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Table 5.4 2-way ANOVA of the effect of algal species (Codium fragile: C, and Saccharina 
latissima: S) and elapsed time (0, 4, 8, 12, and 16 wk) on the abundance (individuals bag-1) of 
taxa identified by SIMPER as contributing most to differences in overall macrofaunal community 
composition between degrading algal samples. Tukey’s pairwise comparisons were made where 
time or the interaction between algal species and time were significant. Lines connect non-
significant subsets of treatment means: horizontal lines compare time intervals; vertical lines 
compare algal species when there is a significant interaction. 
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Figure 5.4 Abundances of the taxa (Capitellidae, Ensis directus, and Gammaridae (individuals 

bag-1), as identified by SIMPER, that contributed most to differences in macrofaunal 
community composition on Saccharina latissima and Codium fragile after 4, 8, 12, and 16 
wk of degradation, and that varied significantly over time or between algal species. Data are 
mean + 1 standard deviation (n = 3). 
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associated macrofauna.  Live tissue from S. latissima had a higher C/N ratio than C. 

fragile, and therefore a relatively low nutritional value for most consumers (Hessen 1992, 

Norderhaug et al. 2003). We observed a marked decrease in C/N ratio of degrading S. 

latissima, which generally is attributed to microbial colonization and transformation 

(Mann 1988, Duggins & Eckman 1997, Norderhaug et al. 2003). C/N ratio was much 

lower in C. fragile than in S. latissima, and decreased minimally during degradation. This 

is consistent with previous work showing a higher protein content and lower C/N of C. 

fragile relative to other brown algal species, indicating higher nutritional quality (Cruz-

Rivera & Hay 2001, Zhang et al. 2010). 

Degradation did not affect δ13C signatures of Saccharina latissima and Codium 

fragile. Stephenson et al. (1986) also found no change in δ13C of S. latissima during 

degradation, and minimal depletion in δ13C (~1‰) has been reported in other macroalgal 

species, including the kelp Ecklonia radiata (Fenton & Ritz 1988, Hill & McQuaid 

2009). δ15N signatures of S. latissima and C. fragile became slightly enriched during 

degradation, likely because of microbial assimilation of δ15N-enriched dissolved 

inorganic nitrogen (DIN) (Macko & Estep 1984). The magnitude and direction of 

changes in δ15N during degradation vary across primary producer groups (Caraco et al. 

1998, Hill & McQuaid 2009) in response to differences in microbial community 

composition, the C/N ratio of the organic substrate, and spatial variation in the δ15N 

composition of DIN (Macko & Estep 1984, Lehman et al. 2002). Changes in δ15N during 

degradation may obscure interpretation of the trophic position of consumers in stable 

isotope analysis of benthic food webs. For example, δ13C values in sea urchins collected 

in barrens up to 240 m from kelp beds indicate that drift kelp is an important food source 

(Kelly et al. in press). However these sea urchins have enriched δ15N values relative to 

sea urchins in kelp beds, suggesting either a higher trophic position (i.e. consumption of 

some animal material) or greater consumption of degraded kelp. 

Temperature influences microbial activity (Tang et al. 2006, Piontek et al. 2009) and 

degradation rate of algal detritus (Rothausler et al. 2009). The degradation rates of 

Saccharina latissima and Codium fragile may have fluctuated with daily temperatures, 

which varied by 8 to 15°C within each of the first four sampling intervals. However, 

mean temperature was relatively constant (10–11°C) across the 4-wk intervals, and this 
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may have obscured shorter-term variation in degradation rate related to temperature 

during the first 12 weeks of the experiment.  

Our experiment shows that detrital deposits of Codium fragile and Saccharina 

latissima in sedimentary habitats are rapidly colonized by a variety of macrofauna. This 

is consistent with previous studies suggesting that detrital material is a significant food 

subsidy to areas offshore of kelp beds (or forests) worldwide, and an important trophic 

linkage between high and low productivity habitats (McLachlan 1985, Vetter & Dayton 

1999, Rodriguez 2003, Britton-Simmons et al. 2009, Krumhansl & Scheibling 2011a). 

Thalli of C. fragile degraded more slowly than those of S. latissima and accumulated a 

macrofaunal assemblage that was less abundant but more diverse than the assemblage on 

kelp. The diversity of associated macrofauna differed most between algal species during 

the first half of the experiment, when capitellid polychaetes were highly abundant on S. 

latissima, but rare or absent on C. fragile, resulting in a marked difference in evenness. 

Capitellids are highly opportunistic and non-selective feeders, and are commonly 

associated with food items with a high C/N ratio (Fauchald & Jumars 1979; Mamouridis 

et al. 2011). The abundance of capitellids on S. latissima decreased at 12 and 16 weeks, 

coinciding with increases in diversity and evenness to similar levels as C. fragile, and 

increasing similarity of macrofaunal assemblages between algal species. These results 

concur with previous studies indicating that changes in the detrital macrofaunal 

assemblage are tightly linked to changes in the C/N ratio associated with degradation 

(Norderhaug et al. 2003, Cebrian & Lartigue 2004, Van Alstyne et al. 2009). Gammarid 

amphipods also appear to be capable of consuming food with a lower nutritional quality. 

Amphipods colonized both algal species in higher abundance during the early stages of 

degradation, suggesting they may be important early colonizers and facilitators of 

subsequent detrital breakdown. In contrast, the razor clam Ensis directus emerged on 

both algal species as degradation progressed, possibly in response to increased quantities 

of degraded algal particles, and was abundant on C. fragile at 16 weeks.  

Live and attached Codium fragile supports a more diverse community of epifauna and 

epiphytes than native kelps (Schmidt & Scheibling 2006, 2007) and other species of 

brown, red, and green algae (Lutz et al. 2010, Jones & Thornber 2010). This has been 

attributed to the highly branched morphology of C. fragile, which may provide more 
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shelter from predators, greater surface area for attachment (Schmidt & Scheibling 2006, 

Drouin et al. 2011), and higher sedimentation rates (Schmidt & Scheibling 2007) 

compared to native species. Structural complexity also may influence detrital 

macrofaunal assemblages immediately following deposition of intact thalli, but likely 

decreases in importance relative to nutritional quality and palatability as thallus structure 

breaks down. Differences in macrofaunal composition between attached thalli of C. 

fragile and S. latissima in Nova Scotia are explained by lower abundances of gastropods 

and asteroids, and higher abundances of amphipods, harpacticoid copepods, and the 

nudibranch Placida dendritica on C. fragile (Schmidt & Scheibling 2006). These 

differences are not consistent with those that characterize degrading thalli of these 

species, indicating that different factors regulate the species-specific colonization patterns 

of live and detrital macroalgae. 

In Nova Scotia, rates of fragmentation and dislodgement of C. fragile are greatest in 

fall and early winter resulting in increased deposition of this detrital material at these 

times (Begin & Scheibling 2003, D’Amours & Scheibling 2007). However, the timing of 

fragmentation and attendant production of detritus by stands of C. fragile varies among 

regions and occurs throughout the year in some areas (Trowbridge 1996, 1998). Thalli of 

C. fragile used for this experiment were collected during the seasonal minimum in DMSP 

production coincident with high water temperatures (Lyons et al. 2010). In regions were 

fragmentation occurs during periods of low temperature in winter and spring (Trowbridge 

1993, Fralick & Matheison 1973), the DMSP content of detrital fragments is likely 

higher, which may result in a greater deterrent effect on potential consumers and slower 

degradation rate than observed in our study.    

Adult (> 20 mm test diameter) sea urchins (Strongylocentrotus droebachiensis) were 

absent on the sandy bottom during our experiment. Juvenile sea urchins were common in 

the adjacent kelp bed (personal observations), and small juveniles (<10 mm) occasionally 

were found on Saccharina latissima and Codium fragile throughout the 16-week 

experiment. Where large sea urchins are abundant, they can consume drift algal deposits 

before substantial degradation occurs (Lyons & Scheibling 2008, Britton-Simmons et al. 

2009). Consumption by sea urchins will greatly accelerate the degradation process as 

large fragments of algae are reduced to small (~2.4 mm diameter) fecal particles 
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(Sauchyn & Scheibiling 2009a). These feces are of higher nutritional quality (lower C/N 

ratio) than fresh algal material (Sauchyn & Scheibiling 2009b), and degrade more rapidly 

than fresh kelp (Sauchyn & Scheibling 2009b). Our cages excluded other large 

detritivores and predators of macrofauna, such as lobsters and crabs, which also may 

contribute to the degradation of algal thalli and influence the structure of associated 

macrofaunal assemblages. 

Our findings are consistent with previous studies that have documented shifts in 

macrofaunal assemblages on mudflats in response to changing detrital resources 

following algal species invasions (Bishop et al. 2010, Taylor et al. 2011), indicating that 

the effects of algal invaders can extend beyond the introduced habitat to those linked via 

the transfer of detrital material. Given the trophic importance of detrital pathways 

(Cebrian 1999, Cebrian & Lartigue 2004), these studies demonstrate that algal species 

introductions can have more far-reaching impacts than previously considered. 
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CHAPTER 6  
PRODUCTION AND FATE OF KELP 
DETRITUS 

 
 
6.1 INTRODUCTION  

Kelp species have a broad geographic distribution and are a major source of primary 

production and biogenic habitat in coastal zones of temperate and polar oceans 

worldwide (Dayton 1985a, Steneck et al. 2002). Kelp productivity is tightly linked to 

seawater nutrient concentrations (Chapman & Lindley 1980, Gagné et al. 1982), which 

are regulated by oceanographic processes and anthropogenic activities. Kelps support 

high secondary productivity in rich and diverse communities of invertebrates and fish, 

including many commercially important species such as abalone, lobster, and sea urchins. 

The sensitivity of kelps to environmental change and increasing fishing pressure are 

altering kelp productivity and biomass, which can have important follow-on effects on 

secondary production and ecosystem function both within kelp beds or forests (Dayton et 

al. 1992, Steneck et al. 2002) and in adjacent communities that receive kelp detritus. 

There is growing recognition that the exchange of detritus is an important form of 

connectivity between distinct habitats that can influence spatial patterns of primary and 

secondary productivity (Polis et al. 1997, Loreau et al. 2003, Marczak et al. 2007), and 

that a significant proportion of energy produced in macrophyte communities enters 

detrital pathways (Mann 1988, Cebrian 1999). Kelps continuously produce detritus, 

which is consumed or decomposed within kelp beds or forests, or exported. Various 

studies have shown that kelp detritus is an important resource in adjacent communities 

(Duggins et al. 1989, Bustamante et al. 1995, Dugan et al. 2003, Vanderklift & Wernberg 

2008), however a comprehensive understanding of the nature and extent of this subsidy is 

lacking. Although the production and fate of detritus have been reviewed for other marine 

macrophyte communities (e.g. seagrass beds, Heck et al. 2008; mangrove forests, 

Kristensen et al. 2008) reviews of kelp ecosystems provide only a cursory description of 

detrital pathways (Dayton 1985a, Steneck et al. 2002). Other reviews have considered 
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detrital production and processing in terrestrial and aquatic ecosystems more broadly, 

without specific emphasis on kelp communities (Mann 1988, Cebrian & Lartigue 2004). 

The impact of anthropogenic pressures on kelp detrital production and export has not 

been considered.  

In this review, I summarize estimates of detrital production from kelp populations 

worldwide for comparison with other macrophyte communities that contribute detritus to 

coastal habitats. I identify environmental and biological factors that regulate the rate of 

kelp detrital production and degradation, and examine the consequences of detrital kelp 

subsidies for community organization and productivity in a variety of marine habitats, 

including sandy beaches and rocky intertidal shores, rocky and sedimentary subtidal 

areas, and the deep-sea. I then frame this body of empirical work in the theoretical 

context of spatial ecology to explore the relationship between local kelp productivity and 

regional productivity. Finally, I discuss anthropogenic impacts to kelp ecosystems that 

are causing declines in kelp biomass, and highlight the broader implications of these 

declines to communities subsidized by kelp detritus.  

 

6.2 PRODUCTION OF KELP DETRITUS  

There are three morphological groupings of kelp species: canopy, stipate, and 

prostrate (Dayton 1985a, Steneck et al. 2002). All kelps are attached to the substrate by a 

root-like structure known as a holdfast. Canopy kelps have flexible stems or stipes that 

are supported by gas-filled bladders called pneumatocysts. The largest of the canopy 

kelps, the genus Macrocystis, has a primary stipe that gives rise to multiple secondary 

stipes, each with lateral blades along their extent, referred to as fronds. Other canopy 

kelps, such as the genus Nereocystis, have a single stipe supported by one large 

pneumatocyst, from which emanate multiple blades. Stipate kelps typically are smaller 

and have rigid stipes supporting a single blade, while prostrate kelps are the smallest and 

have blades that lay directly on the substrate. Stipate and prostrate kelps include species 

of the genera Laminaria, Saccharina, Ecklonia, Lessonia, and Eisenia. Populations of 

canopy kelps form so-called forests, while prostrate and stipate kelps form beds (Steneck 

et al. 2002).  
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Kelp detritus ranges in size from small particles to whole thalli. Whole thalli are lost 

through breakage at the base of the primary stipe or when holdfasts become detached 

from the substratum. Frond loss is the result of breakage of the secondary stipe for 

Macrocystis spp.; individual blades also can detach from secondary stipes with multiple 

blades. Breakage at the junction of stipe and blade for stipate and prostrate kelps is 

another form of blade loss. Loss of whole thalli and blade breakage below the basal 

meristem prevent re-growth of an individual, and are considered mortality. The distal 

ends of blades can erode rapidly or gradually, producing detrital fragments that range 

from small particulates to large sections of blade. Dissolved organic matter is released as 

kelp blades fragment and erode, and is estimated to account for 16–35% of annual energy 

production in kelps (Johnston et al. 1977, Hatcher et al. 1977, Mann et al. 1979, Newell 

et al. 1980). 

Rates of dislodgement (including loss of whole thalli and fronds) and erosion 

(including blade loss and breakage) have been measured (as dry mass or C) for kelp 

populations spanning the temperate range of kelps worldwide (Table 6.1, Figure 6.1). 

Measures of variability associated with these estimates are absent or inconsistent across 

measures, and therefore not included. Although the range of kelps extends into the high 

arctic, erosion rate has only been recorded for a single population of Laminaria 

solidungula in the Beaufort Sea, Alaska, USA (Dunton 1984), which was the lowest of 

all kelp populations studied (26 g m-2 y-1, 8 g C m-2 y-1). Erosion rate spans three orders 

of magnitude globally, with the highest rate measured for Lessonia spp. in Chile (11,071 

g m-2 y-1, 2,657 g C m-2 y-1), reflecting a high blade density of these species (2369–3019 

blades m-2) (Tala & Edding 2007). Erosion rates of Ecklonia spp. were moderately high 

across all locations, and erosion of Laminaria spp., Saccharina spp., and Macrocystis 

pyrifera were in the mid to low end of the range. Erosion of Saccharina latissima 

(formerly Saccharina longicruris, Laminaria longicruris or L. saccharina; McDevitt & 

Saunders 2010) was an order of magnitude greater in Nova Scotia, Canada than in 

Scotland, indicating high variability among populations of the same species in different 

geographic locations. Erosion rate of a cultured population of Undaria pinnatifida in 

northern Japan was the lowest value recorded of all populations worldwide.  
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Figure 6.1 Global distribution of kelps (green shading) and locations (numbered) where rates of 
kelp production, erosion (orange circles) and dislodgement (blue circles) have been measured 
(Table 6.1). Circle area represents the magnitude of measured rates; overlapping circles indicate 
locations where erosion and dislodgement rates were measured simultaneously. 
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Across all populations, erosion accounted for 17.3 to 111.3% of annual primary 

productivity (Table 6.1). Although erosion rate was highest for Lessonia spp. in Chile, 

the amount of material eroded accounted for less than half (47.3%) of the annual primary 

production. In contrast, Ecklonia cava in southern Japan had the second highest erosion 

rate (2547 g m-2 y-1, 774 g C m-2 y-1) but 91% of biomass produced annually was eroded. 

Annual erosion exceeded production for populations of Laminaria digitata and 

Saccharina latissima in Nova Scotia, indicating that the standing biomass of these 

species decreased over the measurement period.  

Few studies have documented dislodgement rates for kelp populations (Table 6.1). 

Interestingly, measurements from populations of Laminaria digitata and Saccharina 

latissima in two separate locations represented the minimum (Nova Scotia, Canada) and 

maximum (Rhode Island, USA) rates of the range recorded (74–2798 g m-2 y-1, 22–839 g 

C m-2 y-1). Dislodgement accounted for 6.2 to 49.0% of annual productivity, which is 

lower than the range presented for erosion. Only two studies have simultaneously 

measured erosion and dislodgement rates in a single kelp population (Gerard 1976, 

Newell et al. 1982). For Macrocystis pyrifera, dislodgement rate (50% of annual 

production) was an order of magnitude greater than erosion rate (17%) (Gerard 1976). 

The opposite was observed for populations of Laminaria pallida and Ecklonia maxima in 

South Africa, where dislodgement accounted for a small portion of biomass produced 

annually (6%) as compared to erosion (70%). Erosion rate also exceeded dislodgement 

rate in populations of Laminaria digitata and Saccharina latissima in Nova Scotia 

(Chapman 1984, Krumhansl & Scheibling 2011a), and Ecklonia radiata in northern New 

Zealand and Western Australia (Novaczek 1984, Hatcher et al. 1987). The relative 

importance of erosion and dislodgement to detrital production may be related to kelp 

morphology, with larger canopy-forming kelps producing more detritus through 

dislodgement than smaller canopy-forming and prostrate kelps. Spatial and temporal 

variation in physical processes that cause dislodgement also may account for differences 

in the relative importance of this mode of detrital production among kelp populations. 

Erosion is likely to be greater than dislodgement rate in areas less prone to physical 

disturbance, or during periods when disturbance events are less frequent.  
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(Lugo & Snedaker 1975, Lee et al. 1990, Kristensen et al. 2008). The decomposition rate 

and ability of organisms to consume plant and algal material is related to its nutritional 

quality and palatability, specifically to the C/N ratio, % N, content of fibrous material 

(cellulose, lignin), and concentration of secondary metabolites (Mann 1988, Cebrian & 

Lartigue 2004, Hladyz et al. 2009, Krumhansl & Scheibling in press). Based on the C/N 

ratio and % N, kelp generally is more nutritious than salt marsh grass and less nutritious 

than seagrass and mangrove leaves, although these values are highly variable across 

macrophyte species (Figure 6.2). The presence, identity, and concentration of secondary 

metabolites also differ widely among macrophytes, and have varying effects on 

consumers. Lower consumption, assimilation, and degradation rates of vascular plants 

relative to kelps and other macroalgae are likely related to a higher content of fibrous 

material (or lower labile fraction) (Smith & Foreman 1984, Tenore et al. 1984, Mann 

1988, Cebrian 1999, Hladyz et al. 2009). Consumers often prefer kelp and other 

macroalgal detritus to vascular plant detritus (Smit et al. 2006, Doropoulos et al. 2009), 

and more refractory material accumulates in vascular plant than macroalgal communities 

(Cebrian & Lartigue 2004).  

A combination of hydrodynamics, geomorphology, and sediment characteristics 

influences the export and deposition of macrophyte detritus (Kotta et al. 2008, Britton-

Simmons et al. 2012). For example, the direction and distance of detrital transport from 

marshes is highly dependent on freshwater input, wind and tidal flows (Dame & Allen 

1996), and sediment characteristics, such as softness and penetrability, that affect the 

likelihood that detritus is trapped and buried (Kristensen et al. 2008, Montemayor et al. 

2011). Less detritus may be retained in kelp beds and forests relative to seagrass 

meadows, salt marshes, and mangrove forests because kelps grow only on rocky substrata 

in areas with moderate to high wave exposure, where trapping and burial are unlikely. 

Low-energy bays and soft-sediment habitats accumulate kelp detritus at rates that exceed 

local kelp productivity (Bustamante et al. 1995, Bustamante & Branch 1996, Vetter 

1995), indicating that kelp detritus is concentrated in low-energy environments.   
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6.5 DEGRADATION OF KELP DETRITUS  
 

The rate of kelp degradation depends on the chemical and physical characteristics of 

detritus, and the environmental conditions under which degradation is occurring. 

Degradation occurs more rapidly at higher water temperatures (Bedford & Moore 1984, 

Rothausler et al. 2009), and under high flow conditions where mechanical breakdown 

occurs (Tenore et al. 1984, Alkemade & van Rikswijk 1993). Physical processes also 

play a role in regulating the environmental conditions within detrital accumulations. Re-

suspension exposes a greater surface area of detritus to microbial colonization (Stahlberg 

et al. 2006) and increases the concentration of dissolved oxygen (Tenore et al. 1984, 

Kristensen 1994, Okey 1997, Okey 2003). Smaller detrital particles degrade at a faster 

rate than larger fragments because they have a higher surface area relative to their volume 

for microbial colonization (Smith & Foreman 1984). Microbial respiration is reduced 

when algal material is dried onshore, resulting in slower degradation rates compared to 

wet material (Newell et al. 1985).  

Nutritional quality increases throughout the course of kelp degradation (Smith & 

Foreman 1984, Mann 1988, Duggins & Eckman 1997, Norderhaug et al. 2003, 

Krumhansl & Scheibling in press). Microbial colonization and transformation increase 

the % N in kelp tissues, leading to a gradual decrease in the C/N ratio (Mann 1988, 

Duggins & Eckman 1997, Norderhaug et al. 2003, Krumhansl & Scheibling in press). 

Phlorotannins occur in varying concentrations among kelp species and are known to deter 

grazing (Johnson & Mann 1986, Iken et al. 2009), reduce growth in filter feeders by 

decreasing assimilation efficiency (Duggins & Eckman 1997), and deter colonization by 

microbes (Ragan & Golombitza 1986). Phlorotannin concentration decreases rapidly 

during degradation, and the largest increases in nitrogen occur in species that undergo the 

greatest reduction in phlorotannins (Duggins & Eckman 1997). Assimilation efficiency, 

survival and growth of several species of polychaetes, mussels, and amphipods are 

reduced when fed a single diet of fresh kelp, but are enhanced when fed aged kelp 

particles (Cranford & Grant 1990, Duggins & Eckman 1997, Norderhaug et al. 2003). 

Species with different nutritional preferences and physiological tolerances colonize algal 
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material at varying times over the course of degradation in response to changing 

environmental conditions and nutritional quality of the detritus (Bedford & Moore 1984, 

Fauchald & Jumars 1979; Okey 2003, Mamouridis et al. 2011, Krumhansl & Scheibling 

in press).  

 

6.6 EXPORT OF KELP DETRITUS: TRANSPORT MECHANISMS AND 
SINKS 
 

Kelp detritus can settle within kelp beds and forests, where it serves as food for the 

local assemblage of benthic invertebrates (Dunton & Schell 1987, Tutschulte & Connell 

1988, Norderhaug et al. 2003, Schaal et al. 2009), or be advected by waves and currents 

to adjacent or distant habitats. The transfer of resources across habitat boundaries plays a 

central role in shaping ecological patterns and processes (Huxel et al. 2004, Heck et al. 

2008, Lamberti et al. 2010). Resource subsidies influence almost all levels of ecology, 

from behavior (Harrold & Reed 1985, Rodriguez 2003) and species interactions (Spiller 

et al. 2010), to productivity (Bustamante & Branch 1996, Polis & Hurd 1996), food web 

stability (Huxel & McCann 1998, Huxel et al. 2002, Marleau et al. 2010), and population 

dynamics (Bustamante et al. 1995, Barrett et al. 2005). Nutrients and detritus subsidize 

lower trophic levels, while carrion and prey subsidize higher trophic levels. Subsidies 

have a greater effect when they occur at lower trophic levels where species are more 

specialized than consumers at higher trophic levels (Polis & Hurd 1996, Huxel & 

McCann 1998, Marczak et al. 2007). Resource subsidies have the greatest effect when 

productivity or the amount of an equivalent resource is lower in the recipient community 

than in the source community (Polis & Hurd 1996, Marczak et al. 2007). Subsidies can be 

reciprocal (Nakano & Murikami 2001); for example, when imported kelp detritus is 

processed and nutrients are returned to the source (Gravel et al. 2010a).  

The proportion of detritus that is exported from kelp beds and forests is unknown, but 

the consequences of detrital subsidies for recipient populations and communities have 

been documented in a variety of habitats. Kelp detritus is transported alongshore and 

tends to accumulate in low-energy depositional areas such as sandy beaches, embayments  
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Figure 6.3 Detrital transport mechanisms in coastal systems. Arrows indicate the direction and 
relative magnitude (as line thickness) of transport. 
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and deep basins, resulting in patchy deposits of high biomass in intertidal or subtidal 

habitats (Figure 6.3) (Gerard 1976, Bustamante et al. 1995, Britton-Simmons et al. 2012). 

It also can be dispersed far offshore by bottom currents, or as rafts of floating thalli 

carried by surface currents and winds, to provide a subsidy for communities in the deep 

sea. 

6.6.1  Onshore Transport and Deposition  

6.6.1.1 Sandy Beaches 
 

Kelp detritus plays a significant role in shaping community dynamics on sandy 

beaches, and is perhaps the most well known example of kelp detrital subsidy to an 

adjacent community. Sandy beaches have very low local primary productivity (0–50 g C 

m-2 y-1; Brown 1964, Munro et al. 1978, Griffiths et al. 1983, Colombini & Chelazzi 

2003), largely because sandy sediments are highly mobile and thus unsuitable for 

attachment by macrophytes or formation of benthic diatom assemblages (Griffiths et al. 

1983). Imported detritus is the primary food source for resident fauna and microbes. 

Rates of kelp deposition (as wet mass) range from 1200 to 2200 kg m-1 y-1 for Laminaria  

pallida and Ecklonia maxima in South Africa (Koop & Field 1980, Stenton-Dozey & 

Griffiths 1983), from 450 to 548 kg m-1 y-1 for Macrocystis pyrifera in California, USA 

(Hayes 1974, Dugan et al. 2011), and from 180 to 1450 kg m-1 y-1 for Ecklonia radiata in 

Western Australia (Hansen 1984). Deposition of kelp detritus varies by season in 

response to changing water temperatures and wave conditions (Stenton-Dozey & 

Griffiths 1983, Koop & Field 1980).  

Detrital processing by microbes and meio- and macrofauna on sandy beaches plays a 

key role in coastal nutrient cycling  (Pearse et al. 1942, Dugan et al. 2011). Bacteria and 

protozoans rapidly colonize detrital kelp deposits on beaches, causing surficial lesions 

and cell lysis that release dissolved and particulate organic matter into the sediments 

(Figure 6.4) (Koop et al. 1982). Carbon in this leachate is converted to microbial biomass 

and remineralized (Koop et al. 1982), directly absorbed by meiofauna (Koop & Griffiths 

1982, McLachlan 1985), or returned to the sea via tidal forcing or rainwater run-off. 

Nitrogen in the leachate is rapidly remineralized and nitrified, and accumulated as  
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Figure 6.4 Energy flow associated with faunal and microbial processing of kelp detritus in sandy 
beach ecosystems. 
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dissolved inorganic nitrogen (DIN) in sediments beneath kelp deposits (Dugan et al. 

2011). Koop et al. (1982) found that very little DIN is returned to the sea following 

remineralization in beach sands in South Africa. In contrast, Dugan et al. (2011) showed 

that DIN in surf-zone water in California was positively correlated with DIN in intertidal 

sediments, suggesting export from beach sediments. Beaches can act as sources or sinks 

of nitrogen depending on the rate of erosion of beach sediments (Colombini & Chelazzi  

2003, Dugan et al. 2011). Dissolved organic matter (DOM) may also return to the sea 

before bacterial processing (Dugan et al. 2011).  

Deposits of kelp detritus on beaches also are readily colonized by meio- and 

macrofauna (Hayes 1974, Koop et al. 1982, Griffiths et al. 1983, McLachlan 1985, Inglis 

1989, Dugan et al. 2003). Species distributions are tightly linked to kelp deposition, with 

highest microbial and faunal abundance, biomass, and diversity occurring in the vicinity 

of detritus (Griffiths et al. 1983, McLachlan 1985, Dugan et al. 2003). Amphipods, 

isopods, dipterans, and coleopterans are the predominant macrofaunal consumers of kelp 

detritus (Griffiths & Stenton-Dozey 1981, Lavoie 1985, McLachlan 1985, Griffiths et al. 

1983, Dugan et al. 2003). Their grazing activity releases particulates, leachates, and fecal 

pellets (Figure 6.4), which stimulates the growth of bacteria and infaunal invertebrates, 

such as bivalves, nematodes, and oligochaetes (Newell et al. 1982, Griffiths et al. 1983, 

McLachlan 1985). Meiofauna in sediments directly absorb DOM and consume bacteria 

associated with kelp leachate and fecal pellets (Griffiths et al. 1983). Invertebrates can 

consume up to 75% of the biomass of detrital kelp in some beach systems (Griffiths & 

Stenton-Dozey 1981, Griffiths et al. 1983, Lastra et al. 2008), or as little as 5–9% in 

others (Koop et al. 1982, Inglis 1989), indicating large variability in the importance of 

these consumers in detrital processing. Macrofauna also can slow the process of 

degradation in some systems by preferentially consuming highly degraded material, 

which retards microbial colonization and breakdown (Bedford & Moore 1984). The 

extent of microbial and meio- and macrofaunal colonization and processing of detritus 

are determined by the residence time of detrital deposits, which in turn is regulated by 

physical factors, such as beach morphology, weather, and tides, and characteristics of the 

detrital material (e.g. buoyancy) (Orr et al. 2005). Long-term deposition of kelp detritus 

may have detrimental effects on species distribution and abundance on beaches by 
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creating areas of anoxia, low pH, or high hydrogen sulfide concentration (McLachlan 

1985, Colombini & Chelazzi 2003), or by providing a physical barrier to burrowing 

(Soares et al. 1996).  

Kelp deposition on beaches and the associated accumulation of meio- and 

macrofauna attract predators such as birds, carnivorous ispopods and coleopterans, 

crustaceans, and arachnids (Griffiths et al. 1983, Bradley & Bradley 1993, Anderson & 

Polis 1998, Dugan et al. 2003, Mellbrand et al. 2011). Consumption of kelp-associated 

fauna can account for a significant portion of the diets of these predators (Griffiths et al. 

1983, Mellbrand et al. 2011), which then act as vectors for the landward transport of 

marine-derived material (Anderson & Polis 1998, Mellbrand et al. 2011). In particular, 

islands with low terrestrial relative to marine productivity are heavily influenced by the 

input of marine detritus (Polis & Hurd 1996, Anderson & Polis 1998).  

6.6.1.2 Rocky Intertidal Habitats 
 

A strong linkage also can occur between subtidal kelp beds or forests and adjacent 

rocky intertidal communities through the transfer of detritus. While detrital deposition 

tends to be low in rocky intertidal areas with high wave exposure, deposition on semi-

exposed and sheltered rocky shores can be substantial (Rodriguez 2003, Bustamante & 

Branch 1996, Bustamante et al. 1995). For example, Bustamante et al. (1995) showed 

that, on average, 960 g m-2 d-1 (wet mass) was deposited in a sheltered rocky bay in South 

Africa, exceeding local estimates of kelp productivity.  

Invertebrate grazers on rocky shores may depend more on imported kelp detritus than 

intertidal micro- and macroalgae (Bustamante et al. 1995, Rodriguez 2003). On the 

central Chilean coast, sea urchins emerge from cryptic habitats in response to kelp 

deposition (Rodriguez & Farina 2001), forming aggregations that rapidly consume 

detritus (Rodriguez 2003). Sea urchins receiving this subsidy develop larger gonads than 

those consuming only autochthonous production (Rodriguez 2003). On rocky shores in 

South Africa, the limpet Patella grenatina traps and consumes detrital kelp when 

submerged at high tide (Bustamante et al. 1995). Kelp is a major component of the diet of 

limpets, whose spatial distribution is correlated with the biomass of deposited kelp 

(Bustamante et al. 1995). Experimentally restricting access to detrital kelp reduced 
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survival and biomass of limpets, indicating that this subsidy is a major determinant of 

distribution and abundance of this intertidal grazer (Bustamante et al. 1995).  

Particulate detritus produced during erosion of kelp blades is utilized by intertidal and 

subtidal benthic filter feeders (Bustamante & Branch 1996, Kaehler et al. 2006). Kelp 

particulates are the dominant form of particulate organic matter (POM) within kelp beds 

and forests (Bustamante & Branch 1996) and can occur in concentrations exceeding that 

of phytoplankton across an offshore range of more than 14 km (Kaehler et al. 2006). In 

South Africa, kelp constitutes the largest proportion of the diets of intertidal filter-feeding 

mussels and barnacles, and spatial variation in filter-feeder biomass is related to near-

shore concentrations of particulate kelp (Bustamante & Branch 1996). Duggins et al. 

(1989) linked high rates of secondary production in intertidal mussels and barnacles in 

Alaska to subsidy by nearby subtidal kelps. More recently, Tallis (2009) demonstrated 

that kelp constitutes 10-88% of the diets of filter feeders inhabiting intertidal areas near 

river mouths in Washington, USA, generally exceeding the dietary contribution of 

intertidal macroalgae and seagrasses.  

6.6.2 Offshore and Alongshore Transport and Deposition 

6.6.2.1 Rocky Subtidal Habitats 
 
Barren habitats occur in the rocky subtidal zone and are generated through the 

grazing action of sea urchins, which denude the substratum of erect fleshy macroalgae. 

Barrens are characterized by low local productivity (Breen & Mann 1976, Chapman 

1981, Miller 1985), but receive macroalgal subsidies from adjacent kelp beds and forests 

(Dayton 1985b, Basch & Tegner 2007, Britton-Simmons et al. 2009, Filbee-Dexter & 

Scheibling in press). Basch & Tegner (2007) found that up to 250–400 g m-2 of 

Macrocystis pyrifera (wet mass) accumulates at 8–18 m depth off California. Similarly, 

Britton-Simmons et al. (2009) recorded an average of 514 g m-2 of detrital kelp 

(Laminaria) (wet mass) at 23 m depth in Washington. When detritus is abundant within 

kelp forests and adjacent areas, sea urchins do not graze attached kelps but instead form 

sedentary aggregations or hide within cryptic habitats where they trap detritus as it is 

transported along-bottom or accumulates (Mattison et al. 1977, Dean et al. 1984, Harrold 

& Reed 1985, Rogers-Bennett et al. 1995, Basch & Tegner 2007,                       
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Vanderklift & Wernberg 2008, Britton-Simmons et al. 2009). When detrital supply 

becomes limited, sea urchins increase their rate of movement and form grazing fronts that 

rapidly consume stands of attached kelps (Dayton 1985b, Ebeling et al. 1985, Harrold & 

Reed 1985). Low detrital supply, therefore, triggers the transition from a highly 

productive kelp forest to a low-productivity sea urchin barren.  

The onshore advance of grazing fronts of sea urchins is generally limited by wave 

action, either directly or via the whiplash effect of kelps (Velimirov & Griffiths 1979, 

Dayton 1985b, Scheibling et al. 1999, Konar & Estes 2003, Lauzon-Guay & Scheibling 

2007). In Nova Scotia, this wave-mediated upper limit of destructive grazing enables kelp 

beds to persist in shallow bands along the coast (Brady & Scheibling 2005), while dense 

populations of sea urchins in adjacent barrens subsist in part on the supply of kelp 

detritus from the shallows (Kelly et al. in press). Sea urchins supplied with detrital kelp 

develop larger gonads than those without access to this food resource (Rogers-Bennett et 

al. 1995, Basch & Tegner 2007, Britton-Simmons et al. 2009). Detrital kelp is less 

abundant along exposed coastlines relative to more sheltered coastlines or bays (Dayton 

1985b, Filbee-Dexter & Scheibling in press). As a result, sea urchins in barrens on 

exposed coasts are of lower nutritional condition than those feeding directly on kelps in 

the shallow subtidal zone, whereas sea urchins in deep depositional areas in protected 

bays are well nourished (Dayton 1985b, Brady & Scheibling 2006, Filbee-Dexter K & 

Scheibling RE, unpubl data). Detrital subsidy to sea urchins decreases with distance from 

the kelp bed or forest (Mattison et al. 1977, Rogers-Bennett et al. 1995, Kelly et al. in 

press), but has been documented for sea urchins on reefs up to 8 km from the kelp source 

(Vanderklift & Wernberg 2008).  

Fecal pellets from urchins and other grazers as well as kelp particulates are 

transported offshore where they are consumed by filter- and deposit-feeding 

macroinvertebrates, meiofauna and microbes, enhancing secondary production across a 

range that can extend > 14 km from the kelp source (Duggins et al. 1989, Kaehler et al. 

2006). Along the Atlantic coast of Nova Scotia, Canada, sea urchins form dense grazing 

fronts that advance onshore consuming kelp at a rate of 454–530 g d-1 (dry mass) across a 

meter-span of front. This translates to an estimated fecal production rate of 74–81 g y-1 

per linear meter of front, or 20,720 kg d-1 across an estimated 280 km of coastline 
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spanned by these grazing fronts in the mid to late 1990s (Sauchyn & Scheibling 2009a). 

The small (~2 mm diameter) fecal pellets are a highly nutritious food source relative to 

live kelp, and nitrogen, lipid, and available energy content increase rapidly during 

degradation (Sauchyn & Scheibling 2009b).  

6.6.2.2 Soft-sediment Habitats 
 
Kelp detritus is transported alongshore or offshore via tidal, bottom, or surface 

currents to unvegetated soft-sediment habitats ranging from the surf zone to the bathyal 

and abyssal depths (Figure 6.3). Submarine canyons trap submerged detritus as it is 

transported by alongshore currents, accumulating massive quantities of material and 

acting as conduits for detrital transport to the deep sea (Josselyn et al. 1983, Vetter 1995, 

1996, Vetter & Dayton 1998, Harrold et al. 1998, Okey 2003). Kelp detritus transported 

over the continental shelf is more likely to be consumed or buried before arrival at the 

deep sea, compared to that transported via submarine canyons (Vetter & Dayton 1999). 

However, the abundance of detrital kelp can decrease by 95% between 30 and 900 m 

depth in submarine canyons in canyons off California (Vetter & Dayton 1999); detrital 

kelp is sparse (2.5 x 10-2 g C m-2) at depths of >1 km (Smith 1983). Long-distance 

transport of kelp detritus offshore is more likely to occur via surface dispersal of floating 

rafts, which ultimately lose buoyancy and sink to the deep sea (Smith 1983, Bernardino et 

al. 2010). Detrital accumulations (mats) in shallow habitats and submarine canyons are 

expansive during periods of calm wave action in spring and summer, while wave surge 

associated with fall and winter storms causes detrital flushing or mat compaction in 

deeper regions (Vetter 1995, Vetter 1998, Okey 2003).  

Kelp detritus is a primary source of food in subtidal soft-sediment habitats, as it is for 

sandy beaches, attracting diverse assemblages of detritivores, predators, and microbes, 

whose distribution and secondary production are largely determined by the availability of 

detritus (Lenanton et al. 1982, Bedford & Moore 1984, Kim 1992, Vetter 1995, 1996, 

Okey 1997, Harrold et al. 1998, Vetter & Dayton 1998, 1999, Hyndes & Lavery 2005, 

Bernardino et al. 2010, Krumhansl & Scheibling in press). Secondary production rates in 

detrital mat communities in submarine canyons exceed that of most other natural systems 

(Vetter 1995). Juvenile fish use mats of kelp detritus as nursery habitat, feeding on 
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associated amphipods, leptostraceans, and copepods (Lenanton et al. 1982, Vetter 1998, 

Hyndes & Lavery 2005). Vetter (1998) experimentally demonstrated that predation rate 

on these crustaceans decreases with mat thickness, indicating that detrital mats also 

provide structural protection. During calm conditions, thick bacterial mats colonize the 

surface of detrital deposits, causing crustaceans to move into open patches where they are 

more susceptible to predators (Vetter 1998). The bacterial mats are unable to form during 

periods of frequent wave disturbance (Vetter 1998).  

Community dynamics within mats of detrital kelp and underlying sediments are 

largely dependent on the size and residence time of deposits, which in turn are 

determined by physical processes and the rate of consumption by large herbivores, such 

as sea urchins (Scheibling & Raymond 1990, Kim 1992, Okey 1997, Norkko et al. 2000, 

Okey 2003). In small deposits with short residence times, or in ephemeral deposits in 

wave- or current-swept locations, faunal abundance and diversity are locally enhanced 

relative to the surrounding sediments (Lenanton et al. 1982, Vetter 1995, 1996, Harrold et 

al. 1998, Vetter & Dayton 1998, 1999, Hyndes & Lavery 2005). In larger and more 

persistent deposits, hypoxic conditions can develop in the bottom layers of detrital mats. 

In some cases this leads to widespread anoxia and decreased microbial and faunal 

abundances within the deposit and underlying sediments (Tzetlin et al. 1997, Mokievsky 

et al. 2005, Scheibling & Raymond 1990). Local hypoxia also can occur in sediments 

beneath small deposits with relatively short residence times (Thrush 1986, Vetter 1996, 

Vetter & Dayton 1998, Okey 2003, Bernardino et al. 2010). Opportunistic species that 

tolerate low oxygen and high sulfide conditions, such as capitellid and dorvellid worms, 

can occur in high abundance beneath deposits (Levin & Smith 1984, Thrush 1986, Vetter 

1996, Okey 2003, Bernardino et al. 2010). More diverse faunal assemblages may 

accumulate in the vicinity of detritus, where the adverse effects of organic enrichment are 

less severe (Thrush 1986). In large, persistent deposits, a greater diversity of fauna can 

occur on the surface and edges of mats, where detrital material is freshly deposited and 

turns over more rapidly than material in lower layers (Tzetlin et al. 1997).  

Kelp detritus also is deposited in intertidal surfgrass and subtidal seagrass beds (Hori 

2006, Wernberg et al. 2006). Wernberg et al. (2006) documented large deposits of detrital 

kelp within seagrass beds hundreds of meters from a kelp source in southwestern 
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Australia. These deposits attracted assemblages of herbivorous fish, which in some 

locations consumed most of the detritus within days (Wernberg et al. 2006). When given 

a choice, herbivores and detritivores that inhabit seagrass beds preferentially consume 

kelp and other macroalgae over seagrasses (Smit et al. 2006, Doropoulos et al. 2009). 

Stable isotope analysis has revealed that seagrass is a less important dietary source than 

imported and autochthonous macroalgae, periphyton, and epiphytic algae in seagrass 

food webs (Stephenson et al. 1986, Smit et al. 2006). Doropoulos et al. (2009) suggest 

that the importance of macroalgal subsidies to seagrass beds varies seasonally in response 

to changing levels of production by autochthonous macroalgae and periphyton. 

6.6.3 Long Distance and Sea-Surface Transport 
 
Kelps and other macroalgal species with pneuomatocysts are buoyant after 

dislodgement from the substrate, and can accumulate in rafts that drift with surface 

currents and winds (Helmuth et al. 1994, Hobday 2000a, Hinojosa et al. 2010). The 

estimated wet biomass of floating rafts of giant kelp (Macrocystis pyrifera) in California 

and Chile can range from 100 to 1500 kg km-2 (Hobday 2000a, Hinojosa et al. 2010). In 

South Africa, rafts of M. pyrifera can be up to 6 m in diameter and 1 m deep, and contain 

as many as 200 individual thalli (Helmuth et al. 1994). Dispersal of rafts is low when 

prevailing winds are onshore (Harrold & Lisen 1989) or in areas with large freshwater 

input such as fjords (Hinojosa et al. 2010). Kelp rafts may disperse hundreds of 

kilometers in areas with strong unidirectional currents (Helmuth et al. 1994, Fraser et al. 

2010). The dispersal and spatial distribution of kelp rafts vary seasonally in response to 

changing wind and current patterns (Harrold & Lisen 1989, Hobday 2000a, Hinojosa et 

al. 2010). 

The dispersal of a kelp raft is also dependent on environmental and biological factors 

that affect buoyancy (Rothausler et al. 2009). Rothausler et al. (2009, 2011a, 2011b) have 

tested the interactive effects of temperature, UV, and grazing by amphipods on the 

photosynthesis, growth, and reproduction of floating Macrocystis pyrifera. M. pyrifera is 

able to withstand a wide range of UV conditions by adjusting photosynthetic pigments 

and photochemical reactions (Rothausler et al. 2011a, 2011b), but photosynthesis, 

growth, and reproduction are greatly reduced in water temperatures above 20°C, which 



 

 118 
 

cause degradation and loss of buoyancy (Rothausler et al. 2009, 2011a). The effect of 

grazing amphipods on biomass and buoyancy is highest at moderate water temperatures 

(15–20°C) where grazing rate exceeds kelp growth (Rothausler et al. 2009). At low 

temperatures (<15°C), kelp growth can compensate for biomass lost to grazers 

(Rothausler et al. 2009). These results indicate that raft dispersal is greatest in waters 

below 15°C. Low seawater nitrate levels may also reduce buoyancy (Hobday 2000a).  

Kelp rafts accumulate diverse communities of invertebrates while drifting (Edgar 

1987, Hobday 2000b, Thiel & Gutow 2005). Some organisms remain attached to kelps 

following dislodgement from the substrate, while others settle or become attached to rafts 

as they are encountered during drifting. It has been hypothesized that rafting is an 

important mechanism of long-distance dispersal for invertebrates (Highsmith 1985, Edgar 

1987, Helmuth et al. 1994, Fraser et al. 2010), particularly those species with a short-

duration larval phase or those that brood their young to a benthic stage (Highsmith 1985, 

Helmuth et al. 1994). Evidence for this includes genetic linkages between broadly 

distributed populations of brooding species (Fraser et al. 2009), and the discovery of 

individuals brooding young on kelp rafts (Helmuth et al. 1994). Holmquist (1994) 

proposed that dispersal via rafting is more effective than larval dispersal because of a 

lower risk of mortality. Kelps remain reproductive while drifting (Rothausler et al. 2009), 

and propagules of other algal and plant species have been collected from kelp rafts 

(Edgar 1987), indicating that dispersal via kelp rafts is not limited to invertebrates.  

 
6.7 KELP DETRITAL SUBSIDIES AND METAECOSYSTEM DYNAMICS 

It is evident from the large body of literature encompassed by this review that detrital 

subsidies from kelp communities play a major role in linking adjacent marine and 

terrestrial ecosystems, with significant consequences for community dynamics and 

productivity in subsidized areas. There is growing recognition that material flows, 

including those of nutrients and energy, play a key role in shaping ecological patterns and 

processes across a range of scales (Gravel et al. 2010a, b, Marleau et al. 2010). This has 

led to the development of metaecosystem theory, which combines the perspectives of 

metapopulation and metacommunity theory and landscape ecology (Loreau et al. 2003, 

Massol et al. 2011).  
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The theoretical constructs of metapopulation and metacommunity dynamics were 

developed to explain mechanisms of species persistence on local scales in terms of the 

interaction of processes occurring across multiple scales (Logue et al. 2011). For both 

theories, the main mechanism of spatial coupling between populations or communities is 

the dispersal of organisms. Landscape ecology, by contrast, focuses on documenting 

patterns on a landscape scale that result from material flows between ecosystems (Loreau 

et al. 2003). Metaecosystem theory is essentially a conjunction of landscape ecology and 

metapopulation and metacommunity theory: it considers a set of local ecosystems that are 

connected by the spatial flows of energy and materials as well as the dispersal of 

organisms (Loreau et al. 2003, Massol et al. 2011). Metaecosystem theory extends the 

simpler concept of spatial subsidy by examining properties on multiple scales that emerge 

from flows between ecosystems, and by focusing more on reciprocal than unidirectional 

flows (Loreau et al. 2003, Gravel et al. 2010a). What emerges is a robust theoretical 

framework to examine the relationship between the local persistence and functioning of 

ecosystems and regional dynamics (Gravel et al. 2010a, b). Kelp beds or forests can be 

useful models for exploring this relationship because of their strong linkage to adjacent 

systems through the transfer of detritus.  

In a metaecosystem, locally high primary productivity results in high regional 

productivity as detritus and nutrients flow between habitat patches (Massol et al. 2011). 

High regional productivity promotes high propagule production, which enhances the 

regional persistence of species (Massol et al. 2011). Compelling evidence for this exists 

in landscapes that include kelp beds or forests, which are highly productive on a local 

scale. For example, large quantities of kelp detritus flow into adjacent sandy beach 

communities, enhancing local production (Figure 6.4). Detritivorous macrofauna and 

their predators may move farther onshore, transporting kelp-derived nutrients in the form 

of feces and carrion, to promote higher rates of terrestrial productivity than would occur 

in the absence of this flow. Beach fauna and microbes degrade and remineralize nutrients 

from kelp detritus, and physical processes return inorganic nutrients, detrital particles, 

and fecal pellets to subtidal habitats for direct use by kelps or for further processing. The 

transfer of detritus to beaches and subsequent recycling and return of nutrients to the 

water column represents a reciprocal subsidy between subtidal kelp beds or forests and 
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sandy beaches. In this example, high local productivity in kelp communities is both the 

cause and consequence of high regional productivity.  

To extend this concept, we can consider another situation in which a transition from 

high to low regional productivity occurs in response to a change in kelp productivity that 

is mediated by a species interaction operating on a local scale. High detrital kelp 

abundance enhances sea urchin productivity and reproductive output in rocky barrens 

offshore of kelp beds or forests, causing recruitment pulses and an increase in the sea 

urchin population (Figure 6.5). With greater demand for detrital resources, the supply 

becomes limited, triggering the transition from passive feeding on detrital kelp to active 

grazing by sea urchin fronts on attached kelps. Fronts proceed gradually until reaching 

the upper, wave-mediated depth limit of grazing. At this stage, kelp populations have 

been substantially reduced, resulting in low detrital production. Accordingly, subsidies to 

adjacent inshore and offshore habitats also are reduced, resulting in low secondary 

production in recipient communities. This conceptual model describes a sequence of 

changes in regional productivity during a shift from 1) a high productivity state, in which 

kelp productivity and detrital subsidy to adjacent areas is high, through 2) a transitional 

state during which sea urchins destructively graze kelp to expand barrens, and 

culminating in 3) a low productivity state in which kelp productivity and detrital subsidy 

are low (Figure 6.5). Sea urchin fecal production is high during active grazing of detrital 

and attached kelps in the first and second stages (Sauchyn et al. 2011), but greatly 

reduced as attached kelp biomass and the supply of detrital material decrease. Other 

factors that reduce kelp biomass and detrital supply, such as encrustation by the invasive 

bryozoan Membranipora membranacea, also can trigger the transition from a high to a 

low regional productivity state (Scheibling et al. 1999, Krumhansl & Scheibling 2011a). 

This alternative stable-state system has traditionally been viewed from the perspective of 

local productivity. From a metaecosystem perspective, however, these state-shifts also 

can drive transitions in regional productivity.  
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Figure 6.5 High regional productivity, transitional, and low regional productivity states of 
adjacent barrens and kelp forest communities associated with the transition from passive trapping 
of kelp detritus by sea urchins to active grazing on attached kelps. Arrow thickness indicates the 
magnitude of detrital flows in the inshore and offshore directions.  
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Gravel et al. (2010a) suggest that spatial flows of a limiting nutrient can alter 

landscape level source-sink dynamics. Specifically, sources may be converted to sinks if 

spatial flows decrease nutrient concentrations in the source patch. Under most conditions, 

kelp beds or forests are considered sources and sandy beaches sinks. Large-scale kelp 

mortality can occur during severe wave events and periods of high seawater temperature, 

effectively decreasing nutrient concentrations (kelp biomass) in the source patch. 

Following the large initial pulse of detritus generated during the mortality event, detrital 

flows from the source patch are reduced while kelp biomass and production are low, and 

the kelp bed or forest no longer acts as a source. Inorganic nutrients accumulated in beach 

sands from the immediate and long-term processing of kelp detritus are returned to the 

subtidal zone and promote the re-growth of kelps. At this stage, the beach is the source 

because the magnitude of nutrient transfer from beaches to subtidal kelps exceeds transfer 

in the opposite direction. Source-sink dynamics in this context also could be mediated by 

seasonal asymmetries in detrital deposition and nutrient export from beach sands.  

 
6.8 HUMAN IMPACTS ON KELP BIOMASS AND DETRITAL SUBSIDY 

Anthropogenic pressures on natural systems have mounted over the past centuries, 

resulting in profound changes in the marine environment (Worm et al. 2005, Lotze et al. 

2006, Jackson 2008). Kelp ecosystems are no exception to this trend, and may be 

particularly sensitive given their proximity to human populations. A suite of 

anthropogenic factors cause declines in kelp biomass and population size, which can have 

regional as well as local effects on ecosystem structure and function through a reduction 

in detrital production (Krumhansl & Scheibling 2011a). Primary emphasis on 

anthropogenic impacts to kelp beds or forests has been on the indirect effects of fishing 

high-level predators, which releases sea urchin populations from top-down controls 

(Steneck et al. 2002). The role of climate change in the decline of kelp populations also 

has been noted due to the sensitivity of kelps to fluctuations in environmental variables, 

such as water temperature and salinity (Steneck et al. 2002, Martinez et al. 2003, Springer 

et al. 2010). The disruption of upwelling cycles during El Nino years may cause local 

warming, which leads to large-scale canopy loss (Gunnill 1985, Steneck et al. 2002, 

Martinez et al. 2003, Vasquez et al. 2006, Foster & Schiel 2010, Springer et al. 2010). 
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Storms that cause large wave events also reduce kelp biomass (Gerard 1976, Luning 

1979, Gunnill 1985, Seymore et al. 1989, Reed et al. 2008), and are likely to have greater 

long-term effects as the incidence of severe storm events increases (Easterling et al. 2000, 

Byrnes et al. 2011). Declines in kelp biomass also have occurred in response to coastal 

pollution (Steneck et al. 2002, Foster & Schiel 2010) and development and extraction 

activities that disrupt subtidal habitat (Pulfrich et al. 2003) and cause run-off of toxic 

materials, warm water, and sediments (Medina et al. 2005, Springer et al. 2010). The 

introduction and spread of non-native algal species can replace kelps and alter the 

nutritional characteristics of detritus entering adjacent communities (Bishop et al. 2010, 

Krumhansl & Scheibling in press).  

Direct removal of kelp-canopy through harvesting also can have severe repercussions 

for kelp biomass and detrital production. Kelp is primarily used for human consumption 

(Peteiro & Freire 2011, Rothman et al. 2006), alginic acid extraction (Vasquez 2008, Vea 

& Ask 2011), and as feed for cultured abalone (Troell et al. 2006, Macchiavello et al. 

2010). Canopy harvesting has increased dramatically in recent decades (Rothman et al. 

2006, Vasquez 2008, Thompson et al. 2010, Vea & Ask 2011). Kelp is currently 

harvested in many countries worldwide (including the USA, Canada, Mexico, South 

Africa, Chile, Australia, New Zealand, Japan, China, Taiwan, Ireland, Norway, the UK, 

and Iceland) and markets continue to expand (Adams et al. 2009, 2011). Historically, 

kelp harvesting involved collection of beach-cast material; however, since the 1960s this 

has been replaced by direct harvesting, particularly of canopy kelps, in response to 

increasing demand (Vasquez 2008, Vea & Ask 2011). With growing concern that wild 

populations of kelp cannot sustain harvesting at the current rate, the harvest potential of 

currently unexploited areas, such as the Arctic, is being investigated (Sharp et al. 2008) 

and suspended culture of kelps has been developed in some bays and offshore areas 

(Troell et al. 2006, Macchiavello et al. 2010, Peteiro & Freire 2011, Radiarta et al. 2011). 

Kelp mariculture may relieve some of the pressure on natural populations, but little is 

known about its ecological impact. Cultured kelp is a source of detritus (Yoshikawa et al. 

2001), but at high density suspended kelps can reduce current speeds (Shi et al. 2011) and 

may cause organic enrichment of local sediments and anoxia. 
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Research on the effects of kelp canopy removal has largely developed from a 

fisheries perspective, with the goal of designing harvesting strategies that maximize 

landings and minimize impacts to kelp growth and reproduction (Christie et al. 1998, 

Vasquez 2008, Lorentzen et al. 2010, Thompson et al. 2010). Current harvesting 

strategies involve 1) trimming fronds in a manner that allows for regrowth and/or 

reproduction, 2) targeted harvesting of larger individuals in a population, and 3) removal 

of only a certain portion of total kelp biomass (Springer et al. 2010, Vea & Ask 2011). A 

few studies have examined the impacts of canopy removal on organisms inhabiting kelp 

beds or forests, with emphasis on commercially targeted species (Lorentzen et al. 2010, 

Thompson et al. 2010), In general, these studies have not detected direct negative effects, 

but the empirical evidence is limited. The impact of canopy removal on detrital pathways 

remains unexplored. A decline in shorebird abundance in California from 1969 to 1973 

was associated with a reduction in subtidal kelp cover over this period due to a decrease 

in wrack-associated prey items (Bradley & Bradley 1993). Beach grooming and the 

collection of beach-cast kelp have large negative effects on species richness, abundance, 

and biomass of macrofauna and shorebirds (Kirkman & Kendrick 1997, Dugan et al. 

2003), but these activities remain completely unregulated in most areas.  

 

6.9 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
RESEARCH  
 

Although most of the primary production of kelp beds and forests flows through 

detrital pathways, detrital production has been quantified for relatively few kelp 

populations. These measurements are sparsely distributed throughout the temperate range 

of kelps and are highly variable within and among kelp species, underscoring the need for 

more location and species-specific measurements. There is only one estimate for an 

Arctic kelp population, and detrital production rates are missing entirely for many kelp 

genera (e.g. Nereocystis, Agarum, Alaria, Costaria, Pterogophora). Variation in detrital 

production rates and the relative importance of erosion vs. dislodgement as production 

processes may be related to characteristics of particular kelp species (e.g. morphotype) or 

populations (e.g. density), or to the physical environment (e.g. wave exposure, 

temperature regime, latitude). Understanding the mechanisms that regulate detrital 
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production on large spatial scales would provide insight into the potential response of 

communities to environmental change, which may be greatest at the lower and higher 

latitudinal limits of kelps. A more complete quantification of detrital production 

throughout the geographic range of kelps is required to address these hypotheses and to 

improve our ability to model energy flow through coastal systems.  

Future studies also should attempt to standardize measures of detrital production and 

variance, and to concurrently measure both erosion and dislodgment. A number of studies 

have presented erosion measurements in units that are relevant only on a per individual 

basis (e.g. as cm d-1, Dean & Hurd 2007, Miller et al. 2011; or relative erosion, Brown et 

al. 1997). Although these measurements can be used to examine spatial and temporal 

dynamics of erosion, measurements at the population level (e.g. as g m-2 d-1 or g C m-2 d-

1, Krumhansl & Scheibling 2011a) are more useful in developing energy flow models or 

for comparisons among geographically distinct populations. Only two studies (Gerard 

1976, Newell & Field 1983) have simultaneously measured detrital production by erosion 

and dislodgement. Measurement of only one or the other of these important mechanisms 

can significantly underestimate detrital production from kelp beds and forests.  

The extent of detrital subsidy by kelps is determined by the magnitude and direction 

of detrital export. The proportion of detrital production exported or retained has been well 

quantified for seagrass (Heck et al. 2008), salt marsh (Gallagher et al. 1980, Dame & 

Stilwell 1984, Bouchard & Lefeuvre 2000) and mangrove communities (Kristensen et al. 

2008), likely because these macrophyte assemblages typically occur in semi-enclosed 

bays or estuaries where exported material can be readily trapped and measured. Kelp 

communities, on the other hand, generally occur on semi-protected or exposed coasts 

where trapping and quantifying material flows is considerably more difficult. Export rates 

in kelp ecosystems can be estimated as the difference between simultaneous measures of 

detrital production and accumulation within kelp beds or forests. Residence time of kelp 

fragments or thalli manually deposited within kelp beds or forests can provide insight 

into environmental factors that govern detrital export rates and seasonal variation. The 

relative importance of inshore vs. offshore transport can be estimated by relating detrital 

production rates to arrival rates in habitats along an onshore/offshore gradient. Transport 
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direction and distance also can be measured by tracking labeled detrital fragments and 

thalli (e.g. with flagging tape) using diver surveys, towed video, or ROVs.  

A comprehensive understanding of energy flow in coastal systems requires 

consideration of all local sources of macrophyte detritus. The relative contribution of 

kelps and other types of macrophytes to detrital food webs is related to the magnitude of 

detrital production, export, and deposition in various habitat types, which in turn are 

related to local hydrodynamics, geomorphology, and substrate characteristics. Transport 

also is determined by the physical properties of detritus, including size, shape, and 

buoyancy (Watanabe et al. 2009), which differ among macrophyte types. The 

composition of detrital deposits affects their turnover rate and patterns of colonization by 

microbes and meio- and macrofauna (on the surface of detritus and in underlying 

sediments). Future research should emphasize comparisons of detrital production rates, 

transport, and depositional dynamics between kelps and other dominant macrophytes. 

Examining the species composition of macrophytes in detrital deposits across broad 

scales within regions could indicate the relative importance of different detrital sources to 

macrofaunal communities in various habitat types. The link between spatial patterns of 

production and deposition of different macrophyte species may be clearer when these 

species occupy different physical environments.   

Kelp detritus subsidizes consumers in a wide range of marine and terrestrial habitats, 

acting as a major form of connectivity in coastal systems that enhances species 

abundance, diversity, productivity, and reproductive output. Most studies examining the 

consequences of detrital subsidies in receiving communities have been conducted over 

relatively short time scales. Seasonal dynamics in some detritus-based communities (e.g. 

in submarine canyons or on sandy beaches) are related to variation in physical factors that 

determine the size and residence time of detrital deposits. In many habitats the deposition 

of kelp detritus is a sporadic occurrence. Receiving communities may be adapted to 

protracted periods of low food abundance punctuated by detrital food pulses that occur 

over short time scales (Sears et al. 2004). These pulsed depositional events may play an 

important role in maintaining gamma diversity, especially in the deep sea (Bernardino et 

al. 2010). Long-term environmental changes and reductions in kelp populations may have 
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different and more pronounced consequences for detritus-based communities than 

changes resulting from short-term environmental variability.    

Many of the species that consume detritus within kelp beds and forests and in 

adjacent systems (e.g. sea urchins, abalone, sea cucumbers, mussels) are the basis of 

valuable coastal fisheries. These species also are prey for higher trophic-level consumers 

(e.g. lobsters, ground fish, sea otters) that have commercial or ecological importance 

(Dayton et al. 1998, Steneck et al. 2002). Consequently, the provisioning of detrital food 

webs is a major ecosystem service provided by kelp beds and forests. Loss of kelp 

biomass threatens this important function through reduction or elimination of detrital 

production. Kelp populations require more than 6 years to recover from canopy 

harvesting (Lorentzen et al. 2010), and declines on the order of decades have been 

documented following overfishing, repeated El Nino events, or freshwater and sewage 

run-off (Mann 1977, Dayton et al. 1998, Steneck et al. 2002, Foster and Schiel 2010). 

Dire ecological and economic consequences can be expected as a result of these long-

term declines in kelp canopy. Effective management of coastal ecosystems and resources 

demands a broader consideration of the role of detrital flows from kelp and other marine 

macrophytes in determining overall productivity on regional scales.  
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CHAPTER 7  
GENERAL CONCLUSIONS 

 

Most of the primary production in kelp communities worldwide enters detrital 

pathways. Kelp detritus is exported to a wide range of marine and terrestrial habitats, 

where it serves as an important resource at the base of food webs (Chapter 6). Spatial 

patterns in the abundance, growth, reproduction and diversity of organisms in 

communities that receive kelp detritus are largely determined by the magnitude of 

subsidy. As a result, local rates of kelp productivity and detrital production are linked to 

community dynamics on broad spatial scales. Although there have been considerable 

advances in our understanding the fate of kelp detritus, few studies have quantified the 

flux of this material from kelp beds or forests, or examined factors that influence the rate 

of detrital production. My thesis contributes to this body of knowledge and elucidates the 

impact of invasive species on the dynamics of detrital production in a rocky subtidal 

ecosystem off the Atlantic coast of Nova Scotia.  

I have shown that Nova Scotian kelp beds produce detritus continuously through the 

erosion of blade tissue from the distal end, with annual losses that range from 0.5–1.71 kg 

dry mass m-2 (Chapter 2). The interactive effects of blade encrustation by the invasive 

bryozoan Membranipora membranacea, grazing by the snail Lacuna vincta, site exposure 

to wave action, and water temperature regulate spatial and temporal patterns in erosion. 

Peaks in erosion rate and the ratio of erosion to productivity occur when blade 

encrustation by M. membranacea or grazing damage in the distal ends of blades are 

highest. In Chapter 4, I found that prolonged encrustation by M. membranacea leads to 

degradation of the outer cell layers of blade tissues, which concentrates stress when the 

blade is in tension, leading to breakage at lower force applications than required to break 

undamaged tissues. Grazing by L. vincta that penetrates the full thickness of blade tissues 

causes similar reductions in blade strength, explaining increased rates of detrital 

production associated with high levels of bryozoan encrustation and grazing damage.  

Spatial variation in erosion rate also was attributed to a positive relationship with 

wave exposure for Laminaria digitata (Chapter 2). Kelps at the site where wave exposure 
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was the highest (Splitnose Point) consistently had the lowest level of grazing damage by 

Lacuna vincta, but variation in erosion rate over time followed the same temporal pattern 

as the level of grazing damage on blades. Grazing damage may have a greater effect on 

erosion rate at sites with higher wave exposure, where even small levels of damage can 

induce breakage (Duggins et al. 2001). This is consistent with the observation that 

erosion was low at the most wave-protected site (Duncan’s Cove Protected) where the 

level of grazing damage on L. digitata was highest. Biomechanical tests indicate that 

although more energy is required to break undamaged blade tissues of L. digitata 

compared to Saccharina latissima, the magnitude of the reduction in tissue toughness due 

to grazer-induced perforations is greater for L. digitata (Chapter 4). This may indicate 

that L. digitata is more prone to grazer-induced increases in erosion than S. latissima. In 

contrast, erosion rate and the level of grazing damage on blades of S. latissima increased 

with water temperature, but this effect was not observed for L. digitata. This indicates 

that S. latissima may be more susceptible to tissue degradation at higher water 

temperatures.  

By examining spatial and temporal patterns in grazing damage by Lacuna vincta 

along kelp blades (Chapter 3), I found that only a small percentage of the total blade area 

is grazed on Saccharina longiruris (0.00-1.25%) and Laminaria digitata (0.00-1.50%). 

Grazing is typically concentrated in the middle and distal end of blades where the 

concentration of polyphenolic compounds is lowest (Johnson & Mann 1986), and tissue 

toughness is reduced relative to recently produced tissue. Grazing in basal regions of 

blades is lowest during peak periods of kelp growth in spring, which is coincident with 

the greatest production of polyphenols at the basal meristem (Abdullah & Fredriksen 

2004). Grazing at the distal ends of blades above a threshold value of 0.5 to 1.0% of 

blade area leads to significant increases in the rate of blade erosion during storms that 

generate significant wave heights exceeding 3.5 m. Grazing damage above this threshold 

is commonly observed on kelp blades in summer and fall, and is coincident with the peak 

occurrence of hurricanes off Nova Scotia. This indicates that L. vincta plays a significant 

role in seasonal losses of kelp canopy. Grazing damage is likely to have a greater 

negative effect on kelp populations as the incidence of severe storms increases (Bender et 

al. 2010, Scheibling & Lauzon-Guay 2010).  
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These results indicate that epifauna on kelp blades can have direct as well as indirect 

effects on kelp physiology and biomass. Encrustation by Membranipora membranacea 

shades blade tissues (Oswald et al. 1984), directly reducing photosynthesis, nutrient 

uptake, and tissue pigment (Hurd et al. 1984, Hepburn et al. 2006), which cause cellular 

degradation and a weakening of blade tissues. This indirectly results in losses of kelp 

canopy. The direct loss of kelp biomass to grazing by L. vincta is minute, but grazing 

damage also causes blade weakening that leads to major losses during storms. These 

indirect effects play a significant role in regulating canopy biomass and the rate of detrital 

production from subtidal kelp beds.  

In a field experiment, I found that the nutritional quality and biochemical changes 

occurring during degradation differ between the invasive green alga Codium fragile and 

the native kelp Saccharina latissima (Chapter 5). C. fragile has a higher nutritional value 

(lower C/N ratio) than S. latissima, but the concentration of the anti-herbivory compound 

DMSP is two orders of magnitude higher in C. fragile than S. latissima. The C/N ratio 

and concentration of DMSP decreased in both algal species during degradation, 

becoming similar after 12 to 16 weeks. These results indicate that changes in the 

macroalgal species composition of detritus through the replacement of kelps by C. fragile 

has altered the quality of detritus produced from subtidal macroalgal beds. Macrofaunal 

communities consuming degrading algal material responded to these differences in 

nutritional quality and palatability. Macrofaunal species composition, diversity, and 

abundance differed between algal species to a greater degree during the initial stages of 

degradation than in the advanced stages when detrital quality became similar. 

Diverse communities of organisms rapidly colonized and consumed detritus placed 

on the sandy seabed below a kelp bed (Chapter 5), demonstrating that macroalgal detritus 

subsidizes food webs in adjacent habitats. Little is known about the fate of kelp detritus 

produced in kelp beds off Nova Scotia, but emerging evidence suggests that detritus is 

also an important food resource for deep populations of sea urchins (Filbee-Dexter & 

Scheibling in press, Kelly et al. in press). Deep-living sea urchins migrate shoreward to 

repopulate shallow habitats following disease-induced mass mortalities (Brady & 

Scheibling 2006). By provisioning these deep populations of sea urchins, kelp detritus 

may be important in the long-term dynamics of the alternative-state system in the rocky 
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subtidal zone. Future work in Nova Scotia should focus on examining the spatial extent 

and temporal variation of kelp subsidy to deep-living sea urchins, as well as documenting 

the utilization of kelp detritus by a wider range of consumers in other habitats, including 

sandy beaches and the rocky intertidal zone.  

The magnitude of detrital production is positively related to the standing biomass of 

kelp beds (Chapter 2). This indicates that factors that reduce kelp biomass in the long 

term may ultimately lead to a decline in detrital production rates. The lowest biomass of 

all sites was recorded at The Lodge, where encrustation by Membranipora membranacea, 

grazing by Lacuna vincta, and erosion rates were consistently high. The low biomass at 

this site may be the long-term consequence of persistent blade encrustation and high 

levels of grazing damage. Codium fragile was only present at 2 of the 5 sites, which 

included The Lodge and Cranberry Cove, both of which had very low standing stock 

biomass. M. membranacea does not encrust kelps at Cranberry Cove, but grazing damage 

is high at this site. This indicates that M. membranacea, L. vincta, and C. fragile may all 

contribute to long-term declines in kelp biomass, and consequently to declines in the rate 

of detrital production from subtidal kelp beds.  

My findings indicate that the introductions of Membranipora membranacea and 

Codium fragile to Nova Scotia have altered the quantity and quality of detritus produced 

from subtidal kelp beds. Macrofaunal communities in adjacent habitats respond to these 

changes in detrital resources. This indicates that the effects of these invasive species 

extend well beyond their ranges via changes in the quantity and quality of detrital exports 

(Bishop et al. 2010, Taylor et al. 2011). Previous work in Nova Scotia has largely 

emphasized the local effects of declines in kelp biomass that are a result of destructive 

grazing by sea urchins, storms, and species invasions. This thesis provides the first 

evidence that these declines also may affect communities in adjacent habitats that are 

subsidized by kelp detritus, with broad-scale consequences for secondary productivity.  
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APPENDIX 1: LINEAR REGRESSION MODELS   

 
 

Sampling Period Site S. latissima R
2
 L. digitata R

2
 

July 2008 CC y = 0.2095x + 0.2561 0.9679 NA NA 

 DE y = 0.1636x - 0.6254 0.8021 y = 0.2767x - 3.1465 0.9091 
 DP y = 0.1437x + 0.2936 0.9707 NA NA 
 TL y = 0.2217x + 0.4634 0.9689 y = 0.2650x - 1.8475 0.9046 
 SP y = 0.1434x + 0.205 0.9702 y = 0.1624x + 0.2841 0.8840 
September 2008 CC y = 0.2045x - 0.1033 0.8785 NA NA 

 DE y = 0.1636x - 0.6254 0.8021 y = 0.1500 + 0.7404 0.8873 
 DP y = 0.1859x + 0.2133 0.8182 y = 0.1714x +0.1406 0.9054 
 TL y = 0.1661x - 0.4027 0.8860 y = 0.2198x - 0.6231 0.9803 
 SP y = 0.1434x + 0.205 0.9702 y = 0.1624x + 0.2841 0.8840 
November 2008 TL y = 0.1802x – 0.9854 0.9193 y = 0.1872x + 0.2187 0.9818 

 SP y = 0.1556x – 0.5932 0.9602 0.1798x + 0.2595 0.9226 

February 2009 CC y= 0.1142x - 0.2741 0.9061 NA NA 

 DP y = 0.1199x + 0.0317 0.9577 y = 0.1368x - 0.0389 0.9592 
 SP y = 0.1224x - 0.3955 0.9894 y = 0.1236x + 0.6040 0.9194 
May 2009 CC y = 0.1444x - 0.2199 0.9726 NA NA 

 DE y = 0.1136x + 0.1949 0.9438 y = 0.1264x + 0.0873 0.9653 
 DP y = 0.1274x - 0.323 0.9434 y = 0.1344x - 0.2702 0.9559 
 TL y = 0.1023x + 2.2951 0.8732 y = 0.1312x + 0.3412 0.9937 
 SP y = 0.1391x - 2.1842 0.9351 y = 0.1373x - 0.9716 0.9862 
September 2009 CC y = 0.2045x - 0.1033 0.8785 NA NA 

 DE y = 0.1456x - 0.4258 0.724 y = 0.1682x + 0.4325 0.9271 
 DP y = 0.1636x - 0.6254 0.8021 y = 0.1714x + 0.1406 0.9054 
 TL y = 0.1646x + 0.1011 0.8320 y = 0.1600x + 0.9668 0.8857 
 SP y = 0.1709x + 0.955 0.8743 y = 0.1435x - 0.3239 0.8500 

Appendix 1. Linear regression models generated from the relationship between wet 
weight and dry weight for blade tissue in Saccharina latissima and Laminaria digitata 
at each site and during each sampling period. 
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APPENDIX 2: AIC MODEL RESULTS FOR EROSION RATE 

 
 
 
 
 

 

 

Species Model AIC n AICc ΔAICc Log 
Likelihood 

wi R
2
 

Saccharina 
latissima % M + % Gzd + Temp 

 
-91.31 20 -89.81 0.000 48.65 0.361 0.48 

 % M + Temp -89.12 20 -88.41 1.396 46.56 0.179 0.40 
 % M + % Gzd -88.49 20 -87.79 2.019 46.25 0.131 0.38 
 % M -87.67 20 -87.45 2.353 44.84 0.111 0.33 
 % M + Exp + Temp -87.49 20 -85.99 3.818 46.74 0.053 0.37 
 % Gzd + Temp -86.37 20 -85.67 4.138 45.19 0.046 0.31 
 % M + Exp -86.10 20 -85.39 4.414 45.05 0.040 0.30 
 % M + % Gzd + Exp -86.49 20 -84.99 4.812 46.25 0.033 0.34 
 % Gzd + Exp + Temp -85.25 20 -83.75 6.052 45.63 0.017 0.30 
 Temp -83.52 20 -83.30 6.509 42.76 0.014 0.17 
 % Gzd -82.11 20 -81.89 7.917 42.06 0.007 0.11 
 Exp + Temp -81.52 20 -80.81 8.993 42.76 0.004 0.12 
 % Gzd + Exp -80.70 20 -80.00 9.810 42.35 0.003 0.08 
 Exp -78.72 20 -78.50 11.31 40.36 0.001 -0.06 
Laminaria 
digitata % Gzd + Exp -69.09 16 -68.17 0.000 36.54 0.284 0.412 
 Exp -68.32 16 -68.03 0.132 35.16 0.266 0.351 
 % M + Exp -67.17 16 -66.25 1.914 35.59 0.109 0.337 
 Exp + Temp -67.12 16 -66.20 1.964 35.56 0.106 0.335 
 % M + % Gzd + Exp -67.74 16 -65.74 2.426 36.87 0.084 0.388 
 % Gzd + Exp + Temp -67.25 16 -65.25 2.912 36.63 0.066 0.369 
 % M + Exp + Temp -65.61 16 -63.61 4.559 35.80 0.029 0.301 
 % M -63.54 16 -63.25 4.912 32.77 0.024 0.124 
 % M + % Gzd -61.76 16 -60.84 7.330 32.88 0.007 0.069 
 % M + Temp -61.56 16 -60.63 7.531 32.78 0.007 0.058 
 % Gzd -60.90 16 -60.61 7.552 31.45 0.007 -0.033 
 Temp -60.62 16 -60.34 7.826 31.31 0.006 -0.051 
 % Gzd + Temp -59.59 16 -58.67 9.499 31.79 0.002 -0.065 
 %M + % Gzd + Temp -59.86 16 -57.86 10.31 32.93 0.002 -0.085 

Appendix 2. AIC results for all possible combinations of ≤ 3 factors explaining 
variation in erosion rate  (g d-1) for Saccharina latissima and Laminaria digitata, 
including: uncorrected Akaike’s Information Criteria (AIC), the number of 
observations (n), second-order bias corrected AIC (AICc), the difference between 
the minimum AICc and the AICc for each model (∆AICc), the log likelihood 
function, the model probability (wi), and the R2 value of each model.  
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APPENDIX 3: AIC MODEL RESULTS FOR EP RATIO 

 

 

 

 
 
 
 
 
 

Species Model AIC n AICc ΔAICc Log 
Likelihood 

wi R
2
 

Saccharina 
latissima % M 15.12 16 15.34 0.000 -6.561 0.311 0.31 
 % M + Exposure 15.78 16 16.48 1.140 -5.889 0.176 0.32 
 % M + Exp + Temp 15.05 16 16.55 1.209 -4.527 0.170 0.30 
 % M + Temp 16.54 16 17.25 1.902 -6.270 0.120 0.29 
 % M + % Gzd 16.87 16 17.57 2.230 -6.434 0.102 0.28 
 % M + % Gzd + Exp 17.78 16 19.28 3.933 -5.889 0.043 0.28 
 % M + % Gzd + Temp 18.34 16 19.84 4.498 -6.171 0.033 0.26 
 Exp 21.62 16 21.84 6.495 -9.809 0.012 0.05 
 Temp 22.01 16 22.23 6.890 -10.01 0.010 0.03 
 Exp + Temp 21.75 16 22.45 7.107 -8.873 0.009 0.08 
 % Gzd + Exp 23.15 16 23.85 8.511 -9.574 0.004 0.02 
 % Gzd 23.69 16 23.91 8.566 -10.84 0.004 -0.06 
 % Gzd + Exp + Temp 23.15 16 24.65 9.303 -8.574 0.003 0.05 
 % Gzd + Temp 23.99 16 24.70 9.355 -10.00 0.003 -0.03 
Laminaria 
digitata % M+ % Gzd 10.60 16 11.52 0.000 -3.300 0.553 0.72 
 % M + % Gzd + Exp 11.89 16 13.89 2.366 -2.945 0.169 0.71 
 % M + % Gzd + Temp 12.29 16 14.29 2.768 -3.146 0.138 0.71 
 % M 15.67 16 15.95 4.430 -6.834 0.060 0.60 
 % M + Temp 15.98 16 16.90 5.374 -5.988 0.038 0.61 
 % M + Exp 16.49 16 17.41 5.886 -6.243 0.029 0.60 
 % M + Exp + Temp 17.16 16 19.16 7.632 -5.578 0.012 0.60 
 Temp 28.79 16 29.08 17.553 -13.40 <0.001 0.09 
 % Gzd + Exp 29.44 16 30.36 18.836 -12.72 0.000 0.10 
 Exp + Temp 29.94 16 30.86 19.337 -12.97 0.000 0.07 
 % Gzd 30.83 16 31.12 19.594 -14.42 0.000 -0.03 
 Exp 30.86 16 31.15 19.622 -14.43 0.000 -0.03 
 % Gzd + Temp 30.65 16 31.58 20.051 -13.33 0.000 0.03 
 % Gzd + Exp + Temp 29.84 16 31.84 20.314 -11.92 0.000 0.12 

Appendix 3. AIC results for all possible combinations of ≤ 3 factors explaining 
variation in the ratio of erosion to productivity for Saccharina longicruris and 
Laminaria digitata, including: uncorrected Akaike’s Information Criteria (AIC), the 
number of observations (n), second-order bias corrected AIC (AICc), the difference 
between the minimum AICc and the AICc for each model (∆AICc), the log likelihood 
function, the model probability (wi), and the R2 value of each model.  
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APPENDIX 4: MACROFAUNA 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 4. Macrofaunal taxa on samples of degrading Saccharina latissima and 
Codium fragile: + indicates taxon present; (f) indicates family.  
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APPENDIX 5: SIMPER RESULTS 

 

Appendix 5. Macrofaunal taxa on samples of degrading Saccharina latissima (S) 
and Codium fragile (C): + indicates taxon present; (f) indicates family.  
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