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Wave-vector analysis of metallic surface energy
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The exchange and correlation energy of a nonuniform electronic system can be decomposed into

contributions of different wave-vector fluctuations. Both the long- and short-wavelength contributions to
this energy can be properly handled. A possible approach for the intermediate region is to interpolate
between these two limits. We examine this interpolation scheme within the infinite-barrier model, as it

applies to surface-energy calculations. Our study suggests that such schemes are inadequate for the
treatment of this intermediate region.

I. INTRODUCTION

The exchange and correlation energy of a non-
uniform fermion system in the presence of an
external potential V(r) is given by the well-known
form'

E„=-2 ~ dw Jdr'v{r—
E„,= E„", = Jt d r n(r) e„,(n(r) ), (6)

Equation (4) is exact but its evaluation for an
arbitrary nonuniform fermion system is presently
a virtually impossible task. An approximation
for Eq. (4) has been suggested by Hohenberg and
Kohn (HK) and is referred to as the local-density
approximation (LDA). In the LDA, Eq. (4) is ap-
proximated by

where Xv(r —r') is some arbitrary particle-parti-
cle interaction of coupling strength ){., ){~(r,r', i{d)
is the response function of the system, and n~(r)
is the corresponding density. Making the connec-
tion with the structure factor S(r, r ')

where e„,(n(r)) is the exchange-correlation energy
per electron of a homogeneous electron gas of
density n(r). A connection between Eqs. (4) and

(6) can be made if Eq. (6) is also decomposed in
terms of its wave-vector components. Then

E,", =—], d'r
J dl{.v(q)n(r)

2 27r p

(where N is the number of particles), E„, is then
given by

E =+— d'r d'r'v r —rXC

1

x
J d){.[NS,(r, r ') —n~(r) 5(r —r ')] .

Equation (3) can be transformed and written

d Q'E„N,=-E„,(q)

x [S",(q, n(r)) —1],
where S",(q, n(r)} is the structure factor of the homo-
geneous electron gas with local density n(r).

In the limit of large-wave=vector fluctuations
(large q), Eq. (4) reduces to Eq. (7).' As the wave
vector of the fluctuation gets smaller, this agree-
ment is expected to worsen. To correct for this
intermediate range of q, HK have suggested adding
a nonlocal correction E"„' (to the exchange and
correlation energy) of the form'

d r''K r- r, n rp)

with

S,(q, q)

d3 1

3 v(q) J dk[S~(q, q) —1],
77

Q

d3r d r'e '~' e"~' S~ r, r' .

(4) x [n(r) —n(r ')]2, (6)

where E„,is expressed in terms of the dielectric
function for the homogeneous electron gas. '

So far our discussion has been general enough to
emcompass the exchange and correlation energy of
any nonuniform fermion system. We now focus
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our attention to a nonuniform electron system as
given by a surface of a metal. We further re-
strict our( discussion to the surface energy; i.e.,
the energy (per unit area) required to cleave this
nonuniform electron gas in two. 4

In the exact formulation [Eq. (3)], the calculation
of the surface energy would involve extracting the
contribution to E„,which is proportional to the
cleaved surface area' (see also Sec. II). In the
LDA it would involve introducing the appropriate

. density for the uncleaved and cleaved systems in
Eq. (8) or (7) and evaluating their difference. We
expect the LDA to misrepresent the full surface
energy mostly in the intermediate- and small-q
limits. However, in the case of the E„contribu-
tion to the surface energy the limit of small wave
vectors is also known exactly. 3 A. thorough dis-
cussion of this limit is given in Ref. 3 where the
proper spherical average required in calculating
the small ~q~

—= q limit of Eq. (4) is emphasized.
Such careful averaging is important since the q
-0 limit differ& according to whether q is parallel
to the surface (q„) or perpendicular to it (q,).
Since all small-q fluctuations are unlikely to be
accurately treated in the LDA the average of both
q„and q, must be included in the small-q form of

After a lengthy analysis the contribution to the
surface energy of Eq. (4) at small q are derived
and given in Ref. 3 as

For example, in the infinite-barrier model (IBM),
where the total exchange and correlation contribu-
tion are known, " this wave-vector-interpolation
(WVI) procedure results in y(q) given in Fig. 1.
The solid curve represents y(q) as obtained from
Eq. (7) using the density

n(z) = no [1+ (3/y') (y cosy —siny)],

with y = 2kzz. The dash-dotted line is y(q) given
by Eq. (10). The dashed arc is the arc of a circle
which is tangent to the straight line at q =0 and to
yz, D(q) at some larger value of q around the peak
(located at q approximately k„) value of y»(q).
The area between the dashed and solid curves is
the correction for the LDA in the intermediate
region of q and is found to account accurately for
the full IBM E„,when integrated.

Two points are worth emphasizing in Fig. 1.
First since this procedure accounts for the num-
erical value of the ful/ E„, then in addition to the
surface-plasmon contribution the shaded area
must also have accounted for the very complicated
X„,term of Eq. (8). Second. there seems to be an
implicit assumption that for q &9~ nonlocal correc-
tions to the LDA can be ignored since the WVI
corrects the LDA only for q sk~. It is precisely
these points that we wish to investigate in this
work. We will show that y(q) contains too much
structure (in the intermediate region of q) for

(9)

with the small-q limit given by

lim y(q) = (0~/8m) q((u, ——,'(u~)

where k~ is given in terms of the bulk density no

by k~= (3w2no)'~3. A is the area of the cleaved
surface and su~ and co, are the bulk- and surface-
plasmon frequencies, respectively (i.e., u,
.= (dp/v2 ) .

Two features of Eq. (10) are of particular in-
terest. First the q -0 limit has a universal struc-
ture independent of surface details. Second its
form contains explicitly surface-plasmon contri-
butions; contributions which are not at all likely
to be accounted for by LDA or any additional cor-
rections of a bulk form [Eq. (8)].' Since both the
large- and small-q limits are known exactly [the
former given by Eq. (7) and the latter by Eq. (10)],
the following procedure has been suggested' in
treating the full E„,. Use the LDA [by introducing
the appropriate density in Eq. (7)] to construct y(q)
for large q and use Eq. (10) for evaluating y(q) in
the small-q limit. To determine the unknown in-
termediate range of q interpolate between the two.

~ 0.50

O

0.25

0
0 '] 2 3

q/kF

FIG. 1. Wave-vector decomposition of the exchange
and correlation contribution to the surface energy of the
IBM in the RPA for r, =2.07 (taken from Ref. 3). Solid
curve is the LDA, dash-dotted line from Eq. (9) and
dashed curve the interpolation.
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such a simple interpolation scheme to be meaning-
ful.

In Sec. II we spherically decompose the exchange
contribution to the surface energy of the IBM
following strictly the above discussion. In Sec.
III we numerically evaluate the exchange surface
contribution from q = 0 to 3k+ to exhibit its struc-
ture. In Sec. IV conclusions are drawn concerning
the validity of the above WVI procedure.

An accurate description for the exchange and
correlation contribution of and inhomogeneous
electron gas has both fundamental and practical
importance. While individually these terms are
small in comparison with the kinetic and electro-
static contributions, due to large cancellations
that occur in many calculations (surface energy
being one example) these terms end up comprising
a very large contribution. The simplicity with

,,which the WVI procedure is intended to account
for these contributions has given it a wide appeal.
While it does suggest a systematic way for incor-
porating the surface plasmons contribution into

E„„its detailed accuracy has not been carefully
scrutinized for finite q and thus should be further
examined and improved. Such studies are pre-
sently in progress and, in the following, we report
results for the exchange contribution.

E„= J—t, v(q) [S"(q,q) —1], .

where

N[S'(q, q) —1]

If we choose the IBM, ' then P, (r) of Eq. (12) is
given by

(17)

d3q
E,=—,J, (q) ~ H(q„,k„k,')

Zt Z

where

H(q„,k„k,'}

x E(q„k„k,'), (18)

=Jl d'k'Jf d'k5(q„+k'-k)e (k' —k,' —k')

&jb, (r) = [2/(L+ 5)]' sin(k, z)e'"'~

where k =n71/(L+ 5) (with n = 1, . . . , ~) and k and
x are two-dimensional vectors perpendicular to
the z axis. L and 5 are given in the Appendix and
are the length of the uniform density set at —,'5
from the infinite potential barrier.

Using Eq. (17) in Eqs. (15) and (16) the following
form is readily derived:

II. WAVE-VECTOR DECOMPOSITION OF THE

EXCHANGE SURFACE ENERGY IN THE IBM

Consider the problem of N electrons in the pre-
sence of an external potential V(r). The wave
function of an electron of energy &,- is given by

E(q„k„k,')
xe~(k~ —k —k )

L+5 t L+5
=11m dz I dz e * f (z')e

&-o "o o

(19)

(
5 'q2 + V(r)

~ Q &(r) = gIQ,.(r) .
2m

(12)
xf (z) e+iq~ (20)

Similar to Refs. 1, 3, and 5 we will not consider
the question of self-consistency. Then the coup-
ling constant integration in Eq. (1) can be easily
performed to yield the well-known form for the
exchange energy'

f(z) = [2/(L + 5)] sink, z sink, 'z . (21)

We note that in the above form the wave-vector de-
composition requires that the interparticle inter-
action of component q be written

Z, = ——(~d'rf d'r r(r —I')(p(r, ' (13)
v(r —r') =lim v(q)e'z'~ ~'e ~""'

a-0
(22)

where

p(r, r') =2+/&(r)$~&(r')0 (&&
—Ez) .

After some lengthy analysis we get the following
form for E„:

E„=
2 g dg8tg L+~ I) gl~zgz

The index i covers the occupied states and &~
=k2k2~/2m is the Fermi energy.

e'(x) = ' ' e'(z) =1 —e'(z) .1, x&0,

0, &&0,

Equation (13) can be decomposed into its wave-
vector components to yield where

L+ 5)I g

m )
(23)
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I [(q„,q )

=P H(q„,k„k,')[5(q, —k ) + 5(q, + k.)],
az

I', (q„,q, ) =QH(q„, k„k,) &(q,),

(24)

(25)

to Q. This is straightforward and involves simply
a careful application of the Euler-Maclaurin for-
mula. ' We write below the final results:

E„=—
8 d q v(q)[(f + 5)I'[(q,„q,) + I,'(q„,q, )

~S(q((rqd)

where

+I'3(q q, ) + I'4(q (28)

1"( -k — k)r )'

fO OQ OQ

I"['(q„,qd) =
J dk, dk,'H(q„, k„k,')

0. 0

&[~(q, —k )+8(q, —k,)l (29)

~4(qiiiqd)

=O' H q„,kg, kg
Pz, kg

dk H(q(( 0 k )5(q + k )
0

I'2(q„,q, ) = m
&

dk, H(q„,k„k,)5(q,),
0

(3o)

x — 2 2 1 1
k+k k —k, k (q, —k)

+ 2 2
k +k k —k, k)~q, —k,

(27)
\

=k, —k', k, = k +k,', (p in Eq. (27) stands for the
principal part, and H(q„,k„k,') is given in Eq. (I9).

Our next task is to extract the surface energy
terms from Eqs. (23)—(27); i.e., terms proportional

P OQ OQ

I"3(q„,q ) = lim —
Jl dk dk' H(q„,k,k,')

&~0 7T 0 0

1

(q, —k —iA)'

1

(q, —i). —(k) ) '

(3I)

I",(qi( q ) [p dkd dk,'H(q() kd kd') +—1 " ", 2 2 1 1

2 2 1t 1+ — + +—
ik, +k k -k, k, ) q, —k,

where the primes in Eqs. (29)-(32) indicate that these terms individually originated in the unprimed terms
of Eqs. (24)-(27).

The last three terms in Eq. (28) are proportional to A. The first term has a contribution proportional
to the volume V which is subtracted out when we evaluate the surface energy (see the Appendix) leaving

(I + q))'l(q„, q) = q f dkfd)k')i(q„, )k k, ')[k(q, —k ) + I!(q,—k)l)
0 0

OQ

dk, H( „q, ,0k)&( ,q+k, ) ~

0
(33)

pre note that the term in Eq. (33) multiplying 5 is simply the exchange energy of a bulk electron per unit
volume "

Our final task is to produce a form for y(q) [Eq. (9)] in the IBM for the exchange approximation. This
involves replacing

~ q((~ and q,
'

by its spherical coordinate form (i.e.,
~ q„~ =q sin&; q, =q co») and in«g»-

ting Eq. (28) over the solid angle.
With x=—cos8, we get

y(q) =
k

v(q)k~ dk, dk,'
2 6 dxH(q, x,k„k,') [p(q, x,k, k, ) + Q(q, , x„k)]k

+ r q dk, q(q, k,) + krrr r [S,'(q, qrl —1)), (34)
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where
(t) (q, x,k,k,)

1= -lim Re
g p (qx- k —ia)

1 2 2 1
k k +k k —k, qx —k

and

y(q, k,) = H(q, (l —k /q )'~,0,k,)9 (q' —k,')

—2H(q, 0,k„k,) .

(35)
S"„(q,~,) —1=—,'9'(2k, —q)

~

-2+———,It' 3 q 1q3

The explicit structure of K(q, x,k„k,') is easily
evaluated from Eq. (19) and for completeness we
write its form below:

(3'f)

The last term in Eq. (34) corresponds to the bulk
contribution, in the exchange, per unit volume
multiplied by the length 5 = 3m/4k~ (the Appendix) .
The bulk contribution is well known and is given
by~

H(q, xk„k,') =9 (k, —k~)9 (k,' k~)(z—(k~ —k,")9 (a, -q(1 x')'~')+ z(k~ k')9&( a, q(1 x2)«2)

+9'(q(1 —x')'~' —ap)9'(~ a,
~

—q(l —x')'~')

x(cos '((d, )(kz —k,' j + cos '(&u, )(kz —k,') —[(1—x')(kz —k,')(1 —&u', )]'~'q]),
(38)

where

(k2 k2)i/2+ (k2 kq2)1l2

(39b)

1

cally evaluate y(q) for bare Coulomb and Yukawa
interparticle interactions and for a range of q. In
Sec. IV we draw conclusions about the merit of the
%VI method and suggest possible improvements.

k,'- k,"+(1 —x')q'
2 [(1-x')(k' -k")]"' '

k" k.'+ (1-x')q'-

E(luations (34)-(37) are the first explicit forms
for y(q) derived for any spherical interparticle in-
teraction in the IBM. In the Sec. III, we numeri-

III. NUMERICAL RESULTS

To evaluate E(l. (34) for a range of q is now
relatively straightforward. The one-dimensional
integral [last term in Eq. (34)] poses no difficulty.
To evaluate the three-dimensional contribution
(E'„) we integrate by parts. Using the structure
of H(q, x,k„k,') we get after a lengthy calculation

E.'-D OO OO +1

dq qv(q) dk, dk,' (P dxH'(q, x,k„k,') [(()) '(q, x,k,k, ) + Q '(q, x,k„k )]2A. 32m 0 0 0 -1

+q(q, k. , k ) + q(q, k, k.)),

-k k +k k -k k

1 2 2

qx —k k +k k —k, k

q-k q+k k +k k —k, 2k q+k (41b)

q xH'(q, x k kq)q=q9d(q'(1 —x ) ~ —ap)9 ()a(( —q(1 —x )(~ ) (B2 —x ) ~ (x —B ) ~

Iqq

(41c)

with B~ = 1 —ap/q' and B,= 1 —a',/q'.
Again in Eq. (40) the two-dimensional'integral (over k, and k,') poses little problem and the numerical in-

tegral re(luiring some care is the remaining three dimensional integral of E(l. (40). This integral can be
written

qJ( dqqq(q) J dkJdk, tqi dq ,'i l (B, —q') (q —d, )' )7T 0 0 0 Bg

~I2x 1 1 1 1 ) Jx —k /ql'- '/q' '
i +,/ (42)
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FIG. 2. Wave-vector decomposition of exchange con-
tribution to the surface energy of the IBM with bare
Coulomb interparticle interaction. Solid curve (labeled
LD) is the LDA lEq. (44)l, dashed curve [labeled HF
(Hartree-Fock)l is the full exchange [Eq. (34)l.

in which the limits of the principle-part x integra-
tion are P, =Res'B, and P, =Re~B, with 0-P, -P,
~1. The numerical problems arise because for
certain values of the parameters, the point singul-
arity of the innermost x singularities can be arbi-
trarily close, thus rendering unreliable simple-
minded methods for evaluation of the required
principle-part integral. (In fact, even after inte-
gration over x, the k„k,' integration has a singul-
arity; however, this local singularity can be re-
moved by a transformation into polar coordinates. )
In order to obtain sufficient accuracy, we found it
necessary to adopt the following procedure. De-
noting the x integrand by g(x), a function of the
complex variable z was constructed such that
Reg(z =x+ iO') =g(x) for P, &x&P, ; g(z) is analytic
in the upper half of the z plane. Reg(z =x+iO')
generates 5 functions for 0 & x & P, and for P, & x
&P3, so that the first and third integral in

1.25

q/kF

FIG. 3. Same as Fig. 2 with a Yukawa interparticle
interaction 47te /(q +A, ). The screening length A. is set
equal to the Thomas-Fermi screening length and the

. density is r, =2.

t Bg B2
Re I dxg(x+ i0') + dxg(x+ i0 )

"B(

+ dxg(x+i0') —
I dzg(z)

~

=0
B) z ]

can be evaluated analytically. The path of inte=
gration I' in the fourth integral begins at z = 0 and
erode at z = P3 (which is real and can be chosen as
found convenient) and lies in the upper-half plane
well removed from singularities of g(z). Conse-
quently, the fourth integral can be evaluated num-
erically without difficulty to give an accurate re-
sult for the original principal-value integral, the
second term in Eq. (43).

In Fig. 2 we display y(q) as a function of q when

v(q) is the bare Coulomb interaction, 4we /q . In

Fig. 3 we plot y(q) for a Yukawa interparticle in-
teraction v(q) =4&e2/(q2+ X~) with the inverse
Thomas-Fermi screening length evaluated at a
density corresponding to x, = 2. In addition to the
full exchange, we also include in Figs. 2 and 3 the
equivalent local density y»(q) calculated from
Eqs. (7) and (37) which gives

J y»(q) = —v—(q), d xn(r) 9 (2k~(r) —q) -2+ — —— —8 (2k~ —q)
dq dq q'k~, , 3 q 1 q
k, 'D k 4&' ~ 2 k,(r) 8 k,(r)

x -2+—3 q 1 q
2k~ 8 kp]

(44)

with k~(r) = [3w2n(r)]~~3, k„ the uniform Fermi mo-
mentum [k~= (3m~no)'~~], and n(r) given in Eq. (11).
In Sec. IV we discuss the implications of these re-
sults.

IV. DISCUSSION AND CONCLUSION

The most striking feature of the results pre-
sented in Figs. 2 and 3 is the sizable lack of



3018 MARK RASOLT, G. MALMSTROM, AND D. J. W. GELDART 20

agreement between y(q) and y„D(q) for q much be-
yond the peak (i.e., q &k~). Even for q &2k~ there
remains contributions in y(q) that is not part of
y„n(q). Of course some of the discrepancy (but
not all, particularly not for q &2k+) would be re-
moved by the inclusion'of correlation (see below).
The WVI method presented in Sec. I (Fig. 1) could
not possibly account for this difference between
the local density and full exchange. Another in-
teresting observation can be drawn from Fig. 3.
In Fig. 3 X was chosen to be large enough so that
the full and LDA exchange surface energy are in
good agreement (Fig. 5, Ref. 8). However, from
Fig. 3, we see that for individual wave vectors q
there nevertheless exists considerable difference
between y(q) and y„n(q). The net agreement in
the integrated areas is clearly a consequence of
cancellations between q &k~ and q &k~ regions.
This questions the assumption that if the total sur-
face energy is in good agreement then each indi-
vidual q contribution to yLn(q) and y(q) carries
similar agreement. Such an assumption is made
for example in the treatment of the IBM when cor-
relation is included by the WVI method.

To carry out the q-vector decomposition of the
IBM, when correlations are included, is an ex-
tremely difficult task. However, our results in
the exchange approximation allow us to draw
some interesting conclusions concerning the ef-
fect of correlations. For example if we turn to
a high-density system in which the correlation
contribution to y(q) and yLn(q), for a finite qvalue, -
is of the order' e4 (e' being the first power of the
interparticle interaction) and for which the ex-
change contribution to y(q) and y„n(q) is of the
order of e2, then the difference in Fig. 2 (parti-
cularly for q &k~) cannot possibly be totally cor-
rected by correlation. This does not apply to the
limit of small q, of course. Fixing e at a finite
value and then taking the limit of q -0 gives for
y(q) the form in Eq. (10), which goes to zero at
q =0. From the small-q behavior of y(q) in the
exchange approximation (Fig. 2) it is clear that
correlation will introduce a major cancellation in
this q going to zero limit. Similar delicate can-
cellation, at small q, occurs in the bulk exchange
and correlation structure of E~D(q). If we neglect
the contribution from the (-1) in Eq. (7) (a term
proportional to the density and therefore irrele-
vant to the surface energy) we find the well-known
limits'

See 3 elim E„(q)=, lim E,(q) =.— + ~ . (45)
q 0 2qkp q 0 2qkg

This cancellation cannot persist for finite q, where
E,(q) is of the order of e4. We also note that the
small-q region must poses considerable variation

We wish to acknowledge Dr. J. P. Perdew for
communicating Ref. 17 prior to publication. This
research was partially supported by the U. S. De-
partment of Energy under Contract No. W-7405-
eng-26 with the Union Carbide Corp. and partially
supported by the National Research Council of
Canada.

APPENDIX

In this appendix we wish to define the surface
energy within the IBM in some detail.

Consider N electrons inside a box of length L+ 5
bounded at z = 0 and z = L+ 5 by an infinite poten-
tial barrier (Fig. 4); this is the IBM. The sur-

z=O

1/2I-
z=L+8

FIG. 4. IBM with the edge of the uniform density set
at ~ 0 from the infinite potential barrier.

since the integration over the small-q region
yields an e lne behavior. ' Furthermore it should
be emphasized (see Figs. 2 and 3) that there is
considerable variation in y(q) —y„n(q) even for q
of the order of 2k~, a variation which changes sign
twice in the range of q =0 to 3k~. In view of the
above comments concerning the different charge
dependence of exchange and correlation it is
highly speculative (and certainly not demonstrated)
that correlation could precisely restore agreement
with the local-density approximation as implied by
the WVI.

The structure of K„, in Eq. (8) has also been
studied frorg electron-gas considerations. " '5 As
stressed in the Introduction such a structure is
unlikely to include surface-geometry effects, such
as surface plasmons; It thus remains a basic
problem of how to include these contributions into

K„,. A possible approach is to combine the high-q
structure of K„, with Ec(. (10) using similar proce-
dures suggested in Refs. 3, 16, and 17. It is, how-
ever, essential to first demonstrate (within a
model calculation) to what accuracy does the in-
clusion of K„, account for the large difference in
the intermediate-q region. Such work is in pro-
gress.
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face energy is defined as the difference between
the IBM configuration and the configuration where
the electrons are uniformly distributed in the
volume V = LA with density no = kz /3w =N/V.
The value of 5 is determined from the following
conditions: (a) the number of electrons in A(L+ 5)
is 1V and (b) the density for large s, is to order
1/L, no. Now since the eigenvalues are k,
= mv/(L+ &)

where the occupied states lie within a hemisphere

of radius k„. Applying the Euler-Maclaurin for
formula6 to (A1), we get to order 1/L:

AJ 3 A5 3 A
P 3 2 P 4~ P

Now the density n(z) is given by

(A2) i

N

(A3)

which goes to no for large s if k„ is chosen to be
equal to kz. Setting k„=kz in (A2) yields &

= 3w/4k~.
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