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Abstract

Aquaculture is growing quickly as a method for farming aquatic based organisms for
use in human consumption, and it is likely that it will produce over 60% of total fish
used in human consumption by 2030. This growth will require productivity increases.
Unlike land animals fish raised in a farming environment are in very tight quarters
resulting in competitive interactions. An important question is how to model this
indirect genetic effect and how well it can be estimated compared to well understood
direct genetic effects. An experiment with fish was performed at Dalhousie Univer-
sity to investigate a model including direct and indirect genetic effects. This work
investigates the model proposed by Peter Bijma, explaining its background statisti-
cally and biologically and then performing a simulation study to determine how well
this model behaves under various circumstances, namely different possible values of
parameter sets for the model, and to see how well it estimates the variances involved
in a situation deemed optimal by the model proposer. Interesting results are seen in
that the modelling of the covariance is more complicated than expected, and that the
direct genetic variance is more easily accurately estimated than the indirect genetic

variance, as would be expected in a biological context.
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Chapter 1

Introduction

This work is primarily focusing on the breeding of fish in an aquaculture environ-
ment, and statistical analysis of animal breeding in this context. In particular it was
designed to accompany a particular experiment occurring at Dalhouse University in
order to augment the understanding of the results of this experiment. The reason for
this is that the experiment plans to use a particular model in order to analyse the
data gathered, which has been recently proposed in a theoretical sense, and not used
practically in this environment to a large degree. The remainder of this chapter will
briefly outline aquaculture, its importance and prevalence in Canada and globally. Tt
will also present the basics of the experiment preformed in order to familiarise the

reader with the context in which the simulation and analysis will occur.

1.1 Aquaculture Introduction

Aquaculture is the cultivation or farming of aquatic organisms, either in fresh or salt
water, such as fish, molluscs, plants etc. under controlled conditions, similar to what
agriculture is for land based organisms. Fish in particular are raised commercially
in tanks or ponds, generally for use as food. This is a fast growing industry in food
production and accounted for about 48.9% of the global fish food used in human
consumption in 2012 (FAO 2014 [9]). It is likely that this industry will continue to
expand, and it is expected that more than half the total seafood production worldwide
will be produced by aquaculture in 2030, with aquaculture producing 60% of all fish
intended for direct human consumption (World Bank 2014 [32]).

This increase in aquaculture production will require increases in productivity
throughout the industry. In order to achieve this, aquaculture will need to take
cues from the agriculture industry, and rely on genetically superior stock subjected
to breeding programs. This will allow more fish to be produced, more will survive

to harvesting age etc. In Canada most of the aquaculture is based on wild or poorly
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domesticated stocks, with a few exceptions, which is unusual compared to the rest of

common farming activity.

Animals involved in aquaculture are often raised in dense groups, and this can re-
sult in strong competitive interactions between individuals in the group. In particular
social interactions can have strong effects on growth or survival. This can compli-
cate quantitative genetic parameter estimation due to the extra interaction. Negative
interactions are known to occur in tilapia and carp, which show lower than normal
growth in the presence of larger animals, and similar interactions are suspected in
Arctic Char and other species (Jobling 1983 |21]). Thus, selection for higher growth
rate may lead to also selecting for more aggressive behaviour, which could slow down,
or even negate any gains made from size selection. This can be seen in terrestrial
animal breeding programs where animals compete for resources and it has been sur-
mised that the presence of these sorts of social interactions can explain why some
behavioural traits fail to respond to selection (Bijma et al 2007 [3]). Competition and
interactions between group members may be a very strong source of size variation
in fish or crustaceans raised in groups (Karplus 2005 [22]|) and not accounting for
this may be a reason for poor performance in aquaculture breeding programs to date

(Jobling 1983 [21]).

I will use Linear Mixed Models in order to model social effects such as those pro-
posed by Muir (2005) [33] and Bijma et al (2007) [3]. Social effects have the potential
to strongly influence the response to selection in fish. In classical terms, the genetic
value of an individual or breeding value, does not take into account relationships with
other individuals, or social interactions. A new model has been proposed by Muir
and Bijma that recognises that the genotype of an individual (the particular alleles
that an individual carries), is not the only factor contributing toward the phenotype
of an individual (outward expression of a particular trait), but also the fact that the
individual is located in a group of other individuals. The model includes additional
effects accounting for this "social group", leading to a new partition to the pheno-
typic variance and to a new definition of the breeding values of individuals. The
variance of this extended breeding value could be much larger than the variance of
standard breeding values in some circumstances. It has been shown in quail (Muir

2005 [33]) and pigs (Bergsma et al 2008|1]) that social interactions contribute the
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majority of heritable variance in growth. This has not been explored deeply in aqua-
culture breeding, and will be explored. In particular this model proposed by Bijma
will be investigated using simulations in order to determine how well it preforms under

varying circumstances.

1.2 Experiment Details

An experiment was planned and carried out at Dalhousie University in order to in-
vestigate the social effects on growth in Arctic Char. While the present work focuses
on the particular model proposed by Muir and Bijma in order to investigate how it
behaves, this was done in conjunction with this experiment such that the results of
the experiment could have a baseline to work with, as this type of model has not
been applied to a real aquaculture setting previously. For this reason, the simulations
carried out for this work were performed with this particular social experiment in
mind, along with conclusions from Bijma about optimal designs for estimation.

Arctic Char were brought to Dalhousie’s Aquatron facilities in Halifax, N.S, as
fertilized eggs. These facilities are located on Dalhousie’s main campus, and contain
several very large tanks, as well as many small tanks and research equipment. These
fish were from 24 families, some being half-sib (one shared parent), and others being
full-sib (both parents shared). There were 10 females and 24 males that were used
to create these families, with each male only ever being used once in family creation.
Each of these families contained about 300-400 eggs when they arrived at Dalhousie.
These eggs were then placed in tanks labelled by family and allowed to develop
normally. See Figure 1.1.

Determining how to distribute the fish in an experimental design was challenging,
as no experimental trials with fish exist that have followed the social and direct effects
model proposed. There have been some involving land animals, namely with chickens
(Craig & Muir 1996 [5]) or pigs (Bergsma et al., 2008 [1]). Performing an experiment
of this nature with land animals allows for a very large number of isolated rearing
units in which to raise the animals. In the previously mentioned trials, hundreds
or thousands of different groups can be used, each with only a small number of
individuals. In the case of Craig and Muir, each group contained only 2 families, and

used a very large number of groups to allow different families as much exposure to



Figure 1.1: The tanks used to hatch the eggs in the Aquatron Facility
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others as possible. Whereas with fish the isolated groups must be tanks, and with
only 24 families of Arctic Char 276 tanks would be required, each with only a few fish
in order to make a completely balanced design. This is not easily accomplished in an
experimental setting, nor is it representative of realities in the aquaculture industry.

Thus the design chosen to be used was to place 10 individuals from 5 non-related
families together in a tank, giving a group size of 50 individuals. These fish were all
marked by family in order to be able to determine which fish belonged to which family.
This was repeated in 24 tanks total, following a pattern of cyclical allocation in order
to ensure both that every family was used equally, and that each was exposed to as
many as possible. As an example, tank 1 would contain the unique families 1,2,3,4
and 5, while tank 2 contained families 2,3,4,5, and 6 etc. This culminates in tank
24 containing families 24,1,2,3, and 4. This design can be seen in Table 1.1. This
gives us 24 tanks, with 5 Families/Tank, 10 Fish/Family, giving 50 Fish/Tank with
1200 fish total. There were sufficient fish from all of the families in order to create a
replicate of this design in another set of 24 different tanks, and remaining fish were
used to create a lower density third design not in the scope of this work, or held in
tanks to keep them separate from the experiments. After a fixed periods of time the
sizes of the fish in the tanks were measured, and these measurements represent the
outcome of the experiment.

The remainder of the this thesis is as follows. Chapter 2 reviews estimation for
general linear mixed models, inducing a discussion of of the animal model used in the
estimation of breeding values. Chapter 3 introduces the concept of indirect genetic, or
"social" effects, and describes Bijma’s model for including direct and indirect effects in
the model for estimating breeding values. The remainder of chapter 3 describes some
results of an extensive simulation study used to assess the ability to reliably estimate
direct and indirect genetic effects, with focus on the variances and covariances of direct
and indirect components. Chapter 4 provides some general conclusions regarding the
methods used and the ability to estimate indirect genetic effects together with some

suggestions for future work.



Tank Families

1 1 2 3 4 5
2 2 3 4 5 6
3 3 4 5 6 7
4 4 5 6 7 8
Y 5> 6 7 8 9
6 6 7 8 9 10
7 7T 8 9 10 11
8 § 9 10 11 12
9 9 10 11 12 13

10 10 11 12 13 14
11 11 12 13 14 15
12 12 13 14 15 16
13 13 14 15 16 17
14 14 15 16 17 18
15 15 16 17 18 19
16 16 17 18 19 20
17 17 18 19 20 21
18 18 19 20 21 22
19 19 20 21 22 23
20 20 21 22 23 24
21 21 22 23 24 1

22 22 23 24 1 2

23 23 241 2 3

24 241 2 3 4

Table 1.1: Experimental Design - Family Distribution



Chapter 2

Best Linear Unbiased Prediction

Statistical models that are used in this work, both in the background material, as well
as the main matter all make use of both fixed and random effects. The most common
tool for dealing with these models is BLUP, or Best Linear Unbiased Prediction.
Knowledge of how this tool is used, and how it works is important in understanding
the basic models that are used in the genetic context, as well as the more complicated
versions, and the particular model that we will be investigating. These basic models
are also of relevance, as they provide the framework with which to move forward in a
genetic context, and provide a large amount of information about sources of variance,
and how genetic relations between animals influence estimation. This chapter will
focus on providing the statistical and genetic background material of relevance to the

environment the simulation study will be taking place in.

2.1 Introduction

Best Linear Unbiased Prediction, or BLUP is a general method of dealing with es-
timation and prediction problems involving both fixed and random effects. It is in
particular used in genetic estimation problems, typically in the context of estimating
breeding values (a random effect), or other means of determining the influence of
genetics when dealing with breeding programs or experiments.

The following model is known as the General Mixed Model, as it is a model that

takes into account both fixed and random effects. The matrix form of this model is,
y=XB+Zu+e

where y is a column vector containing n observable random variables, or responses.
In the context of genetic analysis, this would be a vector of phenotypic values for a

trait in each of n individuals.
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We then assume that these values are described by a linear model with fixed
effects and random effects. These are represented by 5 a p x 1 vector of unknown

parameters having fixed values, and u a ¢ x 1 vector of unobservable random variables.

X and Z are known matrices of sizes n X p and n x ¢ respectively. X is often
known as a Design Matrix, as it is the matrix cataloguing which observation was
influenced by the different fixed effects in the model, generally determined by exper-
imental design. The elements in these matrices are often values of 0 or 1. In the
genetic context, this is indexing which individuals are being influenced by particular

random or fixed effects.

Finally e is the n x 1 column vector of residuals, which are assumed to be dis-
tributed independently from the random effects such that E[u] = 0, Ele] = 0 This
gives E[y] = X8 and

G 0
0 R

u 2

Var o

e

with the p x p matrix G being the covariance matrix for the vector of random effects
u and the n X n matrix R being the covariance matrix for the vector of residual errors

2 a positive constant. Under the

e. These are both positive definite matrices and o
assumption that u and e are uncorrelated, the covariance matrix for the vector of

responses y is
V =ZGZ'+R

ZGZ" denotes the contribution to variance from the random effects, and R is
denoting the contribution from residual error effects. In general it is assumed that
residual errors are uncorrelated and of constant variance. Under these assumptions

R becomes a diagonal matrix of the form R = o%1.

2.2 Estimation

Often the goal with performing estimation when in the genetic framework is to es-

timate variance components. However in general inferences about the fixed effects
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or random effects are often desired. In particular in a genetic analysis these may be
such things as breeding value of an individual (random), or effect of a particular envi-
ronment (fixed). In general estimators of random effects are known as predictors, in
order to recognise the difference between fixed and random effects estimators. In this
sense BLUP is a best linear unbiased predictor in that E[BLUP(u)] = u satisfying
the unbiased piece, linear in that it deals with linear functions of y, and best in that it
minimises sampling variance. Whereas best linear unbiased estimators (BLUE) follow
the same pattern, however dealing with the fixed effects, such that E[BLUE(f)] = p.

The BLUE for (8 is the standard generalised least squares estimator as below:
B=(XTV-1X)1XTy -1y
and the BLUP of u is as follows (Henderson 1963) [16]
= GZTV 1 (y — Xp)

It is noteworthy that both the estimate of 5’ and 4 above require the inversion
of the V = ZGZ" + R matrix. This is not trivial, as V can contain a very large
number of entries if the y vector contains a large number of observations. This can
make the computation of V! and therefore B and u difficult. As an answer to this
problem, Henderson(1950) [15| developed a different way to compute 3 and 4 jointly
in his mixed model equations, derived as follows:

Assume that v and e are normally distributed such that u ~ (0,G), e ~ (0, R)
and cov(u,e) = 0. We then wish to maximise f(y,u), the joint density of y and u

with respect to 5 and u.

N

1 1 G O
Ju) = (2m0®) 72" 727 | det
fy,u) = (2m07) ( e 0 R )
. B (2.2.1)
1 U G 0 U
.ex —_—— .
Py 720 (y—XB—Zu) 0 R (;:;—Xﬁ—@)}

Maximizing this with respect to 5 and v means we need to minimise the quadratic

form
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-1

T
G 0

u . u
y— X8 —Zu 0 R y—XpB—Zu

=u'Glu+ (y—XB—Zu) "R Yy — XB— Zu).

Differentiating this with respect to § and w using the rules for vector derivation of

scalar functions gives the following

L= —X"Ry— XB— Zu)
U = 2G~u—22"R(y — XB — Zu)

Then setting these derivatives to 0 and solving allows obtaining the following

equations

XT"R Y =X"R'X3+X"R'Zi, (2.2.2)
Z'R Y =Z"R'XB+ (Z"R'Z+ G M (2.2.3)

These equations are known as the "Mixed Model Equations” or MME’s. Note
that they do not contain V! as they instead use the R and G matrices. These tend
to be diagonal, and thus R~ and G~! are much easier to obtain than VV~!. The same

equations are occasionally written in a matrix form as below

(XTRlx XTR'Z ) (5) _ (XTRly) (224
ZTR'X ZTR'Z4+G7! U ZTR 1y

It is worth noting that even with these MME’s, the application of either these
equations, or the estimators given above, the variance components are a required
element. This means that for practical application of BLUP the variance components
need to be estimated as well by methods such as ANOVA or REML, which will be
discussed later. In the particular case of genetics and the animal model that we
investigate, the variance components are still required, however they are simplified

as a lot of the variance structure is present in what is known as the "Relationship

Matrix" to be discussed later.
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2.3 Standard Errors

Looking at the matrix form of the mixed model equations above, if we allow the

inverse of the leftmost matrix to be the following:

-1
XT'R'X  XTR'Z [ Cun Ci (2.3.1)
ZTRX ZTR'Z + G CT Oy -

Using this notation, Henderson(1975) [17| showed that the sampling covariance
for the BLUE of 3 is

~

o(B) = Cn
the sampling covariance for the prediction errors (4 — u) is given as

~

o(t—u) = Cy
and that the sampling covariance is
o(B,i—u) =Ch

whereas the standard errors of the fixed and random effects are the square roots
of the diagonal elements of C; and (s respectively. For large designs, the inverse of
the matrix on the left hand side of 2.3.1 may be non-trivial, especially in the case of
animal breeding where this matrix can have a large number of elements due to the
number of animals involved. Due to this, the Mixed Model Equations are generally
solved iteratively in order to determine the estimates of B and u. This avoids inverting
the coefficient matrix, however it also does not provide the diagonal elements of this
inverted matrix, so the standard errors are not readily obtained.

Meyer(1989a) [27] showed a method of approximating the diagonal elements of this
matrix in the particular case of animal breeding in order to estimate the standard
errors in a way that doesn’t involve the inversion of the coefficient matrix. The method
used is to first isolate individual i’s portion of the matrix, with the i*" diagonal element
up to the (i + 3)"" element. This includes the individual, its parents, the number of

records in the subclass of fixed effects that the i individual belongs to, and a value
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representing a heritability in the population. Then partitioned matrix results are
used to invert this submatrix’s elements. If this submatrix was the entire matrix
of interest, or that the remainder of the rows and columns were not connected to
individual 4, than this would yield true values. Meyer does this procedure for each of
the individuals , and then preforms an adjustment on each of the estimated diagonal
values, which adjusts parents by their progeny, progeny by how much information is
known about their parents, namely if both sire and damn are known or not, and by
the number of animals associated with each fixed effect group. Meyer used simulations
to show that this estimation does well, and that the adjustment done makes a large
difference in the accuracy of the estimate under certain conditions, but in general the
estimate is consistently larger than the true values, and so Meyer suggests a scaling

factor should be included as well.

2.4 Bayesian Derivation

In order to derive BLUP in a Bayesian context, take § as a parameter with a uniform
improper prior distribution and u as a parameter with a prior distribution with mean
0 and variance Go? independent of 3. Given these two parameters the density of y

is then
(2m0?)~2"det(R) 2exp — sy — XB—Zu)'R™' - (y — XB — Zu)
The prior density is

(2m02) " 29det(G) " zexp — s (uT G tu)

202

This shows that the posterior density for § and u is proportional to the joint
density shown earlier (2.2.1), and therefore the posterior mode is given by the BLUP

estimates.

2.5 Goldberger

Goldberger(1962) [11] is often credited with the first use of the term "Best Linear
Unbiased Predictor". Goldberger gives his own derivation of BLUP which is rather
straightforward, however he is following a slightly different starting model. Golberger

considers the model:
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y=Xp+e (2.5.1)
El =0 (2.5.2)
Elee’] = Q (2.5.3)

He then considers the problem of predicting a single drawing of response given a

vector of the regressor variables. This drawing is written as

Yo =2+ €. (2.5.4)

Note that this model Goldberger is examining does not include u, our vector of
random effects. However, Goldberger investigates this model under the view that €2 is
not proportional to the identity matrix, and therefore it is not reasonable to assume
that the prediction error (e.) is independent of the sample error. This sufficiently
complicates the variance structure to allow us to equate the two situations, where in
Goldbergers case our random effects are included in his error structure. This view
that the errors are not independent leads Goldberger to starting with the following

assumptions

Ele.] =0 (2.5.5)
B[] = o2 (2.5.6)
Elee] = w (2.5.7)

Starting from these assumptions we then wish to to find the best linear unbiased
predictor of y,. In other words, with ¢ being a vector of constants we wish to find the

linear predictor

p=cly (2.5.8)
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Such that

oy =E(p—y.)p—y.)"
is minimised subject to F(p — y.) = 0(2.5.9)

From 2.5.1,2.5.4,2.5.8 we obtain

p=c'XB+cle (2.5.10)
p—ye= ("X —aD)B+cle—e, (2.5.11)

For this to be unbiased, E[p — y.] = 0 it requires that

X -al=0 (2.5.12)

Then for an unbiased prediction

p—ys=cCle—e, (2.5.13)

and the prediction variance is

o5 =Ep—y)p—u) =E[c"ec c+ & — 2" eelo) = " Qe+ 0? —2¢Tw (2.5.14)

using 2.5.3, 2.5.6, and 2.5.7.

Then to minimise 2.5.14 subject to 2.5.12 we can minimise

d=c"Qc—2c"w — 22T (X"c — ) (2.5.15)
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with A\ being a vector of Lagrangian multipliers. If then we differentiate d with respect

to ¢ and A\ we obtain:

g = 20c — 2w — 2X \ (2.5.16)
C

od
— =2XTe -2z, 2.5.1
5\ c—2x (2.5.17)

We then set the above two equations to 0 in order to solve for the minimising

~

values of ¢ (¢) and A (A\). This gives

Q X
XT 0

][ ass8

Applying the rule for inversion of a partitioned matrix gives the solution to 2.5.18

¢
A

this gives the solution to ¢ as follows

QI — X(XTQ X)) 1 XTQ] QlX(XT91X)1] [w

] (2.5.19)
(XTQ—IX)—lXTQ—l _(XTQ—IX)—I

Ty

=0 X (XTI X)) e, + Q7T - X(XTQ X)) T XTO Hw (2.5.20)

Thus we have the best linear unbiased predictor

p=cy = (XTQ'X)'XTQ y + Q7 ly — 0w QI X(XTQTIX)TIXTOQ Yy
(2.5.21)

Translating Goldberger’s work to the notation and model we’ve been using so far

makes the following substitutions.
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e=Zu-+te
and
Q= (ZGZT + R)o2

To estimate 21 3 + 2Tu take
€ = 21
So we then have
wh = EzIu(Zu+e)T] = 2I'GZT o?

This means that based on Goldberger’s derivation above, the best linear unbiased

predictor of 2T + 2w is

eT(XT(ZGZT + Ry ' XT(ZGZT + R) 'y + 2TGZT(ZGZ™ + R) 'y
-ATGZT(ZGZT + RIX[XT(Z2GZT + Ry X' XT(Z2GZT + R) ™y

Note since V = ZGZ" R that
tT[XT(ZGZT + R)" ' XT(ZGZ" + R) 'y = ( the above reduces to

2T+ TGZT(ZGZT + Ry — Zp) (2.5.22)
A common matrix identity used in this subject matter is
(ZTR'Z + G YW1 ZTR ' =GZT (R+ ZGZT)™!

Applying this to 2.5.22 gives

2T 3+ 2N(Z"R 2+ Y ZT R (y — X ) (2.5.23)
Recall the second of the Mixed Model Equations (2.2.3)
ZTR Yy =ZTR'XB+ (ZTR'Z+ G Vi

If we solve this for @ we obtain
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= (Z"R'Z+G Y 1 ZTR Yy — XP) (2.5.24)
It is then easy to see that 2.5.23 and 2.5.24 combined produce
xf,@ + 24

Showing that the predictor Goldberger derived is equivalent to that of the Mixed
Model Equations. A side note is that if we take 2.5.24 and apply the matrix identity
above to it, as well as substitute (R+ ZGZT) =V we get

i=GZ"V "y — XP)

which is the BLUP of u as stated at the beginning of the chapter.

2.6 Animal Model

The topic of genetics and animal breeding often deals with the concept of a "Breeding
Value".This is the sum of the average effects of alleles of a breeding animal and is
measured based on the performance of its offspring. In other words, how valuable an
individual’s genes are for producing desired traits in offspring, based on measuring
the offspring.

The animal model is used to estimate breeding values of measured individuals.
Other common models are the Gametic model, a variation of the animal model where
the breeding values are measured in terms of parental contribution, and the Reduced
Animal Model, which combines the two for use in specific cases where parental breed-
ing values are the topic of interest.

The animal model is a particular case of the General Mixed Model described
earlier. The simplest version is the case with only one fixed factor, the population

mean. In this case individual i’s observation is expressed as the following:
Yi=p+a; + e

Where 4 is the population mean, and a; is the additive genetic value, or breeding
value, of the i individual. This is just a particular case of the General Mixed Model

with
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1 aq

X = 1 76:M7u: az

The G matrix in the general mixed model describes the covariances among the
random effects. In the animal model case we are looking at the covariances between
relatives. The additive genetic covariance between relatives i and j is given as 20;;07.
Where ©,; is the coefficient of coancestry (see next section), and % is the additive
genetic variance, or variance of breeding values, in the base population. This implies
that under this animal model that G = 0% A where A is known as the "Relationship
Matrix" and has elements A;; = 20;;.

The covariance matrix for the residual errors, R in the general mixed model,
is generally assumed to be R = o%[ so each observation has the same variance
and is uncorrelated with the other residual errors. This assumption can have many
issues under the animal model, for example individuals being full sibs, or shared
environmental effects, however these sorts of complications with residuals occur in
almost any model, so for simplicities sake we will deal with the simple case where
R =0%1 and thus R~ = 0.1,

Since in the animal model case G~! = 02214—1 the Mixed Model Equations become

the following for the animal model

XTX X7z B\ [XTy
ZTX ZTZ+4+XA71) \a ZTy

where A = 0%/0%. This lambda can also be expressed in terms of heritability,
which frames lambda in terms of the coefficient of coancestry as defined in the next
section. However, this still requires variance component estimation, so it only changes
the calculation method of lambda slightly. In the simple case of the animal model
we’ve been investigating the only fixed factor is p, giving f = p and X = 1, and in
the case that each individual has only one observation, Z = [ with n individuals we

further reduce this to
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The other common model used is the Gametic Model, which is very similar to
the Animal Model, however it concerns when breeding values of the parents are more
important than the offspring. The additive genetic value of each offspring is expressed
in terms of the parents’ breeding values, with ag being the breeding value for indi-
vidual ¢’s sire, and ag4; the breeding value for individual i’'s dam. We then express the

breeding value for i as

a; = (%t + ) + ea

which is the sum of the average of its parental value and a random deviation. This

means we re-write the simple animal model investigated previously as

yi = p+ (% + %) + (eai +€)

2.7 Relationship Matrix

The relationship matrix A has in important role in the animal model, as it is present,
in the mixed model equations for the animal model, as well as an important piece of
the variance structure. It is based on the genetic relationship between in individuals
in the particular data set. This is often kept track of outside of the relationship
matrix in a pedigree, or in common terms a "family tree". Unrelated individuals
would have separate family tree’s, while related ones would be connected in some
way. This collection of tree’s would make up the overall pedigree of the data set.
There are methods for computing each of the individual elements of A, however this
can become time consuming for large pedigrees. Henderson(1976) [18]| showed that
patterns exist that can be used to calculate the elements of A faster. He also showed
that it is possible to obtain A~! without having to compute A in the case of a non-
inbred population.

We previously mentioned that the elements of A are A;; = 20;;, but we will now
go into more detail as to what this value means. Look at the case where we have an
offspring z, with parents x and y. Then ©,, is the coefficient of ancestry of x and v,
which is the probability that one allele randomly drawn at a locus from x is identical
by descent (IBD) from an allele drawn at random from y at the same locus. Two alleles

being IBD implies that the two alleles are copies of the same ancestral allele. This
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means that this coefficient is equivalent to Wright’s(1922) [45] inbreeding coefficient
of the offspring, written as f.. There are several ways of calculating ©,, based on
other measures of relatedness, however the way to calculate it directly can be shown
with the calculation of ©,,, the coefficient of coancestry of an individual with itself.
If we denote the two alleles carried by an individual as A; and A,, randomly draw
a allele, replace it, then randomly draw again, ©,, is the probability that the two
alleles drawn are identical by decent. There are four ways alleles can be drawn, each
with equal probability, with two of these ways being drawing the same allele twice,
which is the situation we are looking for. Thus, if the two alleles are not identical ©,,
is % It is however possible that the individual is inbred. In this case the probability

that A; is identical by descent to As is f,, so a general expression would be
Oz = i(l_{'fx‘{'fx_{'l) = %<1+fa:)

A more complex situation is one with calculating the coefficient between parent
and offspring, call the parent of interest p and the offspring o. In the case where
neither are inbred, then of the four ways single alleles can be drawn (one from p and
one from o) only one gives a pair identical by descent. Thus ©,, = }l. The case where
the mother is inbred, the probability of both her alleles being identical by descent
is f,. This is the same as the probability that the parental allele inherited by the
offspring is identical by decent to the allele not inherited. The probability of drawing
this allele combination is , giving a higher ©,, = (14 f,)/4. Complete inbreeding
(fp = 1) gives ©,, = 1/2. Finally if the two parents are related, o is now inbred
with f,, we now consider the probability of drawing a allele from the offspring coming
from the non-parent of interest, the probability of this is 1/2. Since f, is equal to
the probability that the maternal and parental alleles are identical by decent, the
additional parent-offspring adds %, giving the general expression for the coefficent of
ancestry between parent and offspring as

@po - 411(1 + fp + 2f0)

Next is two individuals that share the same parents, known as full-sibs. Let s be
the sire, d be the dam, and x and y the two offspring. If neither parent is inbred

or related then there are two ways in which the same allele can be passed to both
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offspring. If d passes the same allele to both, or if s passes the same allele to both. The
probability that  and y receive the same allele from a particular parent is 1/2. Note
that this is the coefficient of coancestry of a non-inbred parent with itself. Second,
the probability of randomly drawing an allele from this parent from individual z is
1/2, and the same goes for individual y. Thus, the probability of drawing two alleles
from a particular parent one from x and one from g, which are identical by decent
is 1/8. The same process applies for the other parent, giving a total coefficient of
ancestry ©,, = 1/4. If we then go through the same process as previous, adding in
the possibilities that s and/or d are inbred, we gain the following expression for the

coefficient of ancestry for full sibs,
Ouy = 2(2+ fa+ fs +46,)

These techniques can be extended to more complicated relationships between in-
dividuals. It is always calculated as as a sum of a series of two possible paths between
x and y. One is leading from a single common ancestor to the two individuals, and
the second goes through two ancestors that are related to each other. Neither can
pass through the same ancestor more than once. The whole process is summarised as

Oy =2 0u(3)" '+ 30 3 Ou(5)"?
i J J#k

This whole calculation process is outlined in detail in Genetics and Analysis of
Quantitative Traits.|24|

It is quite clear the calculating each element in the relationship matrix can be
quite tedious when large numbers of animals are involved. Henderson(1976) noted
that certain patterns of allele flow through pedigrees can be used to expedite the con-
struction of this matrix. As noted, A;; = 1+ f; and A;; = 20;; = 0 if two individuals
are unrelated. Following from these relationships Emik and Terrill(1949) [8] outlined
rules that can be used to obtain elements of A for an arbitrary pedigree.

First, order the individuals so that patents precede their offspring, and allow
the first b non-inbred, non-related individuals be known as the base population. The
upper left bx b submatrix in the upper left of A is an identity matrix. We then expand
this iteratively one row and column at a time until A is complete. If individual ¢ has

parents indexed by g and h then its diagonal element is
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hS

gh

Ai=1+fi=140, =1+
For a pair of individuals ¢ and j, j <
Aij = Aji = Bjg + Ojp = =154

If a parent is not known, then assume it is non-inbred and non-related to any
other measure individual (except known descendants), so if k is an unmeasured parent
assume Ay, = 1 and A;, = 0 for ¢ where 7 is any individual except known descendants
of k.

In many situations, both in nature and in breeding procedures only one parent is
known with certainty. One way of dealing with this is to assume that the unknown
parent is unrelated to any of the measured individuals in the base population. How-
ever, if all of the potential unknown parents are measured, ie, we have all the sires,
but are unsure which sires produced which offspring, an average relationship matrix
can be constructed, by assigning all of the potential parents an equal weight. Thus,
if we had an individual ¢ with a sire coming from k potential males, each of these
is assumed to be the real sire with probability 1/k, and so the entry for each sire in
the ith row and column of A becomes 1/(2k). It is possible to use certain biological
techniques to assign more accurate probabilities, however if the unknown parent can
be reduced to a small number of potentials then the average relationship matrix is a
powerful approach.

The above provides easier ways of calculating the relationship matrix A, but the
problem still exist of the calculation of A~! as it is A~! that appears in the mixed
model equations. This can be a complicated inversion if a large number of individ-
uals are in the pedigree. This problem has caused a lot of attention to be focused
on attempting to find short cuts, or easier ways of computing elements of A~!. Hen-
derson(1976) [18] showed that in a non-inbred population the inverse of A can be
obtained without having to compute A itself. For n individuals, order n operations
are required to calculate A~!' by Hendersons method, which n? and n? operations
are required to calculate A and then A~! with normal methods. Henderson’s main

method is that the relationship matrix can be expressed as

A=TDTT
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and that its inverse is
Afl — (Tfl)TDflel

D is a diagonal matrix, the elements of which are are proportional to variances
associated with segregational sampling conditional on the parents, which are easily
acquired in a non-inbred population. In this case D;; is 0.5, 0.75, or 1.0 when both,
one, or none of individual ’s parents are included in A. D is diagonal, so its inverse
is diagonal with its elements being the reciprocal of the elements in D. T is a lower
triangular matrix, whose elements trace the flow of genes through the sample. The
diagonal elements are all equal to one, while the elements in the jth row in the column
below the ith diagonal are defined as the fraction of the genes of individual j that
that are expected in individual 7. In nonrelated individuals this value would be 0, and
in non-inbred populations the elements would be 1/2, 1/4, 1/8 for first, second, and
third degree relatives, and continuing in this pattern. 7! is also lower triangular,
with ones on the diagonal, and below the diagonal in the jth row all elements are
zero, except those corresponding to the column of j’s known parents, which are equal
to —0.5.

These rules allow for a much faster computation of A~!, eliminating the need
to invert A normally. Methods proposed by Quaas(1976) |34|, Tier(1990) [41| and
Mrode(2014) [31] extend this concept to allow for inbreeding. This work on reducing
the difficultly in calculation of A~ allows for much faster solutions to the mixed model
equations when dealing with the animal models, and allows this BLUP methodology
to be used in very large and complicated data sets in animal breeding, where the
pedigrees can contain numerous entries, eg in dairy cattle where the numbers can

reach hundreds of thousands or millions.

2.7.1 Examples

Mentioned above was that these relationship matrices can be very large very quickly.
This is due to the nature of their construction in that they relate every individual in
the data set to every other individual in the set. This will create an nXn matrix in
a data set with n individuals. Thus when data sets get large, as they often do in the

animal breeding context, very large matrices are created. As a small example of how
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Table 2.1: Simple Example Pedigree

Animal Sire Dam

Tt W N =
1
1

Table 2.2: Example Pedigree - Slight Inbreeding

Animal Sire Dam

-1 O T W N
CU = o = = !
[ I S NI

these are constructed, if we take 5 individuals related according to the pedigree given
in Table 2.1, we obtain the relationship matrix in equation 2.7.1. Note that in the
pedigree animals listed as a "-" are unknown, and in these examples are considered

to be non-inbred and unrelated.

10010
010412
A=10 01 0 3 (2.7.1)
2 2 01 g
053 11

A slightly more complicated example, including some inbreeding and more indi-
viduals as detailed in the pedigree in table 2.2, provides the relationship matrix in

equation 2.7.2.
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1 0 0.5 0.5 0.5 0.75 0.625
0 1 0 0.5 0.25 0.25 0.25
0.5 0 1 0.25 0.625 0.375 0.5
A=1 05 05 025 1 0.625 0.75 0.6875 (2.7.2)
0.5 025 0.625 0.625 1.125 0.5625 0.84375
0.75 0.25 0375 0.75 0.5625 1.25  0.90625
0.625 0.25 0.5 0.6875 0.84375 0.90625 1.28125

2.8 Joint Estimation

The BLUP model as described so far can be further extended in several ways. The
first that will be mentioned here is extending the model to situations where two or
more vectors of random effects are of interest. Expressing these two vectors as u; and

u9, which are uncorrelated with each other, the mixed model then becomes
Y = X8+ Ziuy + Zous + €

The vectors of random effects can have different dimensions (say ¢; and ¢,), with
n individuals in y we have Z; as n X ¢; and Z, is n X ¢, using the same notation as

previous but with G; being the ¢; x ¢; covariance matrix for u; the MME’s then are

XTRX XTR7, XTRZ,
ZIR'X Z —-1"R'Z, + G} ZI R 7,
ZIR'X ZIR™'Z, ZIR1Z, + Gy*

B XTRy

iy | = | ZTRy

s ZIR™ 1y

This can be extended to include additional uncorrelated vectors of random effects
if desired, following the same pattern. An example of this is the Maternal Effects
model, where the phenotype of an individual is modelled on both genetic and en-
vironmental components of maternal effects, as well as an individuals direct genetic

contributions. In this case, there end up being three vectors of random effects, one
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for each component mentioned. For more information on this model in particular, see
Quaas and Pollak(1981) [35].

Another possible extension is that of multivariate BLUP. In the particular case
of breeding value estimation with multiple traits, it is possible to preform univariate
BLUP on each of the individual traits, however this is inefficient. Often it is the case
that traits can be correlated, and one can provide information about others. Dealing
with BLUP in a multivariate context takes this information into account using condi-
tional expectations, but does require accurate estimates of genetic and environmental
covariances among the traits and has high computational demands. For further in-

sight into multivariate BLUP methods, see Henderson and Quaas(1976) [19].

2.9 Variance-Component Estimation

When dealing with BLUP’s in the genetic context, variance components are often
estimated using Maximum Likelihood estimation (ML), or Restricted maximum like-
lihood (REML), rather than ANOVA. This is due to a few factors, namely that
ANOVA generally requires sample sizes be well balanced. However this is often not
the case when dealing with quantitative genetics, as individuals are often lost, or
group sizes aren’t similar to begin with. The need for this isn’t present in ML or
REML. The other reason ML and REML is preferred is related to the structure of
the pedigree, since individuals are often strongly related to one another, it is not at
easy to analyze them jointly with ANOVA as it is other methods.

We will now investigate the particular use of ML and REML in the context of the
general mixed model that we’ve been investigating. In general in the genetic context
REML is used far more frequently than ML, but it is useful to start with ML, as
REML can be expressed as a linear transform of a ML problem.

Start with the general mixed model as before, y = X f+Zu+e where u ~MVN(0, )
and e ~MVN(0, R), this implies that y ~MVN(X3,V) where V = ZGZ" + R. We
then obtain the probability density of y as

p(y|XB,V) = (2m)" 3|V | zexp[—L(y — XB)TV "} (y — XB)]

We then take the natural log of the above to obtain the log-likelihood of 5 and V'

given the observed data
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L(B,VIX,y) = =5In(27) — sIn|[V] = 3(v = XB)TV " (y — XB)

This is the log-likelihood for the general mixed model as above, however for the
following discussion we will consider the genetic case where u = a is a vector of
additive genetic values (breeding values). We then try to estimate the variance com-
ponents that are in G and R, namely G = 0% A where A is the relationship matrix,
and R = o%1, as well as adding the possibility of extending the model as spoken of

before to the following

m
y=XB+) Zwu+e
i=1
here we have m vectors of random effects, all assumed to be uncorrelated with
u; ~MVN(0, 02 B;), where B; is a matrix of known constants. The log-likelihood is
still given as above, but now
m
i=1
Using the results for matrix derivatives taking the derivative of the log-likelihood
with respect to [ is

(ﬁﬂgg@y) _ XTv—l(y i Xﬁ)

before we do the variance components if we rewrite in terms of deviations as

follows it becomes easier to see the bias in the ML estimates more easily.
(y = X3V y = XB) = (y = XB)'V 'y — XB) + (B = B)' XTVIX(5 - B)

Take the above and substitute it into the log-likelihood then taking the derivative

with respect to the variance components gives

PG = —5tr(VIIVi) + 5y — XB)TV VIV (y - X))
+1(B = B)TXTV IV IX(B - B)

where

2
Jo;

V= ov. )1 when ¢? = 0%,
' ZiBiZiT otherwise
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We then take the previous derivatives and set them equal to zero and solve we
obtain the ML estimate of the fixed effects, 3 = (XTV1X)"' X7V 1y which is the
same as the BLUE obtained earlier for the fixed effects. More interesting is setting
B = [ in the derivative with respect to the variance components and rearranging as

follows to obtain the ML estimate of the variance components.

~ ~

(V) = (y = XB)' VIV (y — XB) (2.9.1)
Simplifying the above using the matrix
P=V1-vix(XTv-ix)-txty-!

we obtain

tr(V-1V;) = 4T PV, Py
where we use P as a reminder that P is a function of V', which we are trying
to estimate. So with the m random effects, the set of m + 1 ML equations for the

variances of random effects are

tr(V-1) = 4T PPy for o2,
tr(V12,B;ZF) = yTPZ;B; ZF Py for 02,1 <i <m

with P using

m
V=Y 67ZBZl +6%1 (2.9.2)
i=1

Note that unfortunately B is dependant on V which is itself contains variance
components that we wish to estimate. The solutions also contain V‘l, which means
that they are non-linear functions of these variance components. This gives the result
that there is no simple solution. However the standard errors of the ML estimates can
be obtained from the Fisher information matrix as normal in the theory of Maximum

Likelihood, these are given as
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o(BiB;) = (XTV1X);! and o(0?0?) = (S71);; where

195
Sy = str(V'V;V1V;) where V; is given as above.

The ML estimates for fixed and random effects are uncorrelated. That is, o(3;,0;) = 0.

REML on the other hand, is based on a linear transformation of the observations
y, that removes the fixed effects from the model. To do this, say we have a ma-
trix K associated with the design matrix X such that KX = 0. If we apply this

transformation to the mixed model, we obtain the following
yv'=Ky=K(Xpf+Za+e)=KZa+ Ke

In this case, y* is equivalent to the residual deviations from the estimated fixed
effects. That is y7 = y; — 7. Since REML is just a linear transform of ML estimates,
REML estimates of variance components are the same as ML estimates. Therefore,

we can use the ML solutions above but with the following transformations
Ky fory, KX =0 for X, KZ for Z, KVKT for V

It seems like we have added an extra complication in that we now need to calculate

the K matrix as well, however Searle et al.(1992) [37] showed that K satisfies
P=KT(KVKT)"'K
Then note that
() (V) ly" = (" K (KVET) " (Ky) = y" Py

Substituting this into equation (2.9.1), and performing some rearrangement the

3

ML equations yield the REML estimators as

tr(P) = yT PPy for 0%
tr(PZAZT) = yT"PZAZ" Py for 0%

REML does not give estimates of (3, since we remove the fixed effects by setting
g*=0.

This transformation y* = KY only depends on the design matrix, and this ap-
proach still holds in the m uncorrelated random vectors case as before, with the

equation then being
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v => KZu;+ Ke
i=1
and the m + 1 REML equations for the variance components become

tr(P) = yT PPy for 0%
tr(PZB; ZZT) = yTPZ;B; ZT Py for 02,1 <i<m

where P is now a function of V = 3627, B, ZF + 621
In REML, the information matrix has no elements corresponding to the fixed
effects, only the variance component estimates. This means that the fisher information

matrix F'is ' = S where S is

S;; = Ltr(PV,PV;)

J 2

where V' is given as before (2.9.2). Estimates of the sampling variance and covari-
ance of the variance-component estimates are obtained by the inversion of S.

As above, REML methods can be extended to the multivariate case. Similar
log-likelihoods are constructed and solved. For details on this see, Meyer(1985) [26],
Schaeffer(1986) [36], Taylor et al(1985) [39], Jensen and Mao(1988) [20], and Thomp-
son and Hill(1990) [40].

Mentioned above was the fact that the ML and REML equations are not straight-
forward to solve, as they are non-linear. Only in specific cases, namely completely
balanced designs, are closed solutions able to be found. It is possible to find solutions
using grid searching, however this can be computationally difficult when the number
of elements of S increases, as each element will increase the dimensionality of the
search. REML reduces this, as it eliminates [ entirely, but the REML likelihood
function is much harder to compute. Thus, numerical, iterative solving methods are
generally used, such as the Newton-Raphson algorithm and the EM algorithm. These
methods can still be computationally intense when we have large pedigrees, as every
step will require large matrix inversions. Detailed reviews of different methods to solve
these equations can be found in Meyer(1989b) [28|, Harville and Calllanan(1990) [14],
and Searle et al.(1992) [37].

There also exist several pieces of software designed to solve REML equations for
modelling purposes. The common commercial option is ASREML by VSN interna-

tional. This is a commercially available product in common use in the biosciences
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for analysis of mixed models, designed for use with genetic based data sets, and in-
cludes a built in R link to make programming easier for users who prefer to use the
R programming environment. A second common choice is WOMBAT, written and
maintained by Karin Meyer [29]. It is specifically designed to fit linear mixed models
using REML techniques to estimate covariance components. Once again, it can be
applied to many different problems and data sets, but it’s main purpose is to deal
with genetic models. Major common statistical analysis softwares have packages to
deal with REML, such as R’s nlme, and Ime4; SAS, STATA, and SPSS also have ways
of performing REML analysis. Other stand alone software can deal with REML effec-
tively, however ASREML and WOMBAT were designed for genetic data in particular,
hence the special mention.

Finally, an important result is that Cressie and Lahiri(1993) |6] give conditions
under which it is possible to show that REML estimates are asymptotically normal,
with mean zero, and a variance equal to the inverse of the restricted information
matrix. They do this using a slightly different notation then we do, taking the random
effects and incorporating them into the error structure, such as we showed Goldberger
did previously. The notation they use is Y ~ N(Xf3,>(0)). They do so by first
deriving the REML estimates as above, however in a more general context rather
than the particular case of genetics like we use. They then use some results from
Sweeting(1980) [38] that were developed for regular maximum likelihood estimation
and its asymptotic properties to show that REML estimators are asymptotically
normal under certain conditions. These conditions are reasonable, mostly requiring
smoothness of the variance matrix » (), requiring that it is twice differentiable.
In our notation this would be a requirement of the variance matrix V. This is an
important result, as we now know that REML estimation can be equally as accurate

as ML estimation, knowing its asymptotic properties.



Chapter 3

Social Interaction and Simulation Results

Mentioned previously was that the model proposed by Bijma an Muir contains factors
to account for the "social effect” that fish in an aquaculture setting experience. It was
discussed how important these factors can be in this setting, especially when compared
to other animal breeding programs. This model is the focus of our study, and is used
as the tool to analyse simulated data in order to determine its estimation effectiveness.
Here we will explain the basics of what are known as Indirect Genetic Effects, and
Direct Genetic effects, as these are the two main components of the proposed model.
We then will go into more detail about this model and its particulars, as well as

starting the simulation and exploring the results obtained.

3.1 IGE’s and DGE’s

Social interactions in general, such as competition or cooperation have been shown
to be important to natural selection (Darwin(1859) [7], Hamilton(1964) [13], Wil-
son(1975) [43], Frank(1998) [10], Keller(1999) [23|, Clutton-Brock(2002) [4]), however
most research focus in this area has been on fitness-effects on individuals, and success
of populations. Evidence suggests, that social interactions between individuals in
either natural populations, or when in captivity, can cause individual phenotypes to
depend on the genetic make up of other individuals (Wolf et al.(1998) [44], McGlothlin
and Brodie(2009) [25]). These sorts of effects are knows as Indirect Genetic Effects,
or IGE’s, namely a heritable trait of one individual, that has an effect on a trait value
of another individual. An example is maternal genetic effect of a mother on prewean-
ing growth weight of her offspring in mammals (Willham(1963) [42], Mousseau and
Fox(1998) [30]). IGE’s may have very important effects on response to natural or
artifical seletion, in some cases these can be very drastic effects(Griffing(1967))‘[12],
and thus knowing how they interact with and relate to Direct Genetic Effects, or

DGE’s, is useful for understanding this response to selection.

32
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Mixed models can be used to estimate the magnitude of IGE’s, and their contribu-
tion to heritable variance within populations. These models allow to estimate IGE’s
without the need to observe the interactions, or even knowledge of what in particular
they are. This is due to the splitting of fixed and random effects in mixed models,
allowing us to determine the magnitude of the effects on heritable variance from IGE’s
and DGE’s, and then compare them to each other. In general, knowledge about this
relationship is still limited, and more needs to be done to understand IGE’s, and how
they contribute to natural selection and genetic improvement in populations for the
breeding of animals or plants.

Bijma(2010) [2] suggests using a variance component model, with the genetic
variance in trait value split up into a direct component due to individual genotype,
and an indirect component due to the genotypes of other individuals in the social
group (Willham(1963) [42|, Griffing(1967) |12]). This model is as follows.

Consider a population with groups of n, members, with interactions occurring
between the members of each group. The trait value of individual 7 is expressed as
the sum of a direct effect due to that individual, Pp;, and the sum of the indirect

effects Pg; of each of the other members of the group.

Nw—1
P=Pp;+ > Ps;
j=1
Thus, ¢ is the focal individual, j is one of its group mates, D is direct effects,
S indirect effects and the sum is taken over the n, — 1 fellow group members of

individual 7. He then restructures this into an additive genetic component (heritable)

A, and a non-heritable component E.(Griffing(1967) [12]).

nwy—1 ny —1
Pi=Api+Ep;+ > As;j+ > Es
j#i JFi

Here, Ap; is the DGE of the individual in focus, Ep; is the non-heritable direct
effect for ¢, Ag; is the IGE for group member j, and Ep ; is the non-heritable indirect
effect from j.

On a larger scale, at the population level, these IGE’s and DGE’s are often mea-
sured by their covariances, as we are often interested in the population as a whole,

rather than particular individuals. Thus we are interested in the variance of DGE
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0%, of IGE o7 and their covariance 0,,,,. In particular for Bijma, the total heri-
table variance due to the joint effect of DGE’s and IGE’s is of interest, and the total
impact of an individual’s genes on the mean trait value of a population, (size n), is

given by the individual’s total breeding value (TBV) (Bijma et al.(2007) [3]).

TBV; = ADJ' + (n — I)ASJ (311)

Note that in equation 3.1.1, TBV is a heritable property of an individual, as it is a
more general form of the classical breeding value, and thus it is the relevant property
for selection in traits that are affected by IGE’s.

Then the total heritable variance in the trait due to both IGE’s and DGE’s is
equal to the variance in TBV’s among individuals (Bijma et al.(2007) [3]).

o2y = JiD +2(nw — 1)oa,s + (nw — 1)2‘71245
Interpretation of o2 is often done by expressing heritable variance relative to
phenotype variance. Heritability measures heritable variance in relation to phenotypic
variance, h> = 0%/0%. The same relationship can apply in the case of IGE’s. In
this case we can define the ratio of total heritable variance over phenotypic variance

(Bergsma(2008) [1]).

3.2 Simulation Details

Investigating how this model that includes IGE’s and DGE’s behaves under various
conditions is important, so that interpretation of experimental results can have more
meaning. Thus, as simulation was run based on this model in order to determine

accuracy of prediction. There are five important parameters involved in the parameter
2

88 7

space, those being, 0%, 0%, , 02;, 0%, and ¢2. Namely, the variance of the direct genetic
effect, the variance of the indirect genetic effect (or social effect for simplicity), the
covariance of these two, the variance of the fixed "cage" effect, and the error. This

will be the notation used going forward, but these are the same values as mentioned
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in the previous section, which used Bijma’s notation. What we want to do is see
how well the model can predict these terms under differing initial conditions for
them. In particular we wish to focus on the direct, and social effects, as well as their
covariance, as these are the interesting terms. The cage effect is a fixed effect, and
error is a random process, and thus they do not particularly help us in determining
how the IGE’s and DGE’s interact with each other. However controlling for them in

our modelling will ideally allow us to obtain more accurate results.

The simulation was set up to attempt to mirror theoretical optimums Bijma|2|
suggested while still being reasonable for data generation. His conclusion was that
that 2 families per cage would be optimal for accuracy. The data was structured
using a few parameters that allow generation of the necessary data structure, the
most important of which is the pedigree, or the relationship between each individual
fish. For the purposes of simplifying the analysis, we generate all of the fish as full-
sibs, meaning offspring from a family share the same two parents. This, plus assuming
that none of the offspring are inbred creates the simplest pedigree for analysis. For
each run of the simulation data for each individual fish was generated, using 30 dams,
with one sire per dam, creating 30 individual families. The number of groups or cages
was determined by assigning 2 families per cage, with 5 individuals from each family
in these cages. In order to attempt to reduce the number of cages while still exposing
each family to a large amount of the other families, the family paring per cage were
assigned in a cyclical manner. Finally, a second block following the same structure

as this was also generated to create some replication.

Fixed, "true" values were then set for the five parameters in order to generate
data based on the experimental design as above. The generated data was then anal-
ysed using Karin Meyers” WOMBAT software [29| for analysing mixed models using
BLUP and the mixed model proposed by Bijma. This allowed an estimation of the
five parameters such that we can compare them to the initial set values, and we can
determine accuracy of prediction. In particular, it is interesting to determine how
different levels of different parameters interact with each other. Thus, multiple sim-
ulations with different initial values is valuable. This leads naturally to a factorial

design analysed with ANOVA.

This was done by selecting high and low initial values for each of the parameters
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and creating a 2° factorial design. Each of these 32 designs were then simulated as
above with 500 repetitions for each parameter set, generating new data using the same
generation scheme described above each time, then analysed through ANOVA in two
different ways. The first was done by taking the squared error between the initial
"true" value of a particular parameter, and the estimated value for that parameter as
the response, with the levels of all of the parameters used as the factors. This gives
16000 data points with which to infer from if the selected parameters estimated error
has any relationship to the initial conditions of all five parameters. The second way
was just using the estimated value itself rather than the error, as patterns could per-
haps be perceived that way as well. This was done for 3 of the interesting parameters,
the Direct Variance, the Social Variance and the Covariance between the two. The
error and cage effects were left out as we are interested in DGE’s and IGE’s, rather
than fixed and error effects. However these effects were included in the modelling
for accuracy purposes. This gives a total of 6 base ANOVA analyses, two for each
of the parameters. More analysis was done to each parameter estimation after these
initial ANOVA’s to see if better results could be obtained. Details for each individual

parameter are as follows in Table 3.1.



Table 3.1: Design Table for the 2° Factorial Design

Design SS SD DD E C
1 0.001 0.0 0.1 0.1 0.1
2 0.009 0.0 0.1 0.1 0.1
3 0.001 0.3 0.1 0.1 0.1
4 0.009 0.3 0.1 0.1 0.1
5 0.001 0.0 0.9 0.1 0.1
6 0.009 0.0 0.9 0.1 0.1
7 0.001 0.3 0.9 0.1 0.1
8 0.009 0.3 0.9 0.1 0.1
9 0.001 0.0 0.1 0.4 0.1
10 0.009 0.0 0.1 0.4 0.1
11 0.001 0.3 0.1 0.4 0.1
12 0.009 0.3 0.1 0.4 0.1
13 0.001 0.0 0.9 0.4 0.1
14 0.009 0.0 0.9 0.4 0.1
15 0.001 0.3 0.9 0.4 0.1
16 0.009 0.3 0.9 0.4 0.1
17 0.001 0.0 0.1 0.1 0.4
18 0.009 0.0 0.1 0.1 0.4
19 0.001 0.3 0.1 0.1 0.4
20 0.009 0.3 0.1 0.1 0.4
21 0.001 0.0 0.9 0.1 0.4
22 0.009 0.0 0.9 0.1 0.4
23 0.001 0.3 0.9 0.1 0.4
24 0.009 0.3 0.9 0.1 0.4
25 0.001 0.0 0.1 0.4 0.4
26 0.009 0.0 0.1 0.4 0.4
27 0.001 0.3 0.1 0.4 0.4
28 0.009 0.3 0.1 0.4 0.4
29 0.001 0.0 0.9 0.4 0.4
30 0.009 0.0 0.9 0.4 0.4
31 0.001 0.3 0.9 0.4 0.4
32 0.009 0.3 0.9 0.4 0.4

3.3 ANOVA and Other Results

3.3.1 Direct Variance
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Figure 3.16 at the end of the chapter shows a figure containing boxplots of the direct

genetic variance estimates for the 32 designs used. The green line on the plot is a

marker to show the true value for the variable’s low value, while the red is represen-

tative of the high value. In general it seems that in most of the designs the estimates

were fairly accurate, with Designs 3, 4, and 13 being the least accurate. The former

two looking as if they are close to the high value, when they should be towards the

low value, and design 13 at the low, while it should be near the high value. There

are a number of designs with large outliers, but it is noteworthy that there are pat-

terns of designs with almost none. These are the designs that had a covariance in

the initial parameter set, rather than no covariance. These outliers are likely due to
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Table 3.2: Direct Error ANOVA After Selection

Effect Df  Sum Sq Mean Sq F value | Pr(> F)
SS 1 0 0.06 0.143 0.7057
SD 1 200 200.20  441.165 | < 2e-16
DD 1 0 0.02 0.043 0.8359
E 1 0 0.15 0.339 0.5603
C 1 12 12.28 27.067 | 1.99e-07
SS:DD 1 7 7.36 16.213 | 5.69e-05
SD:DD 1 o3 52.94 116.668 | < 2e-16
SD:E 1 43 43.47 95.785 | < 2e-16
DD:E 1 71 71.40 157.331 | < 2e-16
SD:C 1 13 13.13 28.935 | 7.59e-08
DD:C 1 17 16.71 36.825 | 1.32e-09
E:C 1 17 16.69 36.787 | 1.35e-09
SS:SD:DD 1 2 2.25 4.950 0.0261
SS:DD:C 1 2 1.95 4.288 0.0384
SD:DD:C 1 15 14.75 32.513 | 1.21e-08
SD:E:C 1 15 14.99 33.037 | 9.21e-09
DD:E:C 1 25 24.73 54.489 | 1.64e-13
SS:SD:DD:C 1 2 1.94 4.281 0.0386
SD:DD:E:C 1 2 2.43 5.363 0.0206
Residuals 15970 7247 0.45

REML failing to converge, but it is interesting that the estimation variability seems
to collapse in the case where covariance is present. However this behaviour shows
itself in boxplots for the social variance as well, and may be due to the nature of the
data generation.

There were several ANOVA’s performed, and starting with the Direct Genetic
Effect variance ANOVA we see the results in Table 3.2. These results are shown
after model selection procedures. There is a lot of significance, particularly in many
of the second and third order interaction terms. The reason that these significances
appear is likely due to the minor significance of the two 4" order interaction terms.
In general, all of the ANOVA’s performed should have fairly significant results, as we
have a very large sample size, giving a large residual degrees of freedom and decreasing

the size of the p-values.

However, if we look at the QQ plot for the ANOVA in Figure 3.1, we can see
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Figure 3.1: QQ Plot for Direct Error ANOVA After Selection

issues, namely with an incredibly long upper tail that seems to imply deviation from
normality. This would lead to attempting to explore other options for analysis, namely
attempting transforms to remove the tailed nature. A log transform of the data was
attempted and then analysed, yielding the ANOVA results in Table 3.3. We see
essentially the same results as above, with significant high order interactions, albeit
more significant. The same problem arises in the QQ plot in Figure 3.2 as well, with

large tails that still seem to deviate too much.



Table 3.3: Log Transform of Direct Error ANOVA After Selection

Effect Df  Sum Sq Mean Sq  F value Pr(>F)
SS 1 50 50 12.114 | 0.000502
SD 1 44085 44085  10649.845 | < 2e-16
DD 1 1 1 0.138 0.710101
B 1 21731 21731 5249.583 < 2e-16
C 1 23947 23947 5784.992 < 2e-16
SS:DD 1 244 244 58.980 1.68e-14
SD:DD 1 23550 23550 5689.182 < 2e-16
SD:E 1 13919 13919 3362.553 | < 2e-16
DD:E 1 19147 19147 4625.472 < 2e-16
SD:C 1 18921 18921 4570.741 < 2e-16
DD:C 1 949 949 229.259 < 2e-16
E:C 1 34546 34546 8345.499 | < 2e-16
SS:SD:DD 1 238 238 97.531 3.51e-14
SS:DD:C 1 85 85 20.461 6.13e-06
SD:DD:C 1 1608 1608 388.554 < 2e-16
SD:E:C 1 37712 37712 9110.242 < 2e-16
DD:E:C 1 61 61 14.642 0.000130
SS:SD:DD:C 1 84 84 20.205 7.01e-06
SD:DD:E:C 1 6383 6383 1542.021 < 2e-16
Residuals 15970 66108 4
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Since we seem to be having residual issues in both the transformed and untrans-

formed ANOVA’s it is perhaps worth investigating them further in order to determine

if a subset of these residuals is causing issues. The histogram in Figure 3.3 is of the

residuals for the ANOVA results contained in Table 3.2. It seems to show that the

large majority of the residuals are in a small range with only a few being large. If we

took the range (—2,2), we obtain approximately 300 residuals that fall outside this

range. We can then bin the residuals, setting their value to 1 if they are inside of

the range, and 0 otherwise. A Logit regression was then performed on these binned

values versus the levels of the design variables to see if particular designs were the
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Figure 3.3: Histogram of Residuals for the Non-Transformed Direct Error ANOVA

ones causing the larger residuals, as this would be useful in both determining if the
model breaks down under particular conditions, or if there are perhaps better ways
to use this data for prediction.

Table 3.4 is the results table for the Logit regression performed on the binned
residuals. There are some highly significant terms, however we can see the same issue
with the QQ plot in Figure 3.4, where a large tail deviates particularly strongly, which
doesn’t seem to indicate any particular pattern to the residuals or a potential solution

to the residual issues.
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Table 3.4: Direct Error Logit Regression on Binned Residuals

Effect Estimate  Std. Error z value | Pr(>|z])
(Intercept) 3.5019 0.3635 9.635 < 2e-16
SS -139.6152 35.3622 -3.948 | 7.88e-05
SD 10.7489 1.0774 9.977 < 2e-16
DD -0.5880 0.5514 -1.066 | 0.286267
E 2.1552 0.9871 2.183 | 0.029003
C 3.0128 1.0399 2.897 | 0.003766
SS:DD 365.6609 75.2806 4.857 | 1.19e-06
DD:E 5.6722 1.7606 3.222 | 0.001274
DD:C -3.3128 1.1319 -2.927 1 0.003425
E:C -14.4671 3.7925 -3.815 | 0.000136
SS:DD:E -1341.7519 2399798  -5.591 | 2.26e-08
SS:E:C 1125.8528  341.9474  3.292 | 0.000993

It may be worth attempting to remove some of the problem residuals. While
removing information is not often a good solution, in our case we are simulating
data, and some of the bad residuals may be cases of the model not converging well
for that particular run. Removing some of the bad residuals could give insight to
weather or not this was the case. Table 3.5 is the ANOVA table for the Direct Effect
variance error estimation, however with all of the residuals outside of the (—2,2)

range removed.
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Table 3.5: Direct Error ANOVA After Selection With Removed Residuals

Effect Df  Sum Sq Mean Sq F value | Pr(>F)
SS 1 0 0.27 0.611 | 0.434352
SD 1 191 190.84  436.031 | < 2e-16
DD 1 0 0.08 0.184 | 0.668123
E 1 0 0.02 0.049 | 0.825401
C 1 11 10.61 24.249 | 8.55e-07
SS:SD 1 0 0.31 0.713 | 0.398481
SS:DD 1 9 9.35 21.355 | 3.85e-06
SD:DD 1 26 95.63 127.094 | < 2e-16
SS:E 1 0 0.01 0.019 | 0.889825
SD:E 1 47 47.46 108.442 | < 2e-16
DD:E 1 65 64.57 147.536 | < 2e-16
S5S:C 1 0 0.02 0.056 | 0.813553
SD:C 1 15 15.22 34.784 | 3.76e-09
DD:C 1 15 14.74 33.671 | 6.65e-09
E:.C 1 15 14.84 33.907 | 5.89e-09
SS:SD:DD 1 9 9.27 21.182 | 4.21e-06
SS:SD:E 1 0 0.01 0.019 | 0.889005
SS:DD:E 1 1 1.32 3.016 | 0.082482
SD:DD:E 1 0 0.04 0.081 | 0.776557
SS:SD:C 1 0 0.02 0.049 | 0.824964
SS:DD:C 1 6 5.89 13.460 | 0.000245
SD:DD:C 1 17 16.55 37.806 | 8.00e-10
SS:E:C 1 7 7.30 16.681 | 4.45e-05
SD:E:C 1 17 16.78 38.341 | 6.09e-10
DD:E:C 1 22 21.78 49.759 | 1.81e-12
SS:SD:DD:C 1 6 5.87 13.422 | 0.000250
SS:SD:E:C 1 7 7.47 17.056 | 3.65e-05
SD:DD:E:C 1 6 5.98 13.656 | 0.000220
Residuals 15719 6880 0.44




46

Normal Q-Q

Standardized residuals

Theoretical Quantiles
aov(log(DirectVar) ~SS * SD *DD *E * C — SS:SD:DD:E - SS:SD:DD:E:C - S¢

Figure 3.5: QQ Plot for Direct Error ANOVA After Selection With Removed Resid-
uals

We can see similar results to before in which of the interactions are significant,
and if we look at the QQ plot for this ANOVA shown in Figure 3.5, we can see
that the same issues arise with long tails that seem to deviate from normality. A
log transform for this model was also done, but the results look similar to the non-
transformed version with deviating tails as well.

Instead of using the squared error as above, here we use the unmodified version of
the estimated Direct effects variance. This allows us to investigate if the magnitude
of the estimates is affected by the initial true values of the variances, rather than the
error of the estimates. In Table 3.6 again we see that there are a lot of significant
variables, probably due to the significance of several fourth order interaction terms.
The QQ plot in Figure 3.6 that follows shows the same issues we continue to have,

that of long tails deviating from normality, especially in the upper tailed case.



Table 3.6: Unmodified Direct Variance ANOVA After Selection

Effect Df Sum Sq Mean Sq F value | Pr(>F)
SS 1 14.2 14.2 120.902 < 2e-16
SD 1 26.2 26.2 222.436 < 2e-16
DD 1 1582.9 1582.9  13464.199 | < 2e-16
E 1 96.2 96.2 818.305 | < 2e-16
C 1 8.3 8.3 70.813 < 2e-16
S5S:SD 1 14.2 14.2 120.584 < 2e-16
SS:DD 1 3.8 3.8 32.451 1.24e-08
SD:DD 1 5.2 5.2 44.544 2.57e-11
SS:E 1 13.9 13.9 117.896 < 2e-16
SD:E 1 33.6 33.6 285.442 < 2e-16
DD:E 1 13.8 13.8 117.101 < 2e-16
SS:C 1 16.3 16.3 138.655 < 2e-16
SD:C 1 93.9 93.9 799.078 | < 2e-16
DD:C 1 76.3 76.3 648.751 < 2e-16
E:C 1 65.5 65.5 356.747 | < 2e-16
S55:5D:DD 1 3.8 3.8 32.609 1.15e-08
SS:SD:E 1 13.8 13.8 117.633 < 2e-16
SS:DD:E 1 16.5 16.5 140.545 | < 2e-16
SD:DD:E 1 32.8 32.8 279.046 | < 2e-16
S5S:SD:C 1 16.3 16.3 138.757 | < 2e-16
SS:DD:C 1 7.4 7.4 63.031 2.17e-15
SD:DD:C 1 0.5 0.5 3.871 0.0491
SS:E:C 1 7.2 7.2 61.233 9.39e-15
DD:E:C 1 12.9 12.9 109.914 < 2e-16
SS:SD:DD:E 1 16.6 16.6 140.779 < 2e-16
SS:SD:DD:C 1 7.4 7.4 63.055 2.14e-15
SS:SD:E:C 1 4.2 4.2 36.010 2.01e-09
SS:DD:E:C 1 10.2 10.2 86.756 < 2e-16
SD:DD:E:C 1 72.4 72.4 615.468 < 2e-16
Residuals 15960 1876.3 0.1
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Since we have the same problem in the QQ plot as before, a log transform was
performed as before. The results of doing this for the unmodified Direct variance are
in Table 3.7 below. The fourth order interactions are still highly significant, and the
QQ plot in Figure 3.7 shows the same deviation from normality, however in this case

the lower tail seems to be more of an issue than the upper.
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Table 3.7: Log Transform Unmodified Direct Variance ANOVA After Selection

Effect Df Sum Sq  Mean Sq F value Pr(>F)
SS 1 103 103 163.29 < 2e-16
SD 1 0 0 0.14 0.709
DD 1 13210 13210 20871.82 < 2e-16
1 1 1435 1435 2267.42 < 2e-16
C 1 121 121 191.95 < 2e-16
SS:SD 1 103 103 162.90 < 2e-16
SS:DD 1 29 29 46.19 1.11e-11
SD:DD 1 70 70 111.11 < 2e-16
SS:E 1 64 64 101.16 < 2e-16
SD:E 1 429 429 677.90 < 2e-16
DD:E 1 415 415 655.05 < 2e-16
SS:C 1 89 &9 141.22 < 2e-16
SD:C 1 649 649 1025.46 < 2e-16
DD:C 1 642 642 1014.42 < 2e-16
E:C 1 472 472 745.93 < 2e-16
SS:SD:DD 1 30 30 46.63 8.88e-12
SS:SD:E 1 64 64 100.78 < 2e-16
SS:DD:E 1 71 71 112.85 < 2e-16
SD:DD:E 1 944 944 1491.55 < 2e-16
SS:8SND:C 1 89 89 141.22 < 2e-16
SS:DD:C 1 45 45 70.73 < 2e-16
SD:DD:C 1 50 50 78.72 < 2e-16
SS:E:C 1 57 57 90.42 < 2e-16
DD:E:C 1 72 72 113.33 < 2e-16
SS:SD:DD:E 1 72 72 113.32 < 2e-16
SS:SD:DD:C 1 45 45 70.70 < 2e-16
SS:SD:E:C 1 86 86 136.61 < 2e-16
SS:DD:E:C 1 61 61 96.96 < 2e-16
SD:DD:E:C 1 432 432 682.90 < 2e-16
Residuals 15960 10101 1

3.3.2 Social Variance

The following is using the social, or indirect variance as the response variable rather
than the direct variance as above. Figure 3.17 and the end of the chapter shows box
plots for the estimates of the indirect variance for each of the 32 designs. The green
line on the plot is a marker to show the true value for the variable’s low value, while
the red is representative of the high value. This plot isn’t very helpful as there are
a few large outliers, and since the estimated values are so small we can’t really tell
what’s going on here. Figure 3.18 is the same plot with limited axes in order to cut out
the large outliers zoom in on what’s going on. We can see that in general the indirect
variance is estimated more poorly than the direct one, with larger boxes and average
estimates further away from the true values. We do see the same pattern as before
in that the designs containing covariance do not have as many outliers, however even
with this some designs preform poorly, namely designs 15 and 16, which are designs

with high and low indirect variance and high direct and error variances. There are



Figure 3.7:
Selection

o1

Normal Q-Q

Standardized residuals
5

-10

-15

I I I I I
-4 -2 0 2 4

Theoretical Quantiles
aov(log(DirectVarT) ~SS * SD *DD * E * C — SD:E:C - SS:SD:DD:E:C)

QQ Plot for Log Transform Unmodified Direct Variance ANOVA After



52

also a few cases of a design estimating a value closer to the low value when it should
be high, or vice versa, namely in cases 4, 7, 12, 20, 23, 27 and 32.

The ANOVA shown in Table 3.8 is for the model after selection, and it seems
to show that there are many less significant factors than in the direct variance case.
There is a mildly significant third order interaction, which forces many of the other
variables to remain in the model. The most significant factor is the covariance, which
is not unexpected. The QQ plot for the ANOVA in Figure 3.8 shows similar issues
as before, however it is slightly better. Only the one tail is strongly deviating from

normality, which may result in an acceptable log transform.
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Figure 3.8: QQ Plot for Social Variance Error ANOVA After Selection

Table 3.8: Social Variance Error ANOVA After Selection

Effect Df  Sum Sq Mean Sq F value | Pr(>F)
SS 1 0 0.4263 0.961 0.3269
SD 1 2 2.4816 9.595 0.0180
DD 1 0 0.0923 0.208 0.6483
E 1 2 1.6015 3.611 0.0574
C 1 1 0.9370 2.113 0.1461
SD:E 1 2 1.7193 3.877 0.0490
SD:C 1 1 1.0243 2.309 0.1286
E:C 1 1 1.4581 3.288 0.0698
SD:E:C 1 1 1.3540 3.053 0.0806
Residuals | 15980 7088 0.4435
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The results of the log transform performed on the social variance, and then model
selected is below in Table 3.9. The results are similar to the non-transformed version,
with a significant third order interaction. However in this case variables are much
more significant. The QQ plot for this transform shown in Figure 3.9 is better than

any shown for the direct variance, although the tails still do not look ideal.

Table 3.9: Social Variance Log Transform Error ANOVA After Selection

Effect Df  Sum Sq Mean Sq F value | Pr(>F)
SS 1 5831 5831 757.557 | < 2e-16
SD 1 5404 5404 702.072 | < 2e-16
DD 1 75 75 9.773 | 0.00177
E 1 3291 3291 427.589 | < 2e-16
C 1 2958 2958 384.331 | < 2e-16
SD:E 1 5584 5584 725.470 | < 2e-16
SD:C 1 1854 1854 240.904 | < 2e-16
E:C 1 913 913 118.656 | < 2e-16
SD:E:C 1 1059 1059 137.627 | < 2e-16
Residuals | 15980 122994 8

As we did for the direct variance, here we preform an ANOVA on the unmodified
estimate of the social variance, the results of which are in Table 3.10. This gives
more significant factors than the previous error estimate variance due to additional
significant third order interaction terms, in particular terms involving the error and
cage effects show up more prominently here, which is what we would expect in this
unmodified case. The QQ plot in Figure 3.10 shows the same one deviating tail

indicating possible transformation.



29

Normal Q-Q

© — 17266410

Standardized residuals
0
|

© @
017.479
I I I I I

-4 -2 0 2 4

Theoretical Quantiles
aov(log(SocVar) ~SS *SD *DD *E * C - SS:DD:SD:E:C - SS:DD:E:C - SS:SD

Figure 3.9: QQ Plot for Social Variance Log Transform Error ANOVA After Selection



26

Table 3.10: Unmodified Social ANOVA After Selection

Effect Df  Sum Sq Mean Sq F value | Pr(>F)
SS 1 0.02 0.0198 1.582 | 0.208445
SD 1 0.28 0.2841 22,717 | 1.89e-06
DD 1 0.06 0.0610 4.881 | 0.027172
B 1 0.01 0.0051 0.406 | 0.524122
C 1 0.22 0.2173 17.375 | 3.09e-05
SS:SD 1 0.02 0.0199 1.595 | 0.206567
SS:DD 1 0.00 0.0010 0.082 | 0.774102
SD:DD 1 0.44 0.4446  35.559 | 2.53e-09
SS:E 1 0.00 0.0048 0.383 | 0.536237
SD:E 1 0.69 0.6906 55.233 | 1.12e-13
DD:E 1 0.19 0.1900 15.197 | 9.72e-05
SS:C 1 0.01 0.0096 0.766 | 0.381427
SD:C 1 0.11 0.1148 9.183 | 0.002446
DD:C 1 0.15 0.1532 12.252 | 0.000466
E:C 1 0.30 0.2958  23.657 | 1.16e-06
SS:DD:C 1 0.04 0.0440 3.515 | 0.060819
SD:DD:C 1 0.32 0.3200  25.595 | 4.26e-07
DD:E:C 1 0.49 0.4905 39.229 | 3.87e-10
Residuals | 15971  199.70 0.0125

The log transform of the unmodified social variance estimates was done, and
the ANOVA table after model selection is shown in Table 3.11. The same pattern
appears in that now there are more significant terms, mostly due to a significant
higher interaction. The QQ plot of this transform in Figure 3.11 shows fairly poor

results. Both tails deviate strongly from normality rather than just the one as before.
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Table 3.11: Log Transform of Unmodified Social Variance ANOVA After Selection

Effect Df  Sum Sq Mean Sq F value | Pr(>F)
5SS 1 3635 3635 1656.771 | < 2e-16
SD 1 1300 1300 992.588 | < 2e-16
DD 1 1822 1822 830.386 < 2e-16
E 1 1344 1344 612.741 < 2e-16
C 1 2809 2809 1280.138 | < 2e-16
5S:SD 1 4561 4561 2078.747 | < 2e-16
SS:DD 1 11 11 4.975 0.025734
SD:DD 1 2987 2987 1361.546 | < 2e-16
SS:E 1 6 6 2.786 0.095098
SD:E 1 2561 2561 1167.185 | < 2e-16
DD:E 1 764 764 348.228 < 2e-16
5S:C 1 40 40 18.007 2.21e-05
SD:C 1 1025 1025 467.388 | < 2e-16
DD:C 1 27 27 12.222 | 0.000474
E:C 1 87 87 39.627 | 3.15e-10
S5S:DD:C 1 30 30 13.623 | 0.000224
SD:DD:C 1 117 117 53.475 2.74e-13
SD:E:C 1 44 44 20.275 6.76e-06
DD:E:C 1 4223 4223 1924.858 | < 2e-16
SD:DD:E:C 1 3763 3763 1715.187 | < 2e-16
Residuals 15969 35037 2

3.3.3 Covariance

Figure 3.19 at the end of the chapter shows the box plots containing the covariance

estimates for the 32 designs. The green line on the plot is a marker to show the true

value for the variable’s low value, while the red is representative of the high value.

There are some interesting things happening in this chart. Initially we see the same

thing as in the previous two figures, that the designs that contained covariance in

their initial parameters do not contain many outliers, with the estimates being much
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more focused. However, interestingly whether the true generating covariance value
was zero or not, the model seemed to predict values close to zero anyway, with only
a few designs deviating much from zero.

The covariance between the two terms was modelled, starting initially with an
error estimate of the squared value of the true value of the covariance subtracted
from the estimated value of the covariance. The ANOVA results in Table 3.12 are
much smaller than either of the social or direct variance models, with only one second
order interaction term remaining significant after model selection. Interestingly the
two most significant variables affecting the error of the estimate is the true value of
the covariance itself, and the interaction term between the cage effect and the residual
error. This is more in line with what we would expect in general, in that the accuracy
of the estimate of the covariance depends largely on the actual value of the covariance,
and the other sources of error. Unfortunately once again we obtain a poor QQ plot

shown in Figure 3.12 with a large upper tail deviation.

Table 3.12: Covariance ANOVA Error After Selection

Effect Df  Sum Sq Mean Sq F value | Pr(>F)
SS 1 0.3 0.281 1.958 | 0.16176
SD 1 20.2 20.213  140.648 | < 2e-16
DD 1 0.0 0.009 0.061 | 0.80477
E 1 0.5 0.520 3.621 | 0.05706
C 1 0.3 0.348 2.419 | 0.11990
E:.C 1 1.5 1.515 10.541 | 0.00117
Residuals | 15983  2297.0 0.144

The log transform of the covariance error is performed and the results shown in
Table 3.13. We obtain even less significant terms, with the error and cage interaction
term no longer remaining significant, however what remains is all of the single terms,
with each being highly significant. The QQ plot for this model in Figure 3.14 shows

strong deviations in both tails.

Table 3.13: Log Transform of Covariance Error ANOVA After Selection
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Figure 3.13: QQ Plot for Log Transform of Covariance Error ANOVA After Selection

Effect Df  Sum Sq Mean Sq F value | Pr(>F)
SS 1 1621 1621 364.81 < 2e-16
SD 1 185422 185422  41736.67 | < 2e-16
DD 1 1289 1289 290.03 < 2e-16
E 1 23 23 11.88 0.000568
C 1 62 62 13.85 0.000198
Residuals | 15984 71012 4

Here we show the ANOVA performed on the unmodified covariance estimates
after model selection was completed in Table 3.14. There are many more significant
terms, especially due to the significance of several of the fourth order interactions.
The significance of so many of the terms doesn’t really tell us very much, especially

since the QQ plot has a strongly deviating upper tail.
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Table 3.14: Unmodified Covariance ANOVA After Selection
Effect Df  Sum Sq Mean Sq F value | Pr(>F)
5SS 1 0.02 0.0228 2.597 | 0.10708
SD 1 0.04 0.0447 5.087 | 0.02412
DD 1 0.00 0.0012 0.131 0.71698
E 1 0.01 0.0087 0.993 | 0.31893
C 1 0.01 0.0054 0.616 | 0.43263
SS:SD 1 0.02 0.0229 2.606 | 0.10647
SS:DD 1 0.00 0.0043 0.493 | 0.48274
SD:DD 1 0.02 0.0196 2.233 | 0.13508
SS:E 1 0.00 0.0005 0.059 | 0.80758
SD:E 1 0.08 0.0807 9.186 | 0.00244
DD:E 1 0.14 0.1378  15.679 | 7.54e-05
55:C 1 0.00 0.0001 0.015 | 0.90120

1
1
1
1
1
1
1
1
1
1
1

SD:C 0.03 0.0323 3.677 0.05519
DD:C 0.02 0.0234 2.668 0.10242
E:C 0.85 0.8462 96.290 | < 2e-16
S5S:SD:DD 0.00 0.0043 0.494 0.48233
SS:SD:E 0.00 0.0005 0.061 0.80429
SS:DD:E 0.04 0.0351 3.992 0.04572
SD:DD:E 0.05 0.0539 6.138 0.01324
SD:DD:C 0.15 0.1480 16.839 | 4.09e-05
SD:E:C 1.01 1.0147  115.465 | < 2e-16
DD:E:C 0.53 0.5299 60.304 | 8.62e-15
S5S:SD:DD:E 0.03 0.0350 3.982 0.04600
SD:DD:E:C 1 0.76 0.7620 86.713 | < 2e-16
Residuals 15965  140.30 0.0088

We include the log transform of the unmodified covariance ANOVA results as
well in Table 3.15. There are slightly fewer significant variables, with higher levels of
significance, but the QQ plot in Figure 3.15 has two strongly deviating tails.
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Table 3.15: Log Transform of Unmodified Covariance ANOVA After Selection

Effect Df Sum Sq Mean Sq F value | Pr(>F)
5SS 1 189 188.8 169.477 < 2e-16
SD 1 90 90.1 80.862 < 2e-16
DD 1 2719 2719.1  2440.661 | < 2e-16
E 1 366 366.1 328.622 < 2e-16
C 1 295 094.8 033.868 | < 2e-16
55:SD 1 200 200.3 179.810 | < 2e-16
SS:DD 1 8 7.9 7.083 0.007796
SD:DD 1 D27 527.0 473.014 < 2e-16
SD:E 1 339 338.8 304.075 < 2e-16
DD:E 1 446 446.3 400.560 < 2e-16
SS:C 1 7 6.6 5.911 0.015073
SD:C 1 718 718.0 644.514 < 2e-16
DD:C 1 29 29.4 26.392 2.85e-07
E:C 1 14 14.5 12.973 | 0.000318
S5S:SD:DD 1 15 15.2 13.603 | 0.000227
SS:DD:E 1 10 10.0 8.957 0.002772
SS:E:C 1 13 13.1 11.722 | 0.000621
Residuals | 8011 8925 1.1

3.3.4 Additional Analysis

There were other forms of analysis done, and for brevity we have excluded the graphs,
but a brief description of some of the techniques used is useful. Ideally what we
care about in this problem is which of the variance components are important in
determining the estimate error, a CART method was performed on the same data,
as CART methods are good at identifying important variables due to the splitting
nature of trees. This method however tended to give non-informative trees as a result,
with the most important result being one split related to the covariance. This is an
expected result in that when the covariance value is non-zero, the estimated error
tends to be larger. Other used methods that did not yield useful results include

bump hunting with PRIM, and generalised linear mixed modelling. In particular
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Figure 3.15: QQ Plot for Log Transform of Unmodified Covariance ANOVA After
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GLM’s were preformed using long tailed error distributions in order to more closely
match the long tailed distributions we obtained in the ANOVA results. This was
done both using model selection techniques and by just directly taking the variables
deemed significant by the appropriate ANOVA and modeling it using a GLM instead.
A table of the p-values in order to compare the three approaches can be found in the
appendix as Table 1, Table 2 and Table 3, however they seem to show roughly similar

results in which variables are significant, and their significance values.
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Figure 3.18: Zoomed Box Plots of Social Variance Estimates



71

SOJRTUIISH 9OURLIBAOY) JO S10[J XOg :G]'¢ 9In3Ig

11€A0D  18CNOD  1GZAOD  1¢¢h0D  I6LA0D  19LA0D  1ELACD  1Q0LAOD  1/A0D  LPAOD  LIAOD
N I Y e S S N A




Chapter 4

Conclusions

4.1 Summary

4.1.1 Boxplots

The box plots indicate that the direct genetic variance is often estimated more ac-
curately using this model than the indirect social one is, however there are a few
situations for both of these parameters where the estimation seems to be inaccurate.
This is not unexpected in a biological context, as the effects of direct genetics are
understood, and the social or indirect effects are more complicated in that there may
be many things that can fall under the umbrella of social effects, rather than the
straightforward nature of direct effects. This is also shown in that there are more
designs in which the social variance was estimated inaccurately than there are de-
signs where the direct was. In any case, the use of this model in the future should
be monitored for those situations in which the estimations seem to be off. The co-
variance parameter is often estimated as zero or close to zero even if the true value
is non-zero, and we do have the cases where the variability of the estimates seem to
collapse when we have a non-zero covariance as a parameter. This may be due to the
nature of the data generation in that the value chosen as non-zero value may have
been too high. This could result in a convergent solution in the REML process in
estimation. This means that any conclusions about the cases where the covariance
parameter was set to a non-zero value should be taken with a grain of salt, and may
not be informative at all. However the parameter sets with no covariance present still

offer valuable insight.

4.1.2 Anova Results

In most of the ANOVA results there are a large number of significant interaction

terms, showing that the nature of the proposed social model is complex. That is,
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the accuracy of this models estimation is affected by a large variation of possible
initial states, or different sets of true values for the various parameters. Something
important to note however is that a large number of terms were significant, with very
small p-values, this is very likely influenced strongly by the large amount of data
points, giving a very large residual degrees of freedom, leading to very small MSE
values. The co-variance ANOVA, and in particular the log transformed version had
no significant interaction terms. Unsurprisingly, the most significant factor was the
covariance itself, and since the two values used in the simulation were 0 and a non-
zero value we see that the most significant factor in the accuracy of the estimation
of the covariance is weather or not a covariance exists between the social and direct
variances. However it is of more importance than the true social variance when
estimating the social variance, while the true direct variance has more significance
than the covariance when estimating the direct variance. Another term that seems
to appear with large significance for all three of the variance terms is the interaction
between the fixed cage effect, and the error term. The error term has a higher
significance in the social variance and covariance ANOVA’s, while the cage effect has
a higher significance in the direct variance ANOVA, which is also an interesting result.
In general, the most complicated term to estimate seems to be the direct variance,
with a large number of factors affecting its accuracy, and patterns that appear in
the terms which are significant for the covariance and social variance ANOVA’s do
not appear to exist in the same way in the direct variance ANOVA’s. We did see
in the boxplots that the direct variance estimate tends to be more accurate than
the social variance or covariance estimates, but according to the ANOVA results the

direct variance estimate has more factors influencing it than the social variance.

4.1.3 QQ Plots

While we can see that the QQ plots provided in the previous section are not what
one would consider ideal, we need to consider the nature of the analysis we are doing.
We are first using BLUP to estimate the variances contained in the social model,
that is the direct effect variance, social effect variance, and covariance between these
two. We repeat this several times to obtain a data set, then use ANOVA to analyse

this data. Thus we are estimating the variance of a set of variances. This would
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indicate that the long tailed distributions we seem to obtain in all of the analyses
is not an unexpected result. This, combined with the large number of data points
would indicate that despite the long tailed distributions we see, we would expect that

the ANOVA results would be trustworthy.

4.2 Future Work

This work was done with the intention of examining the proposed social model for the
purposes of its use with a particular experiment performed at Dalhousie University,
and so its scope was limited. While its specific use in terms of aquaculture is generally
important, the nature of the design could easily be changed for future research into
this topic. In particular examining how the model behaves with data generated from
a balanced complete block design to see how it’s accuracy is affected under ideal
conditions. Many possibilities exist for this including random allocation of families
if an incomplete design were to be used. There were some other simulated designs,
as well as a small analysis of real data during the course of the researched performed
for this work, however it was mostly used to tune the generation process, and to
determine which of the available BLUP tools would be most appropriate for examining
this problem. In general, more exploration of this model in an aquaculture setting
could be useful, where the generated data does not attempt to match a particular
experimental design, or the use of a different BLUP analysis tool to compare and
contrast the results to see if similar conclusions are made. The other direction this
could be taken in is a more specific one, in that the problems with certain situations
for estimating the social or direct variances could be explored more, to see if this is
repeatable, or more situations where variance estimation is poor could be found. The
other interesting question is about the nature of covariance complication mentioned
previously. Rerunning simulations with different values for the covariance parameter
could offer insight into the possible issue that covariance seems to be underestimated
in most cases, and to see if the strange situations where estimate variability seems to
collapse continues to occur when smaller non-zero values of a generating covariance

were to be used.
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Table 1: Direct Variance Pval Comparison

Term ANOVA GLM Selected GLM Copy

SS  0.7057 3.16E-06 1.52E-06
SD < 2e-16 < 2e-16 < 2e-16
DD  0.8359 0.2619 0.127785
E  0.5603 0.2165 0.000359
C 1.99E-07 0.09521 0.021905
SS:SD - 0.05094
SS:DD  5.69E-05 1.06E-07 1.20E-07
SD:DD < 2e-16 < 2e-16 0.357479
SS:E - 0.27193 -
SD:E < 2e-16 < 2e-16 2.00E-16
DD:E < 2e-16 0.00115 1.90E-08
SS:C - 5.49E-05 -
SD:C 7.59E-08 < 2e-16 2.00E-16
DD:C 1.32E-09 0.8456 0.031467
E:C 1.35E-09 0.68552 0.010965
SS:SD:DD  0.0261 - 0.001461
SS:SD:E - - -
SS:DD:E - 0.07594 -
SD:DD:E - < 2e-16 -
SS:SD:C - 0.6455 -
SS:DD:C  0.0384 0.00229 0.046196
SD:DD:C 1.21E-08 < 2e-16 < 2e-16
SS:E:C - 0.03829 -
SD:E:C  9.21E-09 < 2e-16 2.00E-16
DD:E:C 1.64E-13 0.02033 0.003304
SS:SD:DD:E - - -
SS:SD:DD:C  0.0386 - 0.038419
SS:SD:E:C - - -
SS:DD:E:C - - -
SD:DD:E:C  0.0206 < 2e-16 2.00E-16

SS:SD:DD:E:C - -




Table 2: Social Variance Pval Comparison

Term ANOVA GLM Selected GLM Copy

SS  0.3269 0.00434 0.13465

SD 0.018 0.27041 0.00457

DD  0.6483 0.0008 0.49259

E 0.0574 0.01355 0.116

C 0.1461 0.01657 0.00036
SS:SD - 0.28455 -
SS:DD - 0.00372 -
SD:DD - 0.22415 -
SS:E - 0.00801 -

SD:E 0.049 0.12234 0.00202
DD:E - 0.00036 -
SS:C - 0.12919 -

SD:C  0.1286 0.02915 0.20446
DD:C - 0.00042 -

E:C  0.0698 0.02216 0.00367
SS:SD:DD - 0.85276 -
SS:SD:E - 0.14864 -
SS:DD:E - 0.00102 -
SD:DD:E - 0.03873 -
SS:SD:C - 0.01272 -
SS:DD:C - 0.07293 -
SD:DD:C - 0.008136 -
SS:E:C - 0.022063 -

SD:E:C  0.0806 0.01745 0.03554
DD:E:C - 0.00067 -
SS:SD:DD:E - 0.60187 -
SS:SD:DD:C - 0.01234 -
SS:SD:E:C - 0.006 -
SS:DD:E:C - 0.07784 -
SD:DD:E:C - 0.00118 -

SS:SD:DD:E:C - 0.00427 -




Table 3: Covariance Pval Comparison

Term ANOVA GLM Selected GLM Copy

SS  0.16176 0.00134 0.68994

SD < 2e-16 0.00095 0.00051

DD 0.80477 4.99E-05 0.94358

E 0.05706 0.00247 0.60621

C 0.1199 0.18233 0.34577
SS:SD - 0.00135 -
SS:DD - 0.00048 -
SD:DD - 5.69E-05 -
SS:E - 0.00699 -
SD:E - 0.00247 -
DD:E - 3.83E-05 -
SS:C - - -
SD:C - 0.18036 -
DD:C - 0.0013 -

E:C 0.00117 0.15238 0.38587
SS:SD:DD - 0.00049 -
SS:SD:E - 0.00704 -
SS:DD:E - 0.00118 -
SD:DD:E - 4.31E-05 -
SS:SD:C - - -
SS:DD:C - - -
SD:DD:C - 0.00154 -
SS:E:C - - -
SD:E:C - 0.15312 -
DD:E:C - 0.00268 -
SS:SD:DD:E - 0.0012 -
SS:SD:DD:C - - -
SS:SD:E:C - - -
SS:DD:E:C - -

SD:DD:E:C - 0.00314 -
SS:SD:DD:E:C - -
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