

Total land protected by NSD¢ 17,401

Field boundaries calculation was limited to dykelands within the legislated
agricultural marshland defined under Nova Scotia's Agricultural Marshland Conservation
Act. These boundaries were provided as vector polygons by the NSDA and used to exclude

agricdtural fields that were not part of the dyke systems.

The histogram irFigure 4-3 reveals a rightkewed distribution of the number of
agricultural fields by dyke systems. Most dyke systems in Nova Scotia have a smaller
number of fields, with the most common number ranging from 1 to 32 fields. This class
alone encompasses over 55 dyystems, indicating a high frequency of smaller dyke
systemsFigure 4-3 also demonstrates that as the number of fields increases, there is a
marked decrease in the frequency of dyke systems. Notably, dyke systems with between

32 and 63 agricultural fields are less common, and those with more than 63 fields are
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comparatively rare. The distribution exhibits a long tail to the right, with very few dyke
systems containing fields in the upper ranges of the dataset. The presence of dyke systems
with over 200 fields is an outlier occurrence. This distribution pattedenscores the
predominance of small to mediusized dyke systems in the agricultural landscape of Nova

Scotia.

Number of Agricultural Fields by Dyke Systems in Nova Scotia
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Figure4-3: Histogram depicting the distribution of dyke systems in Nova Scotia by the number of agricultural fields
they contain.

4.3.4.3 Annual crop inventory
The AAFC Annual Crop Inventory, from 2016 to 2023, excluding 2020, served as

a resource for evaluating the crops grown on Nova Scotia's dykelands. The annual
inventory is published by the Earth Observation Team of the STB at AAFC and created
from optical Landsat8, Landsa®, Sentinel?) and radar (RADARSA®R) based satellite
images using a decision tree classifi{@griculture and AgAFood Canada, 2023)
Although the Annual Crop Inventory maps are valuable for identifying crop types across
large areas, their spatial resolution is limited to 30 meters. This coarse resolution does not
capture the detailed field boundaries required for accurate calcutdtiimhd areas, input

usage estimations, and understanding of spatial relationships between fields.

To ensure the reliability of these inventories, AAFC and its partners gathered
groundtruth data, which were used to assess the accuracy of the (Agdellture and
Agri-Food Canada, 2023Jable4-6 compares the satellite data utilized across the years

and the overall accuracy of the inventories. For Nova Scotia, the average accuracy of these
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datasets was 89% over the period, with a minimum accuracy of 85%. This level of precision
underlines the consistency and dependability of the AAFC crop inveitgriculture and
Agri-Food Canada, 2023The AAFC's 2020 inventory was excluded from this analysis
due to travel restrictions during the COVI® pandemic, which impeded ground truth data

collection in Nova Scotia.

Table4-6: Overall accuracy of the Agriculture and Adfbod Canada Crop Inventory for the province of Nova Scotia,
Canada, from 2016 to 2023 (excluding 2020). (Adapted from Agriculture andPapd Canada, 2023)

Year Overall Accuracy (%) Remotely sensed data used

2016 91 Landsat8, SentineR, RADARSAT

2017 89 Landsat8, SentineR, RADARSAT

2018 93 Landsat8, SentineR, RADARSAT

2019 89 Landsat8, Sentinel2, RADARSAT

2021 88 Landsat8, SentineR, RADARSAT (RCM)

2022 91 Landsat8, Landsa®, Sentinel, RADARSAT (RCM)
2023 88 Landsat8, LandsaB, SentineR, RADARSAT (RCM)

4.3.5 Analysis

4.3.5.1 Calculating the value of crop production on the dylséems
A Python script was developed within the ArcGIS Pro API (ESRI, Redlands, CA,

USA) to calculate crop production costs. This script incorporated multiple SQL expressions
to search, select, and calculate data for specific subsets of table records. The ofitcome
this script included a series of tables that contained feature classes and attribute
information. Each table presented the cost of crop production on each agricultural field over
seven years, alongside calculated net profits. The net profit of anfeeddcalculated by
multiplying the respective cost of production per hectare by the size of thd-igpide4-4
illustrates the logical workflow of this operation.
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Figure4-4: The logical flow of the SQL query used to assign a dollar value to each agricultural field within the Nova
Scotia dyke systems.

At this stage, the cost of surface drainage was determined through a separate SQL
guery. Fields categorized dsand Formed" were selected, and an additional charge of $50
per hectare was included in their fp@rctare cost. Given that these fields were pre
identified as land formed, it was presumed that they would require secondary forming every
eight years. Consequtly, the overall expense for secondary forming of $400 per hectare
was distributed over the usual maintenance freque(dy Juurlink, personal

communication, February 24, 2021)

The Summary Statistics tool in ArcGIS Pro was utilized to consolidate and calculate
the aggregated values of financial and spatial data. This process was performed on the input
table generated from the previous steps. tbloé was configured to compute the sum of
each field, effectively providing a total net price for each year and the total area of the
fields. To identify the dyke system associated with each field, a vector polygon file
provided by NSDA was used as a refare, enabling the aggregation of data by each
unigue dyke system name within the dataset. This allowed for the results to reflect summed

values grouped by individual systems.

Net profits were the primary metric used to assess the cost of production on
agricultural dykelands. This metric served as an indicator of financial health since it
revealed the actual profitability after all expenses were account€drumer, 2002) This
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information was used for benchmarking, allowing for an effective comparison of
profitability across different crops and regigi@&ray, 2013) Analyzing data at the field

level allowed to capture spatial heterogeneity and management practices that influenced
profitability. This granularity provided insights that simplified, aggregate approaches might

overlooked.

4.3.5.2 Generating various scenarios
In Nova Scotia, half of the corn production is allocated for silage and the other half

for grain corn(Atlantic Grains Council, 2020, 2021Although useful, this information

does not identify which fields are used explicitly for what purposes. Therefore, this analysis
considered two hypothetical scenarios: (A) assuming all corn grown was used for silage,
and (B) assuming all corn grown wased for grain. Similarly, determining the exact
proportion of forage production utilized for dry or baled silage is not feasible.
Consequently, two additional scenarios were analyzed: (C) where all forage was presumed
to be dry hay, and (D) where all fomwas presumed to be used in baled silBmggire4-5

visually represents the various scenarios explored in the study. Evaluating these
hypothetical scenarios provides a spectrum of probable costs, presenting a more
comprehensive range of possibilities in the analysis. In this study, the term "performance”
refers to the total average net profit generated by each dyke system across the four scenarios
(A, B, C, D). This metric encompasses the economic output of each system based on its

agricultural productivity under different conditions.
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Figure4-5: Combinations of hypothetical scenarios used in #galysis to widen the spectrum of possible costs.

For each scenario, the net profit per hectare of crops was calculated and then multiplied
by the size of each field. These values were compiled for all fields within a dyke system
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and averaged across all systems in Nova Scotia, resulting in an average yearly net profit
expressed in dollars per year. Descriptive statistics were computed in Microsoft Excel to
capture the variation in dyke sizes and their profitability. These statiisticided the mean,
standard deviation, minimum, and maximum values for each dyke system. A scatter plot
was also generated to represent the relationship between the size of dyke systems and the
profitability over the study period. Additionally, a histagr was used to examine the
distribution of fields across different dyke systems. This approach facilitated the
identification of key patterns and outliers within the data. Lastly, a profitability index for
each dyke system was calculated by averagingrthaah net profit of each system and
dividing it by the total size of the dyke system. This operation was then repeated for each
scenario. At this point, the average of all the scenarios per dyke system was computed,

which resulted in a profitability indenepresented in net profit ($/ha).

4.4 Results
Results from the analysis of the 77 agricultural dyke systems in Nova Scotia and their

average yearly profits across four scenarios revealed a diverse range of performance
trajectories. Scenarios A and B were the most profitable, while Scenarios B ane D we
consistently the least profitable optiofsgure4-6). The median average net profitability

by dyke systems for the seven years (excluding 2020), ranged between $73,104 and

$79,785 across all four scenarios showing small variations.

Average Yearly Net Profit by Dyke Systems
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Figure4-6: Average net profitability of crops and forages on Nova Scotia's dyke systems.
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Table 4-7 presents the total average net profit of the ten best and ten least
performing dyke systems in Nova Scotia across four scenarios (A, B, C, D), alongside their
overall average net profits. The top performers showcase Grand Pré, leading with an
average netrofit of $822,152, followed by Wellington and Annapolis River with $780,587
and $479,151, respectively. On the other end of the spectrum, the worst performing dyke
systems have significantly lower profits, with Barronsfield at the bottom, yielding an

ovenrall average of just $448.

Table4-7: Total average net profit of the ten best and least performing dyke systems in Nova Scotia.

Dyke System Scenario A Scenario E Scenario C Scenario C Overall Avg
Tenbest performing dyke systems (total average net profit)

Grand Pré $925,397 $767,900 $870,693 $724,619 $822,152
Wellington $874,406 $733,350 $822,916 $691,676 $780,587
Annapolis River $590,590 $391,432 $564,185 $370,396 $479,151
Martock $518,079 $284,468 $507,093 $275,690 $396,333
Falmouth Great Dykt $347,396 $200,518 $335,568 $191,909 $268,848
Ambherst Point $227,699 $93,845 $227,599 $93,744 $160,722
Fort Lawrence $231,362 $89,268 $230,749 $88,655 $160,008
Masstown $213,616 $86,468 $213,243 $86,095 $149,855
John Lusby $174,690 $98,176 $168,935 $93,788 $133,897
Nappan Dam $183,953 $84,272 $181,326 $82,200 $132,938
Ten least performing dyke systems (total average net profit)
Barronsfield $613 $282 $613 $282 $448
Minudie $984 $453 $984 $453 $719
Tufts $2,202 $1,013 $2,202 $1,013 $1,607
Armstrong $2,386 $1,097 $2,386 $1,097 $1,742
Wentworth $4,322 $1,989 $4,322 $1,989 $3,156
Truro Dykeland Park  $4,623 $2,127 $4,623 $2,127 $3,375
Kentville $5,714 $2,629 $5,714 $2,629 $4,172
Pereau $7,305 $2,848 $7,305 $2,848 $5,077
Saulnierville $7,346 $3,380 $7,346 $3,380 $5,363
Princeport $9,025 $4,304 $9,025 $4,304 $6,665

The average field sizes per dyke system showed considerable variation, with a mean
of 120.42hectares and a standard deviation of 188.71 hectares, indicating significant
heterogeneity in the sizes of the systeifab(e 4-8). In terms of profitability, variations
were observed across different pricing scenarios (A, B, C, D). Similarly to the yearly net
profits by dyke systems, the average net profit per hectare was highest in Scenario A at
$757.85 and lowest in Scenario D&399.77. The average profitability index, which was

calculated as the average of the ratios across all scenarios, was $577.73 per hectare. This
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figure, coupled with a standard deviation of $153.95 per hectare, indicated important
fluctuations in profitability across certain dyke systems. Similarly, the minimum and
maximum values showed a large range in profitability, indicating that some dykensyst

were significantly more profitable than others.

Table4-8: Descriptive statistics of the dataset used to evaluate variation in dyke systems profitability in Nova
Scotia.

Variable Mean D Min Q1 Mdn Q3 Max
Number of Fields 38.35 58.89 1 9 20 40 311
120.4 188.71 0.76 30.33 52.1 116.3 1013.3
Dyke System Size (ha) 2 6 4
757.8 140.16 204.0 682.7 75851 848.4 1099.0
Scenario A ($/ha) 5 8 5 6 2
414.1 196.55 93.92 2749 339.92 525.0 1078.4
Scenario B ($/ha) 7 3 2 9
739.1 122.12 204.0 682.7 748.68 806.1 1029.9
Scenario C ($/ha) 4 8 5 3 8
399.7 178.53 93.92 274.8 339.92 509.8 1019.2
Scenario D ($/ha) 7 8 5 1
Avg Profitability Index 577.7 153.95 149 4749 546.84 673.6 1056.6
($/ha) 3 9 6 7

In the analysis of the dyke systems' performance in dollars per hectaseked
discrepancy was revealed in the economic viability of certain dyke syskegousg4-7).
The Avonport system emerged as the most profitable, with an average profitability
exceeding $1000 per hectare. Conversely, the Wentworth system had the lowest
profitability, slightly above $150 per hectare. The upper echelon of dyke systems
consistentlyshowed profitability above $750 per hectare, delineating a clear economic
advantage over the bottom ten systems, which plateaued at around $400 per hectare.
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Figure4-7: Economic performance of the ten most and least profitable dyke systems calculateédllars per
hectare. Prices are calculated as the average measure of net profit from 2016 to 2023, across four scenarios.

The scatter plot ifrigure4-8 revealed a complex relationship between the size of
the dyke system and the average profitability that defied a simple linear interpretation. Data
points are densely clustered within the 0 to-B@0tare range, where profitability per
hectare exhibited sstantial variation from $150 to approximately $1050. As dyke system
size increased, the frequency of data points diminished, indicating that larger dyke systems
are less common. Outliers were observed, particularly within the 400 toegfére range,
where profitability peaked under $700/hectare. On the contrary, systems surpassing 600

hectares tended to show a lower profitability per hectare.
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Figure4-8: Scatter plot of Nova Scotia's dyleystems size (hectares) versus their average net profitability calculated
in dollars per hectare.

4.5 Discussion
An in-depth analysis of the ten most productive dyke systems, based on total average

net profit, revealed consistent patterns reflective of current agricultural management
practices. Fields on these dyke systems, notably Grand Pré, Wellington, Annapetjs Ri
Martock, and Falmouth, were in crop rotation, which entails sequentially planting different
crops and forages on the same plot to enhance soil health and nutrient optimization.
Additionally, nearly 80% of the fields in these areas underwent land fiemandicating

that efforts were made to maintain surface drainage and field productivity. These
management practices could be predictors of profitability, although more research is

needed to assess if a correlation exists.

The analysis highlighted a significant disparity in profitability, with the top five
dyke systems achieving net profits that were more than fivefold higher than the median of
the remaining systems. Specifically, the net profit of the top two systems{gtetiiand
GrandPré), amounting to $1,602,739, closely matched that of the third to eighth ranked
dyke system combined, at $1,614,917. This discrepancy underscored the economic
significance of these two top systems. However, this profitability did nattijireorrelate
with higher revenue per hectare, as illustrated by the scatter plot results. In terms of dollars
per hectare, the ten most productive dyke systems were approximately the average size of
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all the systems analyzed (297 hectares). Yet, Wellington and ®m@ndtood out as
exceptions, their sizes nearly tenfold larger than the other eight leading dyke systems in

terms of dollars per hectare.

The scatter plot revealed no clear trend linking profitability with field size,
suggesting that factors other than size played a significant role in determining the
profitability of the dyke systems. This lack of a straightforward -pizditability
relationship implies that policies focused solely on expanding dyke systems may not
necessarily lead to higher economic returns. Instead, optimizing profitability may require a
more multifaceted approach that emphasizes enhancing management practices, improving

soil conditions, adapting to market conditi@r considering logistical factors.

For instanceproximity to major road networkesould plays an important role in
assessingdpoth the cost of production and profitability. Dyke systems near highways or
transportation hubs benefit from reduced logistical costs for moving inputs (e.g., fertilizers,
seeds) and outputs (e.g., crops, forage). Conversely, raipkéesystemsvith limited
access to infrastructure such as grain silos face higher costs due to extended transportation
times and potential delays, which could be reflected iassessne of thebudgeting tool.

By identifying and targeting these factors, policy efforts can better support sustainable
profitability across various dyke system sizes, rather than assuming stiaéepmsnary

driver of economic success.

4.5.1 Forage production
Estimating the cost of production per hectare of forage presents several challenges

due to the variability in farming practices and conditions. A primary factor contributing to
this complexity is the variability in the number of harvests during a grovéagos. This

can range from one to three across different farming operations, greatly influencing total
revenue per hectare. Additionally, the composition of haylage mixtures is determined by
soil conditions. This influences the percentage of the mixtulfal{é& Red clover, Ladino

clover, Timothy, etc.), which affects the total cost of see(ffggennia, 2021b)

A secondary factor is the financial distinction between seeding and production
years, which complicates cost estimation. Seeding years entail higher expenses due to the
costs associated with ptidlage herbicide application, tillage, seed purchase, aed th
seeding proces¢Perennia, 2021b; Thomas, 201&)onversely, production years are
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characterized by relatively lower costs since soil preparation and planting investments do
not recur annually. Additionally, after the initial establishment of the crop, production years

tend to yield more due to the growth maturity of the plants.

The third factor complicating the cost estimation of forages is their utilization,
mainly since the majority of forages produced in Nova Scotia are intendedfiamonise
(Perennia, 2023)rhis predominance of efiarm use of forage production can be attributed
to several reasons. Firstly, forage production on a farm can serve as a strategy for-feed self
sufficiency. This allows farmers to ensure a more consistent andftestive feed spply
for their livestock, reducing their reliance on external sources that may be volatile in price
(McCartney & Horton, 1997; Timmer, 2008econdly, the transportation of forage, which
is bulky and low in density, is costly and can significantly diminish the profit margins from
selling it (Perennia, 2021b; Timmer, 2002)astly, using offarm forage enables farmers
to maintain stricter quality control over the feed, which is crucial for the productivity of
their livestock(Allen, 1996; Mhere et al., 2002)

The most current and extensive analysis of the cost of forage production in Nova
Scotia was carried out in 2011 by Jones (2011). This research analyzed the economic
aspects of establishing forage and the associated production costs within the region. Jones
(2011) indicated a net profit of $183 per hectare for hay and $81 per hectare for silage,
based on market prices of $150 per tonne for hay and $120 per tonne foeilage
2011) When these figures were adjusted for inflation to 2023 at an annual rate of 2.32%,
assuming similar yields, the net profits per hectare amounted to $478 for silage and $179
for dry hay. These findings closely aligned with those presented in this papemilarly
considering that Jones's methodology accounted for only a limited set of parameters. Our
analysis calculated the net profits at $326.49 per hectare for silage and $150.50 per hectare

for dry hay, as detailed ihable4-3.

4.5.2 Limitations
The proposed method of calculating the net profit of land has several limitations.

First, the method assumes that crops and forages produced on dykelands are being sold on
the market for profit. This approach focuses on the performance of the dyke systems
dollars per hectare, while the value of land for producers might be found in converting the
primary resource into feed for animals. The decisions of producers to grow specific crops
or forages are influence by a variety of factors that extent beyondmaoconsiderations
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alone. Furthermore, the net profit may not accurately reflect the local variability in costs,
such as differences in land prices, labour costs, and availability of subsidies, which can

significantly impact profitability.

Similarly, using net profit as the primary assessment metric can oversimplify the
complexity of farm economics by not accounting for smoonetary factors like
environmental impact and lorigrm sustainability. This was demonstrated Sipkoe,
(1989) who showed that wildlife conservation benefits and-ocmmsumptive benefits of

dykelands are nenegligible but can be challenging to quantify.

Another important limitation is linked to the budgeting tool. Indeed, the quality of
the outputs from the tool is dependent on the number and accuracy of the input variables.
Although we attempted to diligently use values from reliable sources with cemplet
transparency, as presenteddpppendix B some of the values used in the analysis failed to
consider certain operating costs, such as equipment loans, equipment leases, land loans,
land rental, drying cost for crops and land taxes. Furthermore, the analysis did not include
fixed input costs suclas land costs, machinery costs, and depreciation values of the
equipment. Therefore, the results of this analysis tend to overestimate the net profits
associated with each field. Although valuable, it was decided not to include these variables
since it wauld introduce uncertainties in the methodology that would be difficult to account

for due to the inherent variability between the fixed costs of farms.

A more comprehensive approach could be conducted by surveying farmers to estimate
their production cost on the dyke systems where they farm. Counties could repeat this
surveying process to account for regional variations. Ultimately, this informatiot loeul

used as an input in the presented model to improve the representability of the results.
4.5.3 Implications for Policy and Management

Understanding the factors influencing profitability can inform targeted
interventions to improve economic outcomes in underperforming dyke systems.
Investments in surface drainage grants, along with the promotion of effective management

practices such asap rotation, could enhance profitability.

For policymakers, the findings highlight the importance of supporting infrastructure

development and providing resources for farmers to adopt best practices. This is
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particularly relevant in the context of climate change adaptation, where enhancing the
resilience and productivity of agricultural lands is crucial. Additionally, the findings of this
study could be used to compare the length of dyke infrastructure antunhiger of
aboiteaux within a system against the average net profitability. This comparison would
allow the creation of a ratio to assess the cost of maintaining the dyke infrastructure relative
to the economic return of each system. Furthermore, varidt#egbe vulnerability of each

dyke system, as presented by van Proosdij et al. (2018), could be integrated and used to
rank them. Although this approach would not consider ecosystem services, it would provide

an important baseline for policymakers thatrently does not exist.

4.6 Conclusion
This study demonstrates that integrating-g&herated field boundaries with

economic modeling provides a detailed and nuanced understanding of agricultural
profitability across Nova Scotia's dykelands. By capturing spatial heterogeneity and
management préces at the field level, we uncover factors influencing economic
performance that aggregate analyses might miss. While net profit metrics offer valuable
insights, they represent only one aspect of agricultural economics. Future research should
incorporate additional metrics such as cost efficiency and environmental impact
assessments, to provide a more comprehensive understanding. Includingspegifin

data on costs, yields, and prices would further enhance the accuracy of profitability
assessments. €hinnovative approach presented in this study has implications beyond
Nova Scotia's dykelands. It demonstrates the potential of combining Al technology with
economic modeling in agricultural economics, offering a framework that can be applied to
other regbns and contexts. Policymakers and stakeholders can leverage these insights to
make informed decisions that optimize land use, enhance agricultural productivity, and
adapt to environmental challenges.
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5.1 Abstract:
Excess water in agricultural fields can significantly limit crop productivity. With the advent

of drone technology, new methods have emerged for identifying and predicting problematic
areas in fields prone to poor surface drainage. This study utilizededroltected aerial
images in Nova Scotia, Canada over three years to createréggiution elevation models

for evaluating crop performance and simulating surface drainage under Hortonian flow
conditions. Multispectral imagery was also employed to compgetation indices, while
elevation data were used to generate plant height and flood models. Vegetation indices and
plant height models were analyzed against the flood models to ident{yrdolctivity

zones on the dykelands and assess the relatiomstigeen poor drainage and crop
productivity. The findings revealed a substantial decline in productivity in poorly
maintained surface drainage areas, with mean plant height in fivode areas
decreasing from 1.43 m in 2022 to 0.26 m in 2023. Moreonersize of flood risk zones
increased from 37% of the field's total surface in 2022 to 61% in 2023, highlighting the
compounded negative impact of festing drainage issues. Results also showed
improvements in the mean plant heights and NDVI valuegls that were maintained
annually, highlighting the importance of a proactive approach. The study demonstrates
that highresolution elevation models derived from drone data can offer an effective

solution to mitigate the adverse effects of soil watarrasibn on crop productivity.
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5.2 Introduction
The province of Nova Scotia, Canada, is a coastal region that experiences high rainfall,

receiving an average of over 1300 mm of precipitation each(Pears & Browne, 1996)

Much of the precipitation occurs in the Spring and Fall, which can delay agricultural
fieldwork, especially if field drainage is insufficient. The inability to maintain adequate
drainage on agricultural fields impedes the aeration of the plant rootexquiesd for crop
production(Hill et al., 2018) In Nova Scotia, field drainage is often the limiting factor of

the type of crops that can be successfully grown, especially on the dykelands, which are
more prone to these challend&artley et al., 1986 Dykelands are lowying agricultural

land, reclaimed from the sea and protected by dykes. These fields are contained within
multiple dyke systems along the Bay of Fundy. In Nova Scotia, the total surface area of
these dyke systems is 17,401 hectares, athwB,272 hectares are actively used for

agriculture(Bilodeau et al., 2024a)

The soils on the dykelands are characterized by their naturally low permeability, which
slows both the downward and lateral movement of water through theséCGmilte &
Swerman, 1967)Combined with a flat landscape, this causes water to accumulate on the
surface and watdog the fields. The agricultural productivity of these soils can be
significantly improved through proper surface drainé@artley et al., 1986; Hill et al.,
2018) the orderly removal of excess water from the land's surface. On the dykelands, this
is accomplished by shallow ditches, which discharge into larger and deeper collector drains
that eventually evacuate excess water into the off@uwer et al., 1985)To facilitate
the flow of excess water toward the drains, the field is given an artificial slope through land
forming (Kolstee et al., 1994Figure 5-1)d the process of mechanically moving soil to
change field topography to provide improved surface drairitgeintyre & Jackson,

1975) The soil excavated from the drain is pushed into hills called ‘crowns'. When these
crowns have a uniform slope, surface water from heavy precipitation can effectively run
off into the adjoining ditchefolstee et al., 1994) and forming is the principal drainage
technique used on the dykelands. In 2020, it was estimated that 6,924 hectares of fields
actively used for agriculture in Nova Scotia were land for(@B#ddeau et al., 2024a)
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Collector drain

To collector drain S :

Figure5-1: Land forming and design of surface drainage systems to enhance water runoff efficiency. Image modified
from Brouwer et al., 1985.

Recent studies have shown that drones equipped with RGB cameras can be used to
measure plant height in corn fiel@he et al. (2020andGilliot et al. (2021)demonstrated
that 3D surface models generated from high resolution drone RGB imagery can be used to
accurately predict plant height in corn fields. Other studies, suBerdig et al. (2015)
andBarrero Farfan et al. (201,3howed that plant height is a good indicator for evaluating
plant growth and grain yieldturther studies have shown that drones can effectively assess
plant health in agricultural fields using vegetation indideslanousek et al. (2023), they
examined the effectiveness of various vegetation indices (NDRE, NDVI, GNDVI) derived
from dronemounted multispectral cameras in estimating the quantity of dry matter in corn.
Their findings revealed significant correlatiopstween these indices and the nutrigilon
values of dry matter, which are important for yield estimates. Similaggkmakis et al.
(2019)investigated the correlation between NDVI values and corn yield, finding strong
positive correlations (r > 0.8Macedo et al. (2023)Iso explored the use of the NDVI to
estimate productivity and aboggound biomass in corn. They obtained similar results,
demonstrating strong correlations between these indices and corn productivity,
underscoring their value in predicting yieldshe use of UAV imagery has also been
demonstrated for mapping subsurface drainage systems in agriculturakKicgdsti et al.
(2021) compared the effectiveness of visHoelor, multispectral, and thermal infrared
cameras for drainage mapping purposest al. (2021)utilized UAV-based LIiDAR to
enhance flood modelling accuracy by capturing micro terrain feathadi et al. (2021)
highlighted the importance of higlesolution DEMs in soil erosion estimation,

demonstrating significant sensitivity to DEM resolution.
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The improvement of water movement in the fields, by means of land forming,
extends the growing season and enhances the field trafficability early in tiid&aityre
& Jackson, 1975)Over time, however, field topography changes after plowing, and
dykeland fields must be reform&d process is known as "recrowning”. Additionalfy,
the ditch drains are not properly maintained and become obstructed by sediments, the water
table will tend to rise. This results in poor drainage of gravitational water towards the side
of the fields, thus reducing crop growtiKolstee et al., 1994)The cost associated with
recrowning dykelands is estimated to range between $300 and $500 an acre and is
performed, on average, every ten ye@sodeau et al., 2029b To date, the negative
impacts of poor surface drainage from one season to another have not been well
documented on the dykelands, although they have been reported in the li{@&latkeey,
2004; Gartley et al., 1986; Milligan, 1987)

Despite the proven effectiveness of drones and remote sensing in agricultural
assessments, there is a lack of studies specifically addressing the evaluation of seasonal
changes in surface drainage conditions on dykeland fields in Nova Scotia. The unique
characteristics of these fieldssuch as their lovlying nature, susceptibility to
waterlogging, and the practice of land form@ngresent specific challenges that have not
been adequately explored using advanced remote sensing technologies. Current practices
rely on farmers' general knowledge to identify problematic areas, which may not accurately

capture subtle topographical changes affecting drainage efficiency.

The goal of this research is to bridge this knowledge gap by evaluatiagciimacyof
drones and remote sensing techniquesgeantifying seasonal changes across agricultural
dykeland fielddoy comparing remote sensing data with gretnuth measurements across
different seasonsSpecifically, this study seeks to determine whether these technologies
can help farmers identify lolying areas with poor surface drainage, which may not be
evident through traditional methods. By providing accurate data, #sssgsments aim to
support farmers in making informed decisions regarding the frequency and necessity of
recrowning dykeland fields. This approach has the potential to optimize field management
practices, improve crop Yyields, and ultimately enhance thenoewc viability of

agricultural operations on the dykelands.
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5.3 Materials and Methods
Figure5-2 illustratesthe overall workflow process used in this research. Aerial images

were collected to generate elevation data and compute vegetation indices. The elevation
data was then used to carry out a flood simulation and predict surface drainage patterns.
The aerialimages were processed to develop plant height models. These models and
vegetation indices were analyzed to identify {pmductivity zones on the dykelands. The
outcomes from both analyses were combined to assess the relationship between poor

surface draiage and crop productivity.
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Figure5-2: Flowchart of the overall workflow process used to assess the differences between predicted and validated
data.

5.3.1 Study area
Four dykeland fields were evaluated in both Truro and GRnégd Nova Scotia,

CanadakKigure5-3). Fields A, B, C and D are located along the Bay of Fundy and are parts
of the Central Onslow, Cobequid and Grdfé and dyke systems.
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Figure5-3: Map showing the location and layout of four agricultural fields in the study area (Fields A, B, C, and D) in
Nova Scotia, Canada. The overview map (bottom right) provides the regional context of the field sites.

Table5-1 details the size of the fields along with the field production through the
years. Crops and forage grown on the study sites included soybeans, corn angraBalfa
which are all commonly grown on the dykelariBdodeau et al., 2021)
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Table5-1: Field size, location and crop production of the study areas.

Field Production
2021 2022 2023
Field A Truro 45.3735°N;63.3305°W  13.5 Corn Corn AlfalfaGrass
Field B Truro 45.3761°N;63.2870°W 6.2 Corn  Soybeans Corn
Field C GrandPré 45.1109°N;64.3208°W 3.2 Corn Corn Corn
Field D GrandPré 45.1086°N;64.3202°W 5.6 Corn Corn Corn

Field Name Location Coordinates Area (ha)

Fields also differed in management practices, soil types, and drainage systems. For
Fields A and B, the landowner carefully manages the land to prevent surface damage,
including erosion from water runoff and ruts or compaction causdwayy machinery,
and ponding or waterlogging resulting from poor drainage. A key focus is on the annual
maintenance of the ditches, which the landowner performs by clearing-ditchiag them
each year to enhance drainage and improve field usabilitye$e fields, a combination of
grassed waterways and lafadming techniques are also employed. Field elevation is
adjusted using a rotary ditcher, which spreads ditch spoil across the fields to smooth out
uneven areas. Additionally, culverts are strat@ycplaced to maximize land use
efficiency. In contrast, none of these maintenance activities are performed in Fields C and
D. Fields A and B undergo annual ditch maintenance in the fall, along with additional

maintenanceTable5-2).

Table5-2: Drainage characteristics of fields investigated in this study.

Field Drainage Openditches

Name technique* spacing Last recrowning Soil type

Field A GW, LF 92-183 meters yearly maintenance Minas lowlands
Field B LF 46-61 meters  yearly maintenance Minas lowlands
Field C GW, LF 46 meters >10 years Annapolis valley soi
Field D LF 51-87 meters  >10years Annapolis valley soi

*GW: Grassed waterways, LF: Land forming

5.3.2 Aerial surveys
Aerial images were acquired with a DJI Matrice 300 RTK (SZ DJI Technology Co.,

Ltd., Shenzhen, ChinaY &ble5-3). Surveys were planned and flown using the DJI Pilot
app (SZ DJI Technology Co., Ltd., Shenzhen, China) at an altitude of 106 RR KR

base station (SZ DJI Technology Co., Ltd., Shenzhen, China) was used during the surveys
to reduce the positioning ens of the images. Additionally, a minimum of nine GCPs were

evenly distributed across the survey areas and used during ther@osssing toegister
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the drone images to the location of the G(Eshore et al., 2022)l o validate the accuracy

of the elevation models, at least four checkpoints were acquired during each survey. For
2021, coordinates of the GCPs and check shots were measured using a Topcon HiPer SR
RTK-GPS (Topcon Positioning Systems Inc., Livermore, O8A) in a base station and

rover configuration. In 2022 and 2023, an Emlid Reach RS2 (Emlid Inc., Hong Kong,
China) multifrequency GNSS receiver, linked to a networked transport of RTCM via
internet protocol (NTRIP) correction service, was used. Botkivers are capable of
centimetrelevel accuracy in RTK modes and have similar horizontal and vertical accuracy
(Emlid, 2024; Topcon, 20141l data collected from the surveys were converted to a local
coordinate system NAD 83 (CSRS)/UTM zone 20N (EPSG:2961).

Table5-3: Characteristics of the DJI Matrice 300 RTK drone used for mounting the payloads.

Matrice 300 Characteristics

Dimensions 8lcmx 67 cmx43cm
Weight 6.3 kg

GNSS GPS+GLONASS+BeiDou+Ga

Maximum payload 2.72 kg
Maximum flight time 55 min
Maximum speed 22.78 m/s

5.3.3 Payloads
Two successive survey missions were conducted on each of the survey dates. The

fields were first surveyed with the Matrice 300, equipped with a MicaSence Altum
multispectral sensors (MicaSense, Inc., Seattle, WA, USA), and secondly with a DJI
Zenmuse P1 (BDJI Technology Co., Ltd., Shenzhen, China). The Altum captures images
in five spectral ranges, including spectral bands in blue (Ba#&9#91 nm), green (Band

2 - 546573 nm), red (Band-861i6 75 n redge Baned #1007 23 nm) ,- and
infrared (Baad 58138 70 nm) . The Zmeaeyapiet aptickt damerss whaeh 4 5
was fitted with a 35 mm lens. Due to the unavailability of the P1 camera in 2021, all images
of the surveys were conducted with the Altum caméfable 5-4 contains the
characteristics of the two payloads used to obtain the aerial images. Surveys were
conducted with the purpose of generating three sets of data, naifigly, DSMs and

orthomosaics.
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Table5-4: Basic characteristics of the DJI Zenmuse P1 optical camera and MicaSense Altum multispectral camera
used to obtain aerial images of dykelands.

Characteristics Zenmuse P1 MicaSense Altum

Dimensions (cm)  19.8x 16.6 x 12.9 8.2x6.7x6.45

Weight 787 ¢ 357¢g

Spectral Bands EO Blue, Breen, Red Blue, Breen, Red, Redige, Neaiinfrared

Spectral Bands

LWIR N/A Thermal Infrared 84um

Sensor Resolution 8192 x 5460 pi 2064 x1544 pi (MSI), 160 x 120 pi (TIR)
1 capture every 0.7 1 capture per second (all bands),-ti2

Capture Rate second RAW

Field of View 53.63 x 36.96 48° x 3P (MSI), 57x 42 (TIR)

Pixel Size 4 pm 3.45 um (MSI), 12 um (TIR)

Effective Pixels 45 MP 3.2 MP per EO band

* TIR= thermal infrared, MSI= multispectral

imaging

5.3.4 Survey frequency
The survey missions were carried out from May 2021 through August 2023, with two

surveys being conducted annually across the study &iigsré 5-4). The scheduling of
these surveys were designed to ensure align with the agronomic milestones of corn
development. The first survey of the year took place in the Spring, prior to seeding, when
the soil was exposed. The second survey was conducted inAegugt, before the corn
harvesting period and approximately three weeks after the corn had reached physiological

matu rlty.
-ﬂ May August -ﬁ May August -ﬁ May August

N T R

ﬁ Bare soil surveys ﬁ NDVI & Plant Height Surveys

Y

Figure5-4: Timeline of UAV data collection activities: A visual representation of the annual bare soil surveys
conducted each May and the NDVI and plant height surveys conducted each August.

All surveys were deliberately planned for days with clear sky conditions to ensure optimal
data collectionTable5-5 contains details of the survey mission parameters used to collect

the aerial images.

101



Table5-5: Aerial survey parameters used with the Zenmuse P1 and MicaSense Altum. The table outlines differences
in Ground Sampling Distance (GSD), overlap percentage for image stitching, and the operational speed of each
system used to conduct the survey missions.

Characteristics Zenmuse P1 MicaSense Altun
Altitude AGL (m) 106 106

GSD (cm/px) 1.33 4.57

Front Overlap 75% 80%

Side Overlap 75% 75%
Speed (m/s) 15 10

*AGL= Above Ground Level, GSD= Ground Sampling Dis

5.3.5 Data processing
Aerial photos of the study areas were processed in Agisoft PhotoScan 1.8.2 (Agisoft

LLC Inc., St.Petersburg, Russia). The processing of the images followed a standard SfM
processing workflow(Elmore et al., 2022; Paine & Kiser, 201Ejgure 5-5 detailsthe
processing steps taken to generatéM3, DSMs and orthomosaics from the RGB and the

multispectral images.

AT Georeference
g L acquisition (on-board
(camera) GNSS and GCPs)
Y Y
Images < Geolocation Data
/\ L v T o
: =5
Multispectral RGB ' Import GCPs g :
@
=R
: 2
Y Y : A4 P
Calibrated TC) :
L' I L w . :
Reflactance Align Photos »  Optimize Photos 5 :
Y
. . Build Digital Terrain Build Dense Point
- i
Build Orthomosaic <€ Madel <« Cloud
A 4 Y Y
orth : Digital Terrain Model Digital Surface Model
omaosaic (DTM) (DSM)

I:I Dataset I:I Process

Figure5-5: SfM photogrammetry processing workflow. Blue boxes are products/datasets and green boxes are
processing steps. Figure modifiébm Girod et al. (2017)
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DTMs were created in Agisoft using dense 3D point clouds from bare soil surveys
conducted in the spring, whiBSMs were generated in CloudCompare (GPL software,
cloudcompare.orgjrom the dense 3D point clouds exported from Agisidiring the
Augustsurveys(Figure5-4). The 3D point clouds were filtered using the statistical outlier
removal tool in CloudCompare and transformed into a 2.5D model using the rasterize tool.
Table 5-6 contains information on the accuracy of the elevation models used in this

research.

Table5-6:; Digital elevation model accuracy report.

Control Points Ground

Year Survey ID Field RMSE (Z erro  Resolution Pom_t Density
Coverage . (points/m?)
cm) (cm/pix)
TR_A_DM_2021 A 0.91 4.07 605
2021 TR_B DM 2021 B 0.12 4.18 572
GP_CD_DvM_2021 C,D 0.69 4.05 609
TR_A_DM_2022 A 6.26 1.11 834
2022 TR_B_DM 2022 B 5.63 4.43 508
GP_CD_TM_2022 C,D 2.80 2.23 201
TR_A_DM_2023 A 3.62 2.19 208
2023 TR_B_DM_ 2023 B 5.17 2.22 203
GP_CD_TM_2023 C,D 4.12 4.46 503

5.3.5.1 Corrections of multispectral images
The Altum was calibrated using a CPR to prevent banding and patchiness in the

orthophotos and to enable more accurate compensation for incident light conditions. This
process ensures that multispectral images can be used for accurate analysis acrtess multip
dataset¢MicaSense, 2023Yhe CPR was helpful to improve the radiometric quality of the
images since it provides a definite reflectance value during the corrections process. The
surface of the calibrated reflectance panel has been measured at numerous wavelengths
using a spectroeter. Panel captures were acquired just before and after each flight as well

as during each battery swap.

5.3.5.2 Vegetation index
The NDVI is a standardized index used to quantify the health and density of

vegetation. This index leverages the contrast between the characteristics and chlorophyll
pigment absorption of the red and nedrared bandgNIR; Xue & Su, 2017) The

following formula was used to compute the NDVI:
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Areas with low NDVI values typically represent conditions with little to no vegetation, like
rocky terrains or bare earth. In contrast, moderate NDVI values suggest the presence of
grasslands and shrubbery, whereas high values are indicative of dentsediodethriving
vegetation(Antognelli, 2018; ESRI, 2023)

5.3.5.3 Plant height estimation
A CHM was generated by calculating the difference betweensthiakén from the

DSM and the £ calculated from the DM as follows:
6000 ® o ¢
The calculation was performed in ArcGIS Pro 3.5 (ESRI, Redlands, CA, USA) using the
raster calculator, and results were expressed in meters. To reduce errors and increase
accuracy while calculating the CHM, the boundaries of all the field ditches inuithg st
areas were digitized in ArcGIS Pro and extracted from thied®and DSMs datasets using
the erase tool. To validate the photogrammetric estimate of the CHM, A2p€Hfield
were acquired each year. To ensure an unbiased randomized selection offlegsa

areas, the sampling points were selected using the inverted W pattern sampling technique
(McCully et al., 1991; Tamado & Milberg, 2000; Thomas, 1985)

Sampling areas consisted of a 1 m x 1 m square, oriented parallel to the corn rows.
All the plants within the sampling box were measured. Corn fields in the study areas were
sown 15 cm apart in rows distanced by 75 cm; therefore, 10 to 12 plants werecaptu
within each sampling aredigure 5-6). The geolocation of each sampling area was
digitized in ArcGIS Pro and imported to the Emlid Flow (Emlid Inc., Hong Kong, China)
application on an 10S device. The Emlid Reach RS2 was then used to navigate to the
location of the sampling areas, allowingr the collection of CHs measurements. The

CHret measurements were acquired one week after the second dtiguayeb-4).
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O NN 1 meter

Figure5-6: Sampling areas for corn height reference measurements (red) around corn rows (green). Only corn plants
within the sampling plots were manually measured (yellow).

The plant height was measured at three locations from the ground base: (1) to the
base of the flower apex of the stem end, (2) to the first leaf and (3) to the secdfidleaf.
5-7 offers a visual representation of the different measurements taken from the plant used
to generate Ch. Measurements were acquired with a fmeter telescoping grade rod,

equipped with a spirit level and positioned vertically along the corn stalk.

Third measurement Top Flower

Corn Surface (Zs)

Second measurement

A

Plant Height

Bare Soil (Ze)

Figure5-7: Methodology for calculating plant height within each sampling area, including measurements from the
top flower, first and second leaves, and bare soil. These height measurements were taken at various points on the
corn plant and used to assess the accayaf the corn height model.
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5.3.5.4 Corn height analysis
The accuracy of the CHM was assessed by comparing it to the Tht same

sampling boxes that were used to acquirg-LLidta were also employed to filter cell values
within the CHM. The zonal statistics tool in ArcGIS Pro was used to calculate the 95th
percentile of these cell values and estimate plant height per plot. This particular percentile
was chosen based on findsnffomMalambo et al. (2018)which indicated that the 90th,

95th, and 99th percentile height metrics from the CHM correlated better with field
measurements than the maximum height metric. Tests on the dataset confirmed that the

95th percentile was the most accurate metric.

The degree of agreement betweendcdhd predicted plant heights from the CHM
was evaluated using R2; and RMSE. R2 was used to assess how well the dmersad
model captures the variability in grounteasured plant heights. A high R? indicates that
the model is successful in capturing the relationship between the aerial images and the
actual plant heiglst whereas a low R2 suggests that the model is not accurately representing
this relation. However, R2? alone does not account for systematic overestimation or
underestimation in the predions, as it measures the strength of the linear relationship

without considering how closely the data align with the 1:1 line of perfect agreement.

Therefore, the values 8t were also employed since it combines measures of both
precision and accuracy to evaluate how well the predicted plant heights agree witikthe CH
values along the line of perfect concordance (1:1 line). Lin's concordance correlation
coefficient assesses the degree to which pairs of observations fall on the 1:1 line, accounting
for any systematic deviations from this liflen, 1989) It includes a gthat adjusts for
over or underestimation, ensuring that both the slope and location differences between the
predicted and observed values are considéhcBride, 2005) This is particularly
important in this analysis since any consistent underestimation or overestimation could
indicate a bias in the model predictiofisn, 1989) An accurate model should have
predictions that align closely with the 1:1 line, indicating both high correlation and
agreement. A highc value suggests that the model not only captures the variability in plant
heights (as indicated by R?) but also provides unbiased predictions that closely match the
CHref values(Steichen & Cox, 2002)
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Lasty, the RMSE was used to quantify the average error in the plant height
predictions. Lower RMSE values indicate that the height of corn plants predicted from
aerial images is very close to the ground measurements, indicating high model accuracy.
Calculdions of both R2 and RMSE were made using MATLAB (MathWorks, Inc., Natick,
Massachusetts, USA) white values were calculated in IBM SPSS Statistics (IBM Corp.,

Armonk, New York, USA). These statistical measures were calculated using the following

formulas:
'Y B o o on
P B w o w0
” C n N 'Or'a) '[
YL YO Y W w o v

5.3.5.5 Modelling flooded zones
A flood simulation technique called the AKalstrgam hydrologic screening

method(Balstrem & Crawford, 2018)as used to detect the extent and depth of landscape
depressions, termed "bluespots”, within the fields. This method assumes Hortonian flow
conditions, identifying bluespots and categorizing the surrounding surface into their
respective watershed®ujumdar & Nagesh Kumar, 2012Yhe model identifies the
discharge points of each bluespots and delineates the interconnecting streams that facilitate
overflow (Balstram & Crawford, 2018)

The method calculates the runoff volume for each watershed (termed RainVolume)
during a uniform rainfall scenario across the basin. If the capacity of any bluespot is
exceeded, it results in a spillage (SpillOverOut) at the pour point, initiating a \\water f
path downstream F{gure 5-8). Additionally, any bluespot receiving overflow from
upstream will count as a SpillOverlIn, helping estimate the water balance for each bluespot.
The overall downstream overflow volumes are compiled from these individual water

balances during a specifieaimfall event(Trepekli et al., 2022)
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Figure5-8: Crosssectional illustration of a bluespot and its hydrological attributes derived from the AMalstrgm
model. The diagram depicts the contributing watershed area (m?2), maximum depth (m), sink extent (m?), and
capacity (m3), which represents the volunoé the bluespots below its poupoint level and the water volumes (m3)
entering (SpillOverln) and exiting (SpillOverOut) the bluespot during a uniform rain event. Image modified from

Trepekli et al. (2022)

The ArcMalstrom method was used on thdNds from the study areas and

executed using ArcGIS Pro. The model excluded bluespots > 5 cm and to kempect

the accuracy limit of the DMs. The model was tested against a uniform precipitation

scenario of 25 mm. This threshold was selected due to the frequency of these rain events,

as recorded by the closest weather station to the study sites Truro (Debert) an&@rand
(Kentville; Figure5-9).
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Figure5-9: Annual distribution of rainfall occurrences recorded at the Debert and Kentville weather stations from
2021 to 2023.

Due to the presence of dense vegetation, subbs®es, tall grasses, or small trees
along some of the ditches, théfMs were hydrologically conditioned by flattening the
ditches to a depth of 91 cm, using the surrounding terrain's eleystadment & Djokic,

2000) By utilizing a Python script in the ArcGIS API environment, the elevation values
along the ditch lines were systematically lowered to achieve this specified depth, effectively
modifying the D'Ms for hydrological analysis. This depth was chosen based on field
measurements using the GNSS receivers, common practices for ditch depth on dykelands,
as well as guidelines from the literat\eartley et al., 1986; Hill et al., 2018; Macintyre

& Jackson, 1975)

The DTMs were not hydr@nforced when simulating water flow through the
culverts that separated the ditches. The goal was to assess the impact of clogged or poorly
functioning drains on the fields and to identify areas where water accumulated during a

specific ranfall scenario. Additionally, to achieve this objective, the main collector drain
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for the fields was blocked to prevent water from exiting the watershed of the field. These
decisions were aimed to simulate a moderately common rainfall event and evaluate the
response of the drainage system under such condikange5-10illustrates the original

and hydreflattened elevation models resulting from these alterations, which were used to

compute the flood model.

0 0.04 0.07 0.15 Kilometers

Figure 5-10: Hillshade visualization of elevation models generated from digital photogrammetry using an SfM
approach (A) and hydrologically flattened, using the surrounding elevation of teerain(B). Field ditches are
represented in white.

5.3.5.6 Flood risk and dry zones
Areas of the fields within the flood zones were classified as "flood risk," while the

remaining areas were classified as "dry" zones. To avoid misrepresenting the different
zones, areas with planting gaps caused by planter malfunctions were manualtedligiti
and excluded from the analysis by changing the raster values on the CHM to null.
Additionally, the same treatment was applied to the gap between the edges of the fields and
the first row of corn. If not removed, these areas, often composed of gizea® @round,

could misrepresent the height of the corn plants in these areas.

5.3.5.7 Plant height data and NDVI analysis
Flood risk zones generated by the hydrologic model were exported as vector

polygons and overlaid on the CHM. The cell values beneath these zones were then extracted
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and compared to those in the rest of the fields to evaluate dry areas. For each year and field,
the cell values on the CHM and the size of each zone were calculated and compiled into a
table. A similar approach was applied to the NDVI maps, where thesstoe polygons

of flood risk zones were used to extract values from the NDVI data. These tasks were
automated using the ArcGIS API for Python.

5.4 Results

5.4.1 Plant height model
Figure5-11 displays the results from the CHM compared to the.CHhe trend in

R? values from 2021 to 2023 indicates good model performance, with regression lines
closely fitting the data points and explaining a substantial part of the variance in corn plant
heights. R values ranged between 0.62 and 0.82 between the three years period.
Additionally, the RMSE ranged between 0.224 m and 0.333 m, indicating that the model
accurately predicted corn plant heights with reasonable precision, although accuracy
slightly decreas#in 2023.

Values of” cincreased from 0.7846 in 2021 (95% CI: 0.692.8504) to 0.8824 in
2022 (95% CI: 0.8234.9226) and remained high at 0.8837 in 2023 (95% CI: 018234
0.9243), indicating an overall improvement in the model accuracy over the years. The bias
correction factorsvere 0.9897, 0.9741, and 0.988 in 2021, 2022, and 2023, respectively,

suggesting minimal systematic bias between the measurement methods each year.
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Figure5-11: Comparison of UAMerived plant height estimates and measured plant height in 2021, 2022 and 2023
on Nova Scotia'slykelands.
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5.4.2 Surface drainage analysis

5.4.2.1 Changes in the size of the flood risk zones
During the study period, Fields A and B exhibited a decreasing trend in the size of

flood risk zonesTable5-7). In 2021, 16% of Field A was classified as a flood risk zone,
which decreased to 5% the following year. In contrast, Fields C and D showed an increasing
trend in the size of the flood risk zones. Notably, the proportion of land at risk in Field C
increagd from 37% in 2022 to 61% of the field in 2023.

Table5-7: Comparison of plant height and NDVI values across flood risk and dry zones in Fields A, B, C, and D from
2021 to 2023.

Flood Risk Zones Dry Zones
Plant H(m) NDVI Plant H(m) NDVI
Field Year Area (%) FEY ) Er ) Area (%) EY ) Er )

2021 16 213 0.29 0.58 0.08 84 223 0.23 057 0.08
A 2022 6 238 049 0.68 0.08 94 254 0.29 0.68 0.07
2023 N/A N/A~ N/A 0.76 0.10 N/A N/A N/A 080 0.06
2021 25 150 0.53 0.63 0.09 74 158 046 0.60 0.09
B 2022 N/A N/A N/A 070 0.13 N/A N/A N/A 0.74 0.09
2023 18 190 051 0.67 0.08 82 2.13 034 0.67 0.07
2021 37 1.38 050 0.71 0.09 63 199 035 0.69 0.08
C 2022 37 143 053 0.65 0.14 63 1.79 037 0.68 0.10
2023 61 0.26 042 046 0.14 39 1.07 066 055 0.13
2021 21 219 055 064 0.14 79 247 031 0.66 0.09
D 2022 25 1.77 056 0.64 0.14 75 2.17 0.26 0.68 0.10
2023 35 111 064 0.62 0.11 65 1.74 054 0.67 0.07

5.4.2.2 Mean plant height in flood risk zones and dry areas
The analysis of plant height across the four fields over three years under-a water

logged scenaricevealed important differences between flood risk and dry zones. Dry areas
consistently exhibited greater mean plant height than flood risk zones across all fields. In
Field A, the mean plant height in dry areas increased from 2.23 m in 2021 to 2.54 m in
2022 and from 1.58 m in 2021 to 2.13 m in 2023 for Field &(e5-7). A similar trend

was observed in Fields C and D, where plant height in dry areas remained higher than flood
risk zones despite a noticeable overall decrease in the mean plant height from one year to
the other, which indicated worsening growing conditigfigure5-12).
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Figure5-12: Comparison of plant height and flood risk zones in Field C for 2022 and 2023. The image on the left
represents the spatial distribution of plant height across the field. The image on the right shows the extent of flood
risk areas (highlighted in blue) siulated under a flooding event caused by a uniform precipitation scenario of 25 mm,
overlaid with the corresponding plant height distribution.

On the other hand, flood risk areas often displayed more variability and a trend of
declining plant height over time. This was particularly evident in Field C, where the mean
plant height in flooerisk areas dropped sharply from 1.43 m in 2022 to 0.26 B0R3.
These results indicated that the productivity classification strongly influenced plant height,
with dry areas generally supporting taller pla¢Esror! Reference source not found,

REF _Ref18053048th \* MERGEFORMAT Error! Reference source not found).
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