EXCEPTIONS AND CONTINGENCIES HANDLING
IN A SCADA SYSTEM

Rekha Arora

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia
January 2011

(© Copyright by Rekha Arora, 2011

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the
Faculty of Graduate Studies for acceptance a thesis entitled “EXCEPTIONS AND
CONTINGENCIES HANDLING IN A SCADA SYSTEM” by Rekha Arora in

partial fulfillment of the requirements for the degree of Master of Computer Science.

Dated: January 14, 2011

Supervisors:

Reader:

il

DALHOUSIE UNIVERSITY

DATE: January 14, 2011

AUTHOR: Rekha Arora

TITLE: EXCEPTIONS AND CONTINGENCIES HANDLING IN A
SCADA SYSTEM

DEPARTMENT OR SCHOOL: Faculty of Computer Science
DEGREE: M.C.Sc. CONVOCATION: October YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring
only proper acknowledgement in scholarly writing) and that all such use is clearly
acknowledged.

iii

Table of Contents

List of Tables vii
List of Figures viii
Abstract ix
List of Abbreviations Used X
Acknowledgements xii
Chapter 1 Introduction 1
1.1 Exceptions and Contingencies 1
1.2 Problem Definition, 2
1.3 Objective 3
1.4 Thesis Outline 4
Chapter 2 Background and Literature Survey 5
2.1 Background)
2.1.1 Software-Intensive Systems 5

2.1.2 Embedded Systems 6

2.1.3 Real Time Systems 8

2.1.4 Distributed Control Systems 9

2.2 Literature Survey 9
2.2.1 Exception 9

2.2.2 Extended Exception - Contingencies Handling 10

2.2.3 Exception Types L 11

2.2.4 Exception Handling Models 14

2.2.5 Overview of Other Related Work 15

iv

Chapter 3 Domain: Halifax Water Plant Real Time and Distributed

System 18

3.1 SCADA System 19
3.2 Architecture of SCADA 19
3.3 Components of SCADA System 20
3.3.1 Human Machine Interface (HMI) 20
3.3.2 Programmable Logic Controller (PLC) 21
3.3.3 Supervisory Control System (MTU) 22
3.3.4 Radio Communication 23
3.3.5 Remote Terminal Units (RTU’s) 24
3.3.6 OPC (OLE Process Control) Historian Database 24

3.4 Language: DELTA V Product of Emerson Process Management . . . 24
3.4.1 Subcomponents of language 25
Chapter 4 Case Study: SCADA for Halifax Water Plant 27
4.1 Proposed Flowchart 28
4.2 Coarse Screen Flow Chart 31
4.2.1 Coarse Screen Sequential Flowchart (SFC) Algorithm 32

4.3 Contingencies in Coarse Screen Algorithm 34
4.4 Modified Coarse Screen SFC L. 36
4.5 Modified Coarse Screen Algorithm 37
4.5.1 Explanation oo 39

4.6 Contingencies Handling in Coarse Screen System 40
4.6.1 Functional Block Diagram of Initial Conditions 43
4.6.2 Functional Block Diagram of HX-110-VA-002, VA-003 44

4.7 Fail Block Conditions 45
4.7.1 Valve Alarms 46
4.7.2 Control Alarms 47
4.7.3 Actuator Alarms 47

4.8 Cause and Effect table of VA-002 and VA-003 48
4.9 HMI Coarse Screen Controls 49

4.10 Transitions s, 50

Chapter 5 Conclusions oo 53
5.1 Conclusions 53
5.2 Future Work 55

Bibliography 57

vi

List of Tables

Table 4.1 Cause and Effect Table of VA-002 and VA-003

vil

Figure 3.1

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16

List of Figures

SCADA Architecture 20
Halifax Coarse Screen 28
Diagram of Resumption and Termination model 29
Proposed Flowchart 30
Coarse Screen Sequential Flowchart 32
Modified Coarse Screen Algorithm 36
Functional Block Diagram of initial conditions 43
Functional Block Diagram of HX-110-VA-002 44
Functional Block Diagram of HX-110-VA-003 44
Valve Alarms 46
Control Alarms 47
Actuator Alarms 48
HMI Screen 50
S0/A2 Action Transition 51
T2A Transition 51
T2A2 Transition 52
T5 Condition 52

viil

Abstract

The use of rollback is a fundamental flaw in some existing distributed control systems
because the advance in time and in external world situations means that what had
been a correct state in the past may no longer be a correct state in real time and dis-
tributed systems. In such systems rollback is not restoring to a state that is consistent
with the current external environment. Forward error recovery provides a potential
solution to such a situation to handle exception rather than backward recovery. A
contingency is an unusual but anticipated situation for which the normal flow of in-
structions would not produce the appropriate results that should be expected. We
will discuss how to handle contingencies and exceptions in a SCADA (Supervisory
Control and Data Acquisition) system using resumption and termination models of
exception handling.

Contingencies are a consequence of the external world, independent of the program
code. Rather than thinking of contingencies as a possible program error, contingencies
instead consider as a rare but understood external situation which changes what the
software would be expected to do from what is needed in the normal case. A SCADA
system is a computer system sensing and controlling some large physical system and
its environment. We attempted to handle contingencies in a specific SCADA system
at Halifax water plant to modify the SFC (Sequential Flowchart) algorithm of Halifax

Coarse Screen System.

X

AtoD
ACID
ACK_MODE
AO/AI
ASCII
BF 1/0
CA/CAA
CALC
CL
CND
DC1/0
DCS
DI
DLIT
DNP
DO/DI
DTE
ESD
GUI
HMI
I/0
/P
IBM
IDE
IEC
LCD

List of Abbreviations Used

Analog to Digital

Atomicity, Consistency, Isolation, Durability
Acknowledgment mode

Analog Output/Analog Input

American Standard Code for Information Interchange
Boolean Flag Input/Output

Coordinated Atomic Actions
Calculation/Logic Function Block

Close Command

Condition Function Block

Device Control Input/Output

Distributed Control System

Discrete Input

Differential level of Input Terminal
Distributed Network Protocol

Discrete Output/Discrete Input

Data Terminal Equipment

Emergency shutdown

Graphical User Interface

Human Machine Interface

Input Output

Input

International Business Machines
Integrated Development Environment
International Electrotechnical Commission

Liquid Crystal Display

LOCO
LSH
MAN
MTU
OLE
opP
0/P
OPC
PLC
POS
PV
REM
RET
RTU
SA
SCADA
SFC
SIS
SOA
TAR_MODE
VA

VS
WSDK

Loco mode

Level Safety High

Manual mode

Master Terminal Unit

Object Linking and Embedding
Output Command

Output

OLE Process Control
Programmable Logic Control
Position of sensor

Position Value

Remote Manual

Retrieve Timer

Remote Terminal Unit
Sequential Arm

Supervisory Control and Data Acquisition System
Sequential Flowchart

Software Intensive System
Service Oriented Architecture
Target Mode

Valve Auto/Manual

Safety Valve

Web Services Development Toolkit

X1

Acknowledgements

I sincerely appreciate the efforts of Dr. Morven Gentlemen for his continued support
and steady guidance throughout this project. I am also thankful to Dr. Peter Bodrik,
Dr. Michael McAllister for serving on my guiding committee and provide valuable
suggestions to improve the quality of my work.

I extend special thanks to Alana Murray and other staff of Halifax Water for their
help and use of the facilities at Halifax Wastewater Treatment Facility. A few visits to
this facility with the cooperation of Halifax Water staff gave me in depth knowledge of
the DCS(Distributed Control System) systems and their applications. Finally, I wish
to thank my parents, my family in India and Canada for their continuous support

and encouragement.

xii

Chapter 1

Introduction

1.1 Exceptions and Contingencies

An exception is defined as “an event which occurs during the execution of a program
that disrupts the normal flow of the program’s instructions” [1]. It is an unantici-
pated event that occurs during the execution of a program and disrupts the normal
flow of instruction. There is no connotation that “exception” implies “error”. This
definition highlights the arbitrariness of what the designer considers a “normal” or
an “unexceptional” behavior and what is considered “exceptional”.

A contingency is an unusual but anticipated situation for which the normal flow
of instructions would not produce the appropriate results that should be expected,
so the normal flow of instructions must be disrupted in order to instead execute the
relevant instructions. According to Van Ellen et al., “A contingency is an unusual
but anticipated situation for which the normal flow of instructions must be disrupted
because the results (if any) that would be produced by the normal flow of instructions
would not be appropriate to this situation” [2].

Van Ellen and Hasselbring contend that contingencies are expected and unusual
situations, whereas exceptions are unexpected or unanticipated situations. Moreover,
contingencies are not errors because they are not part of a specification violation.
Thus, a situation that is neither an error nor an exception but is unusual, anticipated,
disrupts the normal flow, and prevents the expected operations, is a contingency. The
main distinction is that it arises when the external environment situation is changed.
Examples include paper jamming in a printer, the same value (green or red) being
displayed by a traffic light signal at an intersection, and an outgoing fax encountering
a busy line.

Contingencies were introduced by Van Ellen and Hasselbring[2] as a completely
different perspective on a possible exception. Rather than thinking of contingencies as

a possible program error, Van Ellen and Hasselbring[2] instead consider contingencies

2

as a rare but understood external situation which changes what the software should
be expected to do from what is needed in the normal case. This can be expressed in a
richer specification and is not related to any particular code implementation. Indeed,
detection of the contingency need not be by conventional exception mechanisms,
although that may be the most efficient and highest performance implementation.
Goodenough|3] states that the two ways to handle exceptions are forward recovery
and backward recovery. We will explain how the term contingency differentiates from
exception. Goodenough[3] described that exceptions and exceptions handling are
interleaving actions that do not simply deal with errors; rather, they are levels of
abstractions. If a program is not producing the expected results, we can change the
normal flow of control of the program based on another set of instructions defined in
an exception handler block, and make the decision to transfer the control from normal
flow and expected instructions based on the intermediate results, thereby saving the
effort of partial computation using resumption. Goodenoughl[3] states that forward
recovery is the best technique for handling exceptions and contingencies in real time
and distributed systems. In many systems, what had been the correct state in the

past may no longer be a valid state because external conditions have changed.

1.2 Problem Definition

The main problem is how to handle contingencies. The crux of the issue is that
rollback is a fundamentally flawed idea in some existing systems because the advance
in time and in external world situations means that what had been a correct state in
the past may no longer be a valid state. In such systems rollback is not restoring to a
state that is consistent with the current external environment. If servers are subject to
client requests from outside the application being studied, restoring that application
to a previous state generally does not restore it to a correct state because the servers
are outside the control of the application itself and so their state cannot be restored.
Contingencies, as introduced by Van Ellen and Hasselbring [2], can be expressed
in a richer specification and are not related to any particular code implementation.
Resumption means disregarding past history and moving forward to a state which is
known to be safe and from which processing can continue. This safe state depends on

current values but need not be any state previously experienced. Resumption does

3

provide a potential solution to such a situation, but there are few detailed examples
of exception handling leading to effective forward error recovery or resumption. Most
papers are general and generic, few deal with resumption, and fewer still give concrete
realistic examples. There are certain conditions that can disrupt the normal flow of
the system, but these conditions can be dealt with at run time. Such conditions are
called contingencies not exceptions.

According to Van Ellen, “ A contingency is a situation that is described within the
specification of a module, and represents a module result where the task or function,
which calling modules depend on, was not performed. Contingencies differ from
normal situations in that normal situations do not represent work refusals and without
additional specific measures do not necessarily run into errors” [2].

In this work we will identify contingencies and handle them by first detecting the
state of variables pertinent to the contingency and then performing either a roll-back

to a safe state or resume the valid state using resumption, as is appropriate.

1.3 Objective

The objective of this thesis is to demonstrate how the contingency concept used
with resumption and termination can effectively address important risks in a SCADA
system, which is a real time and embedded system. Some contingencies, such as those
that can produce damage if left unattended, must be handled. They can be identified
in advance at a specification level or they can be handled at implementation phase if
they are not detected at the specification level [4, 5].

We will demonstrate how to handle contingencies in a SCADA (Supervisory Con-
trol and Data Acquisition) system. A computer system sensing and controlling some
large physical system and its environment is known as SCADA System. We will dis-
cuss to handle contingencies in a specific SCADA at Halifax water plant to modify
the SFC (Sequential Flowchart) algorithm of the “Halifax Coarse Screen” System.

We will deem our contingencies handling attempt as successful if it is able to
convince the staff of the Halifax Water Plant that it is effective. We will detect the
unusual situations that are effected by external environment changes and attempt to
handle them using resumption and termination. We will record the amount of effort

to apply our attempt in order to provide guidance as to what might be involved in

treating other contingencies.

1.4 Thesis Outline

This chapter discussed contingencies and exceptions and presented the objective of
the thesis. In the next chapter, we provide some relevant background on the SCADA
system in question, which is a real-time, embedded distributed system. Furthermore
we review relevant literature on exceptions, termination models, and contingencies.
Chapter 3 describes a SCADA system and its components. Chapter 4 describes the
case study of the “Halifax water plant” where we examine contingencies in Sequential
flowchart of “Coarse Screen” algorithm and handle contingencies using the resumption
and termination and exception handling techniques. The chapter 5 offers summary

and conclusions on the case study and future work.

Chapter 2

Background and Literature Survey

2.1 Background

Contingencies are not exceptions but consequences of external world changes. A con-
tingency is an unusual but anticipated situation. The characteristic of a contingency
is that, when the external environment has changed, no previous state may be valid;
as the world has moved on, previous consistency properties no longer hold [6]. We
also need to look at how contingencies are interrelated with exceptions. Because
exceptions and contingencies are particularly important for embedded and real-time
systems, we first briefly describe them in the background section. This is then fol-
lowed by a literature survey on exceptions, contingencies, and termination models.
We have merely illustrated examples of contingencies and how they could be handled.

We have not intended to address all possible exceptions and contingencies.

2.1.1 Software-Intensive Systems

Systems generally may involve people, hardware, and software. According to Rich
Hilliard, “software-intensive systems are those complex systems where software con-
tributes essential influences to the design, construction, deployment and evolution of

the system as a whole” [7].

In terms of distributed control system, the software components of a software-
intensive system deeply interact with non-software components of the physical world,
which is the environment within which the system operates. Moreover, in “modeling
(and analyzing) a SIS (Software-Intensive Systems), the central role of the environ-
ment constitutes the main concern of the software engineer” [8, p.1]. The majority

of software-intensive systems are embedded [§].

5

2.1.2 Embedded Systems

“An embedded system encompasses the CPU as well as many input/output resources
such as memory hierarchy, and a variety of interfaces that enable the system to mea-
sure, manipulate, and otherwise interact with the external environment” [9]. What
matters most for the correctness of an embedded system is that the parameters or
set of attributes in the model of the embedded system represent the physical sys-
tem. The model must maintain accurate correspondence with the physical system.
The parameters often represent real-world quantities such as location, orientation,
velocity, acceleration, temperature, pressure, signal strength and available amount of

consumables.

ACID (Atomicity, Consistency, Isolation and Durability) properties may interfere
with real-time embedded systems, such as SCADA [10]. Atomicity is often referred to
as "all or nothing” semantics, and implies that any values modified while attempting
the transaction be rolled back to their previous values if the transaction fails to com-
plete. The consistency property means that a transaction must transform a database
from one consistent state to another one. Isolation means that the effect of executing
one transaction must not affect the execution of other transactions. Durability is

defined as the effect of the transaction will persist and the transaction will not be
rolled back.

The real-world quantities such as pressure, temperature, acceleration can only be
known inexactly and typically may not be constant. In real time systems it may be
essential that the values and data structures internal to the computer correspond to
the value of the external quantities, which are outside the control of the computer
system. Some may change discontinuously; however, if they are continuous, they may
be predictable only over brief intervals and even then only with limited accuracy.
Many models need to be calibrated with measurements that are not part of the
operational system. By definition, all models are simplifications. They are incomplete
and, for computational reasons, often are at best approximations that fail to predict

unanticipated behavior [10][11][12].

Embedded systems have sensors and actuators. Sensors enable the embedded sys-

tem to be aware of conditions in the external world and, in particular, changes in

7

those conditions. Actuators enable the embedded system to attempt to affect con-
ditions in the external world. Both are fallible; sensors sometimes lie and actuators
sometimes are ineffectual - both can fail intermittently or permanently and, of course,
situations can arise which are ambiguous and can only be resolved by sensors and
actuators included in the design. Redundancy is a key consideration in establishing
the embedded system’s awareness of the physical system with which it interacts, re-
solving ambiguity and indicating equipment failure. Because the physical system acts
under the influence of external environment change than just the actuators controlled
by the embedded system, and because the effect of actuators may not be what was

intended, sensors must monitor actuator effects.

In embedded systems, the integrity of computations internal to the embedded sys-
tem (the objective of ACID properties) is secondary to ensuring sufficiently accurate
correspondence between the model and the external world [13]. Basically, atomic-
ity interferes with ensuring sufficiently accurate correspondence between the model
and the external world because of the all-or-nothing criterion of atomicity. The “or
nothing” choice may not be a legitimate option. The passage of time since the initial
attempt that was initiated (passage of external “real” time has certainly happened)
plus any additional changes in values of the external world which may have hap-
pened, meaning that no computation based on the original values can produce the
results that should be expected given the external values that are current now. The
changes occur during the failed attempt is that operation of sensors and actuators,
and even the computer itself, uses up consumable resources such as fuel or battery
charge. In the sense that the original values cannot produce the expected results, the
“or nothing” choice is not legitimate. The nothing choice is inappropriate if any such

attributes are relevant to the state. The basic argument of atomicity is invalid.

Consistency means only valid data is accepted and retained. However, any con-
straint underlying a validity of data rule is either an assumption or an intention - and
(subject to the unreliability of sensors) observed data is what it is. If the observed
data does not satisfy the constraint, it is the rule that has failed, not the data. Mov-
ing on to isolation, it is really a property intended to limit what can be performed
concurrently. However, in the external world things naturally occur concurrently, and

may not be independent. For example, the aforementioned consumable resources can

8

result in interactions between apparently independent operations. The transactions
that are normally regarded as isolated, and treated by the software, may not actually
be subtle interactions. Consumable resources are an example of such a subtle inter-
action that is often ignored [13]. The exhaustion of a particular consumable resource
can prevent the use of a sensor, actuator, or the computer itself. Finally durability is
a property intended to ensure computer-initiated updates do not get lost. However,
because the external world is affected by more than just computer-initiated updates,

there is no way to ensure that[13].

Embedded systems are indeed typically dedicated, but not in terms of functional-
ity. They are dedicated in that the hardware, including sensors and actuators, is only
capable of maintaining an accurate correspondence with a particular class of system

in the physical world [14].

2.1.3 Real Time Systems

Real time is a time as measured in the context of the computer system’s external
environment, not within the context of the program. Time is critical in real time
systems. According to Stankovic et al., “A real time system is a system whose
correctness depends not only on the logical results of a computation, but also on
the time at which the results are produced” [15]. Many, but not all, real time systems
are also embedded systems. Many, but not all, embedded systems are also real time

systems.

Real-time systems are commonly characterized as being driven by deadlines on
task execution times [16]. However, this is an inadequate and misleading over sim-
plification notation. There are systems that have no specific deadlines, but for which
jitter, the RMS (Root Mean Square) variation from regularity of a repeating event
that should be precisely periodic is the issue in real time systems. Synchronization
of independent signals is another example of real-time problems that may not in-
volve deadlines. Intercepts represent a class of real-time systems where too early is as
bad as too late: deadlines alone are inadequate. Moreover, intercepts typically have
no rigid deadlines because accurate directions, locations, velocities and accelerations

at precisely known times, together with the ability to schedule actions to occur at

9

specific times, may permit planning the interrupt to occur at almost arbitrary subse-
quent times. Real time can be intrinsic because the validity of external data expires
after a well-defined interval, and should not be used in further computation. These
cited examples illustrate only a few ways in which real time is intrinsic and essential
[16, 17].

2.1.4 Distributed Control Systems

A distributed computing system (DCS) is a collection of autonomous computers com-
municating with each other to achieve a common goal. A distributed control system
is used to gather or acquire data from various distributed processes and sends com-
mands (controls) to these processes. The distributed control system is regarded as
a device that issues all commands, gathers all data, stores some information, passes
other information on to associated systems, and interfaces with the people who op-
erate the process. A DCS is used to control the functioning of industrial processes
like environmental control systems, traffic signals, water management systems, and

oil refining plants [16-18].

2.2 Literature Survey

2.2.1 Exception

Goodenough(3, p.684] states that, “In essence, exceptions permit the user of an oper-
ation to extend an operation’s domain (the set of inputs for which effects are defined)
or its range (the effects obtained when certain inputs are processed). Exceptions
permit a user to tailor an operation’s results or effects to his particular purpose in
using the operation. In short, exceptions serve to generalize operations, making them
usable in a wider variety of contexts than would otherwise be the case” [3]. However
an exception is totally arbitrary as Goodenough pointed out, exception handling can
extend that narrow definition’s range and domain of whatever the designer chose as
the normal operation to yield a broader definition, that broader definition too is still
arbitrary as to how broad it is. Choosing a narrow definition for an operation may
make that operation simpler to understand or may make the implementation of that

narrowly defined operation more efficient.

10

Van Ellen and Hasselbring [2] states common guidelines: “A common recommen-
dation is to use exceptions only for specification violations, to declare them explicitly
within the interface, and redeclare them within the interface of the caller if they have
not been handled, and to adjust their abstraction to the current interface abstraction”
[2].

In hardware design, there is a distinction between interrupts and exceptions. Both
occur during the execution of a program and disrupt the normal flow of the pro-
gram’s instructions. However, because exceptions are perceived as being triggered by
the instructions being executed whereas interrupts result from external events, most
designers of hardware processors have chosen to distinguish between interrupts and
exceptions. Interrupts must be serviced soon, but handling can be deferred until it is
convenient, a behavior referred to as “masking” the interrupt.

On the other hand, in hardware exceptions (for instance page fault, divide by zero,
bad address, illegal instructions) cannot be masked because subsequent instructions
(or subsequent instructions within the same process or thread, in a multi-process or
multi-thread environment) may depend on the results of the instruction triggering the
exception, so no such subsequent instructions will be executed until the exception has
been handled. Curiously, general purpose programming languages do not seem to have
inherent support to mask or prioritize exceptions, although parts of the mechanism
could and possibly should be deferred, such as recovering resources which are no

longer needed.

2.2.2 Extended Exception - Contingencies Handling

The idea of contingency handling, rather than “errors” or “exceptions” is quite con-
sistent with what is needed for real-time and embedded systems. The best way to
handle real-time and contingency situations calls for forward recovery, i.e., resump-
tion, rather than roll-back or termination. The main focus of Van Ellen[2] is on
single-threaded applications. Van Ellen claims that it is not easy to declare contin-
gencies at development time and handle them without specification violation. It is
true that contingencies cannot completely be determined in specifications but they
can be handled to some extent in the specification level.

The main drawback is that contingencies disclose implementation details, as there

11

is no abstraction. Van Ellen and Hasselbring have attempted to handle contingencies
in a single thread; a top-down approach is used to handle contingencies and excep-
tions, and the “continue” keyword is used for resumption [2, 19]. There should be
a method or structure to handle contingencies at a specification level, which is why
contingencies descend from checked exception whereas errors or faults descend from
unchecked exceptions.

Generally, every system has some constraints; thus, different types of contingencies
can occur in a system. There should be the same structure to handle contingencies as
with exceptions or errors. It is a flawed idea to ignore the possibility that an attempt
to handle contingencies in a system and looked after when they actually occur in a
system.

The termination model or the resumption model assumes that there have been
some instructions from the normal flow of control executed before the exception was
raised and the effect of these instructions must be corrected in the exception han-
dling. Avoiding the contingencies can also lead to degradation of system performance,
inconsistency, loss of time and cost effectiveness and maybe even loss of human life

4, 5].

2.2.3 Exception Types

Goodenough’s[3] seminal paper on exception handling observed that exceptions per-
mit the user to extend the operation’s domain or the range of a program. Exceptions
are gencralized and are also used to serve different contexts of operations. Excep-
tion handlers are used to deal with runtime errors or the failure of an operation.
Goodenough describes two types of exceptions - range failure and domain failure -
and states that classification is an opportunity to augment the result with additional

information that might be ignored in the normal case.

Range Exception

Range is the set of values possibly produced by an operation, domain is the set of
values possibly accepted as input to an operation. Range exception deals with failure
of output assertions for specific input or for any input. A range exception occurs

when some output assertion is not satisfied. The author has given the example of a

12

parity error, such as when we are trying to read a record from a tape and a parity bit
is not set. If effort is expended to deal with such an exception but the exception is
not handled, then the expended work and time effort used to rectify that exception
would be a type of range failure. The author describes the many ways to deal with

such failures:

e The caller method has the ability to abort the operation, or the operation can
also trigger an event if an exception occurs or aborts the functionality and

undoes all the dependent operations.

e The caller method has the ability to terminate the operation and return some
partial results so that the programmer can change the normal control flow of
the program or deal with range failures to fix up the values of a variable based

on the obtained partial results.

e The program has the ability to follow termination as well as resumption. Some-
times it is necessary to follow some process on the basis of partial results that
are based on resumed values. For example, if a door jams before it is fully
closed (open), it probably has to be opened (closed) again. To do so, however,
requires knowing how far it got before jamming. Unless the door has sensors
to measure how far it got, the only way to know this may be from the local
variables recording the actuator activities. Yet for the termination model with
all or nothing semantics, these are exactly the kind of partial results that are

discarded in order to restore the initial values.

Domain Exception

“Domain exception is a somewhat different type of exception. It occurs when an
operation’s inputs fail to pass certain tests of acceptability” [3, p.2]. Domain exception
deals with the limitation of an operation to accept input that could be valid if the
operation were defined on a broader domain.

A simple example involves saving the results in an integer data type of an arith-
metic operation, when the operand is divided by zero and the output is a “divides
by zero” error. Another example of domain failure involves saving a value of a long

variable to an array of integers, but it will not accept the value due to limited bytes

13

are allocated to different data types. The caller function must give the appropriate
information about the failure to deal with domain failure so that the programmer
can perform pre-checks or modify the set of input assertions to deal with domain

exceptions.

Results Classification

Goodenough|3] states that “Result classification is a type of exception that leads nat-
urally to the use of status variables or return codes (i.e. output parameters whose
value designates the type of result produced); there is no need to resume the opera-
tion because a valid result has been produced already”[3]. Result classification is a
type of exception that mainly occurs due to a status variable. Result classification
augments the result by providing a classification for it, but the result itself is needed,
so termination throwing away the result is wasteful, requiring redundant computation

to recompute the result.

Monitoring

Goodenough(3] states that monitoring is the exception condition used to notify an
invoker when some condition occurs. For example, we can perform a set of operations
recursively by setting a variable timer to check the level of water in a tank is not
equal to the expected limit value. If an exception occurs within the process, we can
retain/resume the actual values of the other dependent variables from the recursive
process. Thus, for instance, a binary search tree, we can get intermediate results from

the recursion function without an unwinding process.

In short, the author described that exceptions and exceptions handling are in-
terleaving actions that do not simply deal with errors; rather, these are levels of
abstractions. If a program is not producing the expected results, we can change the
normal control of program based on another set of instructions defined in an excep-
tion handler block, and make the decision based on the intermediate results, thereby

saving the effort of partial computation using resumption.

14

2.2.4 Exception Handling Models

Goodenough|3] makes the case that there are indeed situations where the appropriate
action for an exception handler is to give up on the computation that was being
attempted and try something else. However, there are also situations where the
appropriate action for the exception handler is to make changes in the environment
and then resume the computation. The former is called the termination model, and

the latter is called the resumption model.

Goodenough also argues that the exception handler needs to function in the con-
text of the invoker of the operation experiencing the exception in order to have a
broader perspective of what is the appropriate response to the exception. Meanwhile,
the handler typically needs access to the state of execution at the point where the
exception occurred, and especially to partial results within the operator experiencing

the exception, in order to make appropriate repairs[3, 20, 21].

Termination Model

At the programming level, Java and other programming languages follow the termi-
nation model. Java provides strong features to handle exceptions with the help of
try, catch, throw and finally blocks. The termination model suggests that when an
exception occurs in a system, the exception handler should give up on the compu-
tation being attempted and try something else. This implies the previous state was

the correct state. Throw provokes an exception in some other process or some higher
block level.

In Java, the control is transfered to the catch block or finally if there is abrupt
completion of expression. “The code that caused the exception is never resumed”
[22]. But we redirect the control to some other instructions to retain the normal flow
of program [22]. It is useful in real-time and distributed system to retain the value
of a variable because there may be a chance that we can get the expected value of
a variable that is changing periodically due to change in environmental situation. If
it follows all or nothing semantics, these are exactly the kind of partial results that
are discarded in order to restore the initial values. This is known as the rollback or

termination model[6, 23].

15

Resumption Model

Resumption means disregarding past history, and moving forward to a state which is
known to be safe and from which processing can continue. While this safe state de-
pends on current values, it does not need to be any state previously experienced[24].
Let us take as an example a transportation system; if a traffic signal cannot function
properly, we cannot cause all the traffic to return to their earlier locations. An auto-
mated system should take the real runtime values from its log and make a decision
to reach a correct state of all variables. This is known as forward recovery or the
resumption model. The resumption model is just an unanticipated procedure invoca-
tion, with access to all inherited values at the point where the exception was raised,

but with control flow continuing as normal when the exception handler returns.

Coordinated Atomic Action Model

The essence of this model is that it rolls back to a previous valid state, upon ex-
ception as if the attempted operations had never been tried. Randell et al.[6] used
the concept atomic action for handling exception. However, when the external en-
vironment has changed, no previous state may be valid, as the world has moved on
previous consistency properties no longer hold[6]. The simplest termination model
is just an unanticipated transfer to an in scope label, changing no values, and pos-
sibly losing dynamically allocated storage and other resources. Termination models,
such as Java’s try-catch mechanism or Coordinated Atomic Actions (CAA) attempt
to avert resource loss and provide predictable execution state for and post exception
handling by copying on entry all values that might change within the exception block,
and restoring those entry values if the exception is raised. This saving and restora-
tion can clearly be unbound time consuming if we consider dynamic data structures.
External state, even just external storage, cannot generally be restored, so CAA are

restricted not to have external effects.

2.2.5 Overview of Other Related Work

Regrettably, many programming languages that have been introduced since Good-

enough’s paper, from Clu (introduced in 1975) to Java (introduced in 1995) have

