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Abstract

Background: The prevalence of cerebral palsy (CP) is ten times higher in preterm
compared to term infants. Accurate and early identification of preterm infants at risk for
CP would enable early referral to intervention programs with the potential to ienhreiv
functional mobility and quality of life. Large populatirased studies of CP in preterm
infants have only reported measures of association and did not develop prediction models
of CP and assess their diagnostic properties. Furthermore, all thefiessused
conventional logistic regression for their models. Machine learning may provide more
accurate predictions than logistic regression due to its ability to better handle complex
relationships between predictors and the outcdviechine learning nmtbods have not

been used yet to predict CP from clinical predictors in former preterm infants.

Objectives The objective of this study was to develop prediction models for CP in very
preterminfant <3 1 we e k susing the randamtfarest (RF) engae method and
logistic regression and to compaeir accuracy in predicting CP.

Study Design:l used a populaticbhased cohort of 77 very preterm survivorfsom the

AC Allen Provincial Perinatal Follovdp Program Databadmrn between 2000 and 2014

in Nova Scotia. After randomisplitting the sample into training and testing datasets using

a 70:30 ratio, lnical and demographic data from the infants and their mothers were used
to develop prediction models of CP at thriegetpoints (prenatal, perinatal, and postnatal)

in the training dataset using RF and logistic regression. Both models were then compared
with regard to their discriminative ability (AUC) in the testing dataset

Results In this cohort, 86 infants (11%) deloped CP. Predictive performance of the
models at the prenatal and perinatal time points was poor, regardless of the method used.
At the postnatal time point, both RF and logistic regression provided good discrimination
of children with and without CRPAUC 0.84 [95% CI 0.74, 0.94] and AUC 0.81 [95% CI

0.74, 0.95], respectively).

Conclusion: Using clinical predictors, logistic regression was comparable to the RF
ensemble method in prediction of CP in a populabased cohort of very preterm
children. Bah methods can be used for predicting CP in former very preterm infants at the
time of discharge.

Vi
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Statement

Preterm infants are at risk of adverseurodevelopmental outcomes including cerebral
palsy (CP). Identification of preterm infants who are at high risk for CP, through prediction
models, may facilitate early referral to intervention programs, with the potential to improve
their mobility and tleir quality of life. Traditionally, logistic regression has been used to
develop prediction models for CP in literature. The random forest (RF) ensemble method
is a statistical machine learning method that has been shown to provide accurate prediction
and may improve the overall performance of the predittnodel when compared to
logistic regression, particularly with large multidimensional data. The advantages of RF,
over logistic regression, include its ability to accommodate a large number of predictors
when the sample size is small and to handle complex|{near) relations between the
predictors and the outcome, in addition to not relying on assumptions about the distribution
of the predictors or the outcome variables. To the best of my knowleggeFtimethod

has not been used to predict CP in populatiased studies of preterm infants, using only
clinical predictors that can be readily abstracted from patient records. The study used the
AC Allen Provincial Perinatal Follovdp Program Database tevklop predicon models

of CP using RF and logistic regression. Both models were compared with regard to their

accuracy in predicting CP among very preterm infants.
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CHAPTER 1: INTRODUCTION

Survival of preterm infants has increased over the past several d€:&jddowever, the

rates of neurodevelopmiahimpairment (NDI), including CP, remain hi¢7). Cerebral

palsy is defined by a heterogeneous group of clinical signs describing permanent disorders
of movement and posture, with half thle affected children having either limited or no
walking ability (8). The disease isommonly associated with other comorbidities (seizures,
cognitive and bedwioral disorders) which require multidisciplinary health services
utilization (9). The economic burden of prematurity in Canada estimated a national cost of

$ 587.1 million for all preterm infants with the cost per infant over the first 10 years of lif
being different based on gestational age;
$52,796 per infant for those 32 wdl®k s 6

The rate of CP is 10 times higher in preterm and very low birth weight infants (VLBW)
compared to term infan{8). Accurate and early idenitftion of preterm infants at risk

for CP would enable early referral to intervention programs with the potential to improve
their functional mobility and quality of liféL1). The majority of studies that examined the
risk factors associated with development of CP, including large populzdsed studies,
reported measuresf @association (i.e., odds ratio (OR), relative risk (RR)) and not
diagnostic properties of predictiofl2-21). Additionally, studies that reported the
guantitative measures of predact of CP (sensitivity, specificity, positive and negative
likelihood ratios (LR)) were limited by small sample size and their use of convenience
samples (List of studies in Appendix 1). Traditionally, all these studies used logistic

regression.



For binay outcomes such as CP, random forest (RF) is an ensemble of classification trees
(CT), each constructed in a bootstrapped sample with a random subset of possible
predictors(22). Each CT is built recursively by successive divisions or binary splits that
maximize the discrimination of those who developed the outcome of interest freen tho
who did not at each spl{2). The RF then votes for the optimal classificatmmthe
majority vote. Using randomness in building each tree in the forest leads to a better
prediction and does not have the problem of overfitt#®). The RF is likely aperior to
logistic regression as it accommodates a large number of predictors relative to the
observations, it considers ntinear relations between predictors and the outcome or high
order interaction between various predictors, and it does not reagswemptions of
distribution of predictorg23). Importantly, this method has not been used in the context

of predicting CP in preterm born children from clinical predictorddte.



CHAPTER 2: OBJECTIVES

My studydés primary aim was to develop a
(defined as those who were born before 31 weeks gestation) using the AC Allen Provincial
Perinatal Follow Up Program (PFUP) databasee fdllowing specific objectives were

examined:

Objective 1: To develop a prediction model of CP in very preterm infants using logistic

regression and describe the predictors of CP in this patient population.

Objective 2: To develop a prediction model ©P in very preterm infants using RF

ensemble method.

Objective 3: To compare the models developed, using both logistic regression and RF,
with respect to their ability to discriminate between children who do develop CP from those

who do not.

pr



CHAPTER 3: BACKGROUND

3.1 Cerebral Palsy in Preterm Infants

3.1.1. Burden of Preterm Birth

Prematurity is defined as infants who are born before complete 37 weeks of gestation and
can be further subategorized into: (i) extremely preterm infants (< 28 weeksages),

(ii) early preterm infants (P8veeks to 33 weeks gestation) and (iii) late preterm infants
(3P weeks to 3Bwe e k s 6 (3. Pretarm birthrand its consequences constitute a
major health problem in Canada and worldwide. In Canada, the rate of preterm births
increased from 7.0% in 1996 7.8% in 20131). In Nova Scotia, infants born very preterm

(22° weeks to 3Bweeks gestation) constitute 1% of the total births and around 10% of the

annual admissions to the Neonatal Intensive Care Unit (N(EU)

Prematurity has significant societal impact due to the considerable emotional burden and
economic costs to families of preterm children and the increased health service utilization
among preterm survivor§l0). This patient population represents a subgroup of the

community with a wide range of health needs requiring multiple resources to provide the

necessary medical, devploental, educational, and family support.

Advances in perinatal and neonatal care have led to improved survival of preterm infants
over the past several decad2y however, the rates of CP and NDI (defined as any of the
following: CP, cognitive delay, language delay, visual or hearing impairment), remain high
(4-7). In addition to NDI, preterm and VLBW (whose birthweight is less than 1500 grams)
infants are at high risk for learning disability, and behavioral disorders such as attention
deficit hyperactivity disorder or autisrd, 7) There is an inverse relation between the
gestational age and intact survival rigual without major NDI), with the effect of

gestational age being particularly strong in extremely preterm and VLBW irifants



3.1.2. Cerebral Palsy

Cerebral palsy is defined as a Aamogressive develapental disorder affecting muscle
tone, movement and posture and causing mobility restriction or disability that originates
from insults affecting the fetal or infant brgi, 24, 25) In addition to motor impairment,

CP is commonly accompanied by other comorbidities such as seizures, sensory
impairment, cognitive delay and communication or behavior disof@e26) The impact

on childrendéds | ives and their-r families con

No single test is available to rule in or rule out CP, and the diagnosis is entirely based on
clinical neuromotor assessment of muscle tone, posture and movement. Cerebral palsy is
classified into different subtypes based upon the underlying abnormalities of the muscle
tone, the anatomical distribution and the severity of motor impair(8e/24) Based on

the abnormality of the muscle tone, CP is divided into the following groups: spastic
(commonest), athetotic, hypotoricmixed types. Spastic CP is further classified into four
subtypes, based upon the distribution: monoplegia (if only one arm or one leg is affected);
hemiplegia (if one arm and one leg on the same side are affected, asymmetric spasticity),
diplegia (botHegs are more affected than arms, symmetric spasticity) or quadriplegia (both
arms and both legs are affected equally, bilateral symmetric spagtici®d, 25) Finally,

once CP diagnosis is confirmed, grading of CP severity is conducted based on ambulation

with or without aids.

The mean age at diagnosis of CP is arourd8 gonths of corrected age (defined as the
chronological ge in weeks minus the number of weeks a preterm infant is born before
complete 40 weeks of gestatioBy 5 years of age, majority of children with CP have
established comorbidities and spasticity that greatly impacts their quality of afey bf
these comorbidities are modifiable, iearly identification and referral to appropriate
services was initiated using the window of brain plastiwittyh the potential to optimize
their motor and cognitivaitcomes prevent secondary complications, and importantly
empowers and enhance the wating of their caregiver§27). On tre other handbecause
subtle omild CP can be diagnosed as late a8@4nonths or even later, serial neuromotor

assessment of children who were born preterm is necg2€ry



3.1.3. Preterm Infants Are at High Risk forDeveloping Cerebral Palsy

Cerebral palsy is the most common neuromotor disability in children, with a reported
prevalence of 1-2.5 per 1000 live birth). Cerebral palsy is 10 times more common in
preterm and VLBW infants compared to term infants, with nearly half of cases being
former preterm infant¢3, 28) Cerebral palsy was reported in 44 per 1000 live births
among children born <32 weeks gestation and in 60 per 1000itihs among VLBW
children(28). It is controversial whether the high incidence rates of CP among preterm
infants is explained by the increased survival of very preterm infants ovéasthfew
decade$28, 29) A populationbased study in Nova Scotia (198807) showethat 10.6%

of infants born at a gestational age”’230°'” weeks who survived for at least one year
developed CP, with 42% of these children having either limited or no walking &Bdixy

The study also reported increagedvalence of CP over a 3@ar study period, from 5.5

per 10,000 live births during the first epoch (198892) to 9.2 per 10,000 live births during

the third epoch (1992002), that was not attributable to increased sur¢R@)

Cerebral palsy is one of the most devastating consequengeserin birth. Preterm birth

is commonly associated with exposure to risk factors, such as hypoxia/ischemia or
infection that induce a picture of encephalopathy of premat(8@y This condition is
characterized by brain injury or dysmaturation/disruption of the normal developmental
trajectory and growth of neuronal cells or both. Oligodendrocytes, microglia and astrocytes
have a crucial role in brain development androstructural connections of neuronal
pathwayq31, 32) They are also highly vulnerable having high affintycalcium influx

and overexpression of glutamate receptors. Activation of these cells in the fetal or preterm
brain results in a cascade of biochemical responses and release of cytotoxic mediators (such
as free oxygen radicals) at a time of critical bid@velopmen{31, 32) These mediators
damage the premyelinated white matter axons of the developing braipreferm infants

and induce injury characterized by destruction and apof@ikis882) Brain disruption is
chaacterized byailed maturation of oligodendrocytes to myelinating oligodendrocytes or
abnormal organization of cortical neurones leading to myelination abnormalities and

reduced brain volumes in children born pret¢83, 34)



3.1.4. Risk Factors for CP

Various factors have been identified as potential risk factors for CP in preterm infants.
These risk factors are interrelated and are inversely related to gestational age, with extreme
preterm infants being at the highest risk, due to the vulnerabilibedirain cell§30). The

general hypothesis is that these risk factors are associated with injury to the developing

fetal or neonatal brain, as outlined above, antecadeDP.

Potential risk factors for CP in preterm infants may be largely classified into prenatal,
perinatal, and postnatal factors. Prenatal factors can be either maternal (chorioamnionitis)
(35-38) or fetal factors (fetal growth restriction, male sg89-45). Perinatal fact@ include

low gestational age at birth and birth depres$#i50). Postnatal factors include severe
neurologic injury(defined as severe intraventricular hemorrhage (I{81) 52)or cystic
periventricular leukomalacia (PVL[53-55), sepsis(56-58), necrotizing enterocolitis
(NEC) (59, 60) bronchopulmonary dysplasia (BP[®1, 62) postnatal steroid63-68)

and neurosensory impairment such as retinopathy of prematurity (B®P3).

1. Chorioamnionitis is defined as inflammation of the placental membranes and has been
reported to increase the risk of CP in term infants-ig 22fold (35). Both histologic and
clinical chorioamnionitis increase the risk of neonatal morbidity and NDI, and they are
more often associated with diplegia than with other subtypes ¢8®)PThe risk is even
higher in preterm infants, as preterm birth is often thought to be secondarytiran
infection or chorioamnioniti$36). This fetal inflammatory status predisposes to preterm
labor, fetal white matter brain injury and chronic lung disease, all of whicdnéeedents

of CP (36-38). The fetal white matter insult ipreterm infantsinduced by cytokines
inflammatory mediators, is idenigd clinically after birth as cystic PVL and subsequent
CP(37).



2. Intrauterine growth restriction is defined as a suboptimaterine environment and
placental insufficiency that affects both fetal body and brain growth rates -pléeental
insufficiency eventually results in infants being born as small for gestaagea(SGA),
defined as birth weight < ¥(percentile for gestational age and .sexeterm infants who
are SGA have higher risk of CP44% vs 6%; OR 11., 95% CI 6.22.08)compared to
those who are not SGA39). Even among children with CP, being SGA significantly
increased the risk of NDI regardless of gestational age;fdom the Canadian Registry of
CP showed that children with CP who were SGA had significdmdgliyer impairment of
the fine motor (RR 1.46, 95% CI 142211), gross motor (RR 1.53, 95% CI 1-2.20),
language (RR 1.24, 95% CI 1:1040), and cognitive development (RR 1.33, 95% CI-1.06
1.69) when compared to children with CP who were not $4BA The association of SGA
with CP was attributed to prenatal risk factors associated with SGA (such aplatsotal
insufficiency, genetic anomalies, fetal infection) that may contribute to brain injury
antecedent to CR0-42).

3. Male preterm infants have higher mortality, morbidity and NDI compared to female
preterm infantg43). A large population based study of very preterm infants, born before
33 weeksd gestion, reported t\khithCPatbaybaes s e X
of corrected agegfter controlling for cerebral injury and obstetric risk factors (OR 1.52;
95% CI 1.082.25) (21). Another large populatichased study of extremely preterm
infants, born before 27 weeks®6 gestation,
composite cognitive and language scores compared tg48)ldMale sex has been known

to be associated with high rates of severe respiratory inguii (severe respiratory
distress syndrome) and associated comorbidities (postnatal steroids, BPD and abnormal
brain imaging) that may increase the risk of CP in these infdajsThe higher rates and
severity of respiratory disease in preterm boys than girls was hypothesized to be due to in
utero exposure to Mullerian inhibiting factorchandrogen, leading to decreased surfactant
production(45). However, Peacock et al. reported that male sex remained significantly
associated with NDI in preterm infants even after adjustment for gestational age, birth
weight, BPD,and abnormal neuroimaging, suggesting an intrinsic male effect to be

contributing to the poorer outcomes in preterm kdys.

\



4. Low gestational ageis commonly associated with exposurehigoxia/ischemia or
infectionrelated events that can induce fetal brain injury at a critical time of brain growth
and development and may interfere hwiestablishing the complex microstructural
connections throughout the fetal brgi80, 31, 46) One of the theories underlying
spontaneous preterm birth is thought to be secondary to an intrauterine infectious process
that induces intramniotic inflammatory response with activation of cytokines and
chemokines that precipitatesepnature uterine contractioé7). The fetal brain growth
duringthe third trimester of pregnancy results in a fdarfive-fold increase in the brain
volume including the cortid¢agrey matter, white matter and cerebell@8). This fetal

brain gowth is also accompanied by complex brain development at the cellular level
including; neuronal migration, proliferation and myelinati@6, 48) Therefore, low
gestational age infants, born before the third trimester, have-siredl brains with simple
primitive structure that make them vulnerable to develop brain injury and sidmgedpDI,
including CP. Gestational age has been shown to daweverse relationship with CP in

general, particularly spastic dipledi0).

5. Birth depression or intrapartum asphyxia involves multiple perinatal factors that
ultimately result in reduction of blood floar oxygen delivery to the fetal brammanifested

as a need for cardiopulmonary resuscitation at birth, low Apgar scores, and fetal/neonatal
hypoxia and adosis, collectively known as birth depression. The condition is associated
with increased mortality and adverse outcomes in both preterm and term i@f@nts
Cerebral palsy was believed to occur secondary tagattum asphyxia, but recent reports
showed that birth depression may account for only 10% of cases of CP and that the timing
of CP may be related to antepartum, intrapartum or even postpartum hypoxic/ischemic
events(49). However, the association of birth asphyxia with CP is debatable in preterm
and VLBW infants, where the majority receive resuscitation at birth, have low Apgar
scores and evidence of hypoxia and acidosis related to prematurity and respiratory

insuficiency rather than birth asphyxia.



6. Severe neurologic injuryrelated to prematurity is associated with NDI and( TR

52). Severe neurologic injury in preterm infants is defined as the presence of one or
more of the following: severe hemorrhage with ventricular dilatation or parenchymal
bleeding(also called grade 3/4 IVH, as per Papile classificat(éft), and or cystic
PVL). These brain injuries may be clinically silent and can only be identified on cranial
imaging. Therefore, routine sequential ¢ahrultrasound screening has been the
standard of care for very preterm infants. A recent raatdysis showed that
parenchymal hemorrhage (with or without ventricular dilatation) in preterm infants was
associated with increased risk of @RR 3.4, 95% CI1.607.22; 9 studies 2876
infants) whereas both cystic and ropstic PVL were independently associated with
CP (RR 19.12 (95% CI 4.579.90) and RR 9.27 (95% CI 5:93.50), respectively, 2
studies 802 infants(52). Spastic diplegia is the most common sequala of PVL in
preterm infants(52-54). This is attributed to the anatomicdistribution of PVL
involving the descending fibers from the motor cortex to the internal capsule in close
proximity to the periventricular area. AdditionalBVL involvesthe neuronal tracts of

the visual, auditory, and somatosensory regions, thereforemiticed CP in preterm
infants is associated with visual and auditory impairment, cognitive or language delay
and epilepsy52-54).The severity of PVL is inversely related to gestational age and
birth weight, with quadriplegia being common in severe PVL (equal or more than grade
2) (54). In a large population based French cohorto18l nf ant s born befo
gestation (EPIPAGE}he prevalence of CP was 61% among infants with cystic PVL,
50% among those with parenchymal haemorrhage, 8% among those with-tyfeide |

and only 4% among those with undetectable cerebral injury @n bnaging(21).
Similar findings of increased prevalence of CP in relation to the severity of PVL were
also reported by Resic et #3). Animal models showed that PWibduced CP in
preterm infants being characterized by white matter necrotic lesions, hypomyelination,
microglial activation, astrogliosis and neuronal death, with injury to oligodendrocytes
being the first step in PVI55). The underlying mechanism is thought to be due to

hypoxia ischemia with or without infectidb5).
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7. Sepsis with or without meningitis, is a common morbidity of preterm infants. Both
early and late neonatal sepsis are common morbidity of prematurity and are caused by
a variety of organisms including group B streptococci, gram negedls, candida or
coagulasenegative staphylococciAmong \ery preterm infant®anish studythose

with sepsis have 3 times higher odds CP compared to without $8fsiS7) The

EPI PAGE study (n=1812, < 33 weekso6 gesti
neurodevelopment at five years of age,abthors reported that exposure to maternal
fetal infection was associated with 2 times higher odds of CP (OR 2.13 (95% CI1 1.28
3.55)(21). Similar findings were reported by a Swiss national cohort of very preterm
infants born between 2000 and 2007 (n=541, gestatie?vV2deeks) who had 3 times
higher odds of CP among those with proven s€fa#is3.23 (95% CI 1.28.48)(57).

The impact onCP is additive in preterm and VLBW infants, if sepsis and
hypoxia/ischemia cexisted(58). Sepsis may be a manifestation of immunodeficiency
related to prematurity and the resultant vulnerability of the developing Graa.
underlying mechanism of brain injury with sepsis was attributed to either systemic
inflammatoy response with influx of cytokines or cerebral ischemia/reperfusion

secondary to systemic hypotension during bacterésfia3l, 58)

8. Necrotizing enterocolitis(NEC) is a devastating skkase of prematurity resulting in
severe gut ischemic necrosis and intestinal failure and is associated with increased
mortality, short and longterm morbidities among survivors. In Ranish study,
preterm infants with NEC who were assessed at 36 motithsrcected age, had
significantly higher odds of CP (OR 1.5, 95% CI-2.R) compared tthosewithout

NEC (59). This detrimental effect persists until school age with assoagtieelated
morbidities (such as: presence of stoma, prolonged parenteral nutritieassoeiated
complications and frequent hospitalizatidhat significantly impact growtlsensory,
motor and cognitive developme(@0). The underlying mechanisneé brain injury
secondary to NEC include concomitant sepsis, release of inflammatory cytokines,
hemodynamic instability, and ischemia/reperfusion inj5§; 59)
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9. Bronchopulmonary dysplasia(BPD), defined as oxygen dependency at 36 weeks
postmenstrual age with or without mechanical ventilation, is a common and serious
complication of prematurity. The condition is considered to be an inflammatory disease
with early injuy to the premature lungs and is associated with NDI, impaired executive
functions, overall growth and respiratory morbidities that extend up to adultébpd

Van Marter et al (2011) reported that very preterm infants with severe BPD, requiring
mechanical ventilation at 36 weeks postmenstrual age, havéadbsincreased risk of
qguadriplegic CP and a fourfold incredseisk of diplegia(62). The postulated
mechanisms for underlying brain injury include inflammatory mediators, frequent

episodes of hypoxemia, and systemicatetherapy(30, 31)

10. Postnatal systemic steroidsare used to facilitate extubation and to reduce the
complications of severe BPD in preterm infants. However, a Cochrane ravite
metaanalysisof 26 clinical trials reported that preterm infants who received early
postnatal steroids (< 8 daysd significantly higher rates of CP or abnormal neurologic
examination compared to contr¢B&3, 64) For | ate stheinceaseds (O
rates of CP were partly offset by a reduction in late mortality and, consequéatly
composite outcome of death or CP was not significantly different between the late
steroid group and contro(63, 65, 66) The detrimental effect of systemic steroids on
brain development is supported by studies in animals and humare®natal animals,
pharmacological doses of steroids are associated with impaired bralomieent at
cellular level that led to delayed brain growth and maturg@@h Murphy et al (2001)
showed that preterm infants treated with dexamethasone for BPD had 35% lower brain
cortical gray matter dume on brain magnetic resonance imaging compared to
untreated infant&8).
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11. Severe retinopathy of prematurity (ROP), déined as > stage 2 ROP or requiring
intervention, is the commonest cause of childhood blindness. The disease is
characterized by an initial phase of vascular arrest of the developing retina followed by
a neovascularization phase with subsequent retinahclletent if untreated.
Inflammation, being a control factor for angiogenesis and neovascularization, is a
major contributor to the development of ROP; the associated release of cytokines and
other inflammatory mediators that extends beyond the visual cangxhe visual
pathways to other areas of the developing preterm 688n70) In addition to the
cognitive delay secondary to visual impairment, children with severe ROP develop
motor delay with abnormal coordination and loweores of standardized movement

assessment compared to those without severe(ROP3).

In addition to the abovbsted rik factors associated with CP, there are limited data from
longitudinal studies of preterm infants on several routinely collected factors that may
potentially be associated with CP or antecedents of CP including: maternal age, maternal
chronic illnesses, marnal exposure (medications, smoking, illicit drugs or alcohol use),
maternal education, socioeconomic status, or being a single parent, among other factors.

Generally, the results from these reports were inconsistent.
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3.1.5 Tertiary Prevention of CP

Prediction of CP in very preterm infants enables identification and early referral of high
risk infants to intervention programs that have the potential to improve their mobility and
cognitive developmen(ll, 27, 74, 75)Traditionally, multiple disciplines have been
involved in managing children with CP and offering various interventions, imgud
rehabilitation, physiotherapy, medications (botulinum toxin injectionsihoss and
surgical interventionsEarly intervention for children with CP has been shown to improve
their motor function, their cognitive and language developn{2it 74, 75) Early
intervention has been also shown to improve hand function in children with hemiplegic CP
and ambulation in preterm born children with diple@id). Parental involvement and
family integration in early intervention
development and behavior, particularly in relationcéonmunication and relationships
independence, and community participat{@f, 77) Promoting parenting skills is thought

to play a major role, not only by improving the cognitive and behavioral outcomes of
children affected by CP, but also by decreasing anxiety and depression of their caregivers
(78).

3.2 Prediction of CP in Preterm Born Children

Multiple studies evaluated the association between various risk factors and the
development of CP in preterm born childrétP-21). The majority of these studies,
including large populatichvased studies, reported measures of association (i.e. OR, RR)
and not diagnostic properties of predictiohdditionally, studies that reported the
guantitativemeasures of predictive accuracy (sensitivity, specificity, positive and negative

LR) were limited by small sample size and their use of convenience samples.

3.2.1 Populationbased Studies of CP in Preterm Infants

Large populatiorbased studies of pretenmfants have investigated the role of multiple
exposures on the development of CP as the primary outcome or as a component of a
composite outcome of NDI (defined as CP, cognitive or language delay, deafness or
blindness)(19-21, 29) Notably, all these studies used logistic regression analyses to

identify risk factors associated with CP among these large population cohorts.
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The EPIPAGE study, a large populatibased prospective cohort of 1812ainfs born <33

weeks of gestation in 1997 in France, reported CP in 14% of survivors and showed
increased rates of NDI with decreasing gestational 3¢ The authors primarily
examined the role of neuroimaging ipredicting CP and showed that significant
neuroimaging abnormalities, particularly cystic PVL and parenchymal hemorrhage
(formerly called grade 4 IVH), were independently associated with CP at 5 years of age.
The EPICure study, a large populatis&sedrospective cohort of 1031 surviving preterm

infants (<28 weeks gestation) who were born between-2005 in the United Kingdom

and Ireland, showed th&P (@14% of survivors)was more prevalent in children with
gestational age 26 weeks compared to thoséth gestational age of 287 weekg19).

The authors reported a trend of improvement in survival without disability over the study
period, particularly in extreme preterm children -@3 weeks gestation(19). Similar

outcomes were reported by Leversen who followed a prospectivat of 371 extremely
preterm infants born before 28 weeksd gest
combined with NDI) in 11% of survivor€0). In Nova Scotia, Vincer prospectively

foll owed a cohort of 1430 pr et e-yeanpariodf ant s
(19882007) divided into four epochs. The studpaeded CP in 11% of preterm survivors

(106 of the 1106), with peak prevalence in the third epoch (2008) that is not attributed

by the increased survival of extremely preterm infants, as the lower mortality rates did not
correlate with the prevalencé ©GP (29). The study also showed thaatarnal anemia, use

of tocolytics during pregnancy and infantod

peak prevalence of CR9).
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3.2.2 Prediction Studies of CP in Preterm Infants

Three reviews explored studies that reported prognostic factors and predictors of CP in
high risk term andgreterm newborn infant6/9-81). A list of studies that reported the
diagnostic properties for prediction of CP, alone or as part of NDI, in preterm infants
together with the developmental tests used are provided in Appen@&1111) The
selected studies (n2Pwere limited to those published between 2000 an® 204 with

birth cohorts starting from 1990, known as the gmstactant era; as the neonatal mortality

and short and lonterm morbidities signifiantly changed after introduction of antenatal
steroids and surfactant therapy in management of preterm birth. Studies with a follow up
of more than 5 years were not included, as the context of prediction and CP outcomes at
this age are not comparable te thpal of this analysis and would yield different predictors.
The majority of studies were prospective cohorts (n=14), including two cohorts from
randomized clinical trials, and the remaining were retrospective cohorts or case control
studies (n¥). Thestudies originated from eleven developed countries including Canada:
Sweden, Norway, Germany, Netherlands, Austria, Italy, Australia, New Zealand, Japan,
United States and Canada, whereas two studies were conducted across multiple countries.
Severteen studes reported CP as the primary outcamnseparately reported if it is part of

a composite outcomevhile the remaining studies (4@} reported a composite outcome of

NDI, including CP The most common method usedlassifyCP in the majority of studies

was according to the Gross Motor Function Classification System (GMFCS) by Palisano
(83) or Hagebrg(87). The gestational age at birth of included infants varied; however,
twelve studies reported outcomes in very preterminfan bor n bef ore 32 we
The predictors of CP in these studies included: amplituishegrated
electroencephalography (n=@2, 84) cranial ultrasound (n=3B5, 86, 88) brain MRI

(n=3) (89-91), general movements assessment6jnf93, 95, 98101) standardized
neuromotor examination (n=1{)106), clinical factors (n=3)17, 18, 110pr combination

of these indicators (n=316, 104, 111)
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Table 3.1 summarizes the characteristics of iffieen studies that provided the diagnostic
properties and/or the predictive performance of CP in preterm infants. Two additional
studies were excluded; one case control study where the authors didpodt the
outcomes of the preterm subgroup separdtelyl) and another small study (30 preterm
infants) that used machine learning for video analysis of general moverat@s than
prediction of CR100)

The majorityof the selected studies were small prospectiohorts, with duration for
follow up ranging between 248 months, however some studies had loss to follow up rate
of up to 509498, 99) Only two studesreported AUC(17, 93) five studies reported the
classification accuracfl6, 85, 99, 101, 106yvhereas the remaining studies reported the
diagnostic properties, mainly sensitivity and specificity.

Thirteenof the ifteen studies traditionally used logistic regressiofy, ttimo small studies

used different machine learning methods, including RF, for prediction of CP from
multidimensional datasets (i.e. analysis of optic flow cytometry or quantitative analysis of
ultrasound imagegB5, 101)
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Table 3.1: Characteristics of Studies Predicting CP in Preterm Children

Study Population | Predictors CP Sens| Spec| PPV | NPV | AUC |Accuracy
CP n/N (%) Outcome
Logistic Regression
Constantino(<32 weeks, [term MRI, [Palisonad80 81 36 |97 - 80
2007(16) <1500g behavioral |24
CP: 10/102|2sS€ssmeniyonths
(10%)
Broitman |<1000g |All clinical [Abnormall- - - - 0.78 |
: modelwith [tone
2007(17) [|°F" : Vs
347/2103 |late cUiat posture o
(16%) 36 weeks Vimovemen 0.72
early clinica ol
model with |(Amiel-
cUS at 28 [Tison)
days (101)
Lacey 2004 [< 30 weeks, |discharge |Abnormal|86 |83 |57 |96
(88) CP:36/203|examvs  [motor |4 |37 lgg |43 | )
(18%) cUS at 7 & [exam
28 days 36 month
Spittle 2015|<30 weeks [combined [Palisono (83 95 [56 |99 92
(106) CP: 6/97 [motor tests |48 )
(6%) at4, 8,12 [months
months (81)
de Vries, |<33 weeks, [secquential|Hagberg |76 95 [48 199 | -
(17%) (85)
Woodward, [<31 weeks, |MRI at term|Palisano 194 (31 | - - -
2006(89) CP: 17/167|any vs mod (24 monthigs g4
(10%) severe
abnormality
Nanba 2007|<34 weeks, [MRI at term|Palisonad62 87 - - - -
(90) <15009g for PVLvs |31 78 96
CP: 38/289|corona months
(13%) radiata
lesions
Mirmiran  [<30 weeks [MRI at term(Palisonag86 89 [60 |97 | -
2004(91) or <12509 VS Sequenti 31 43 82 33 87
CP: cUs months
7/61(11%)
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Study Population | Predictors CP Sens| Spec| PPV | NPV | AUC |Accuracy
CP n/N (%) Outcome
Skiold 2013 [<27 weeks |term MRI vgPalisonad100 |98 |80 |100 |- -
(104) CP:4/53 |GMAat3 |30 50 92 133 |os
(7.5%) months months
Ferrari 2002[<37 weeks |Synchroniz |Palisonaqg79 100 |100 (84 [0.97 |-
(93) with -ed crampe(24-36 89 52 67 |sa
abnormal |GMA and |mths
cUs Prechtl
CP: 41/84 |neurologic
(49%) exam over
first 5 ms
Romeo 2004<37 weeks [GMA score [Hagberg (98 94 -
(95) CP: 57/903[>57 vs 24 month 96 87 | ) )
(6%) HINE
neurologic
exam at 3
ms
Oberg 2015|<33 wee&ks [GMA at 3 [Palisonag90 |90 |53 (100 |- -
(98) or <1500g |months 24
CP: 10/87 months
(12%)
De Bock  [<33 weeks |GMA at Palisonag86 77 |19 (99 77
2017(99) CP: 7/122 |1&3 monthd 24
(6%) months
Machine Learning
Hope 2008 (<31 wees |cUS texturelPalisano |- - - - 72
(85) or <1500 g [first week [4 month
(37cases, 4
controls)
Stahl 82 infants, |optic flow [Not 95 85 94
2012(101) gestational |cytometry a|specified
agenot 10-18 week{5 years
specified

Abbreviations:AUC (area under the curvel,P (cerebral palsypUS (cranial ultrasoundfzMA (general
movement assessment), HINE (Hammersmith infant neurologic exam), MRI (magnetic resonance imaging),
NPV (negative predictive value), PPV (positive predictive valB¥), (periventricular leukomalacia) e8s

(sensitivity), Spec (specificity).
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3.3 Prediction Modeling

3.3.1 Diagnostic Tests

A gold standard test is the ideal test(s) to diagnose a patrticular disease against which all
other diagnostic tests are compat@d?2) There is no gold standard test for diagnosing

CP; its diagnosis relies entirely on the clinical assessment of muscle tone, posture and
movement. Validity refers to the accuracy of a teisits ultimate ability to correctly

identify individuals who have a particular disease from those who d¢14@}. The

sensitivity and specificity of a test, relative to the gold standard, is the best measure of its
clinical validity. Table 3.2 highlights the various parameters that are factored in the
measurement of sensitivity and specificity. To apply theetdbt the current study;

ADi s‘easmrdi cates children whooOoOacthdathyebhauh
who do not haveoCBndwhéebass fideshe predic
of those children with and without CP, respectively.

Table 3.2: Diagnostic Properties of a Test

True Class
Diseasé Disease Total
a b atb
_ Test True positive (TP) False positive (FP) Total test
Predicted
c d c+d
Class Test _ _
False negative (FN)| True negative (TN) Total test
atc b+d a+b+c+d
Total Total diseasé Total disease Total population
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1. True positive (TP): individual with a positive test and has the disease
2. False positive (FP): individual with a positive test but does not have the disease
3. True negative (TN): individual withreegative test and does not have the disease

4. False negative (FN): individual with a negative test but has the disease

Sensitivity measures the ability of the test to correctly identify those with the disease

Therefore, a highly sensitive test if negative is useful for ruling out the disease

Sensitivity =— =

Specificity is the ability of the test to correctly identify those free from the disease

Therefore, a highly specific test if positive is useful for ruling in the disease

Specificity =— =
Sensitivity and specificity are inversely proportional, and they are independent of the
population tested112, 113) Serious but treatable diseases require a test that is highly
sensitive (e.g., cancer screening testhwever, specificity would be compromised
resulting in unnecessary anxiety and unwarranted further investigatld® The
predictive values are useful in clinical medicine when considering the value of a test for a
clinician, because they answer the question of how likelpdimidual with a positive test

to have or develop the disease or the outcome of in(@rE3}

The positive predictive value (PPV) is the probability of having the disease when the test

is positive.

The negative predictive value (NPV) is the probability of not having the disease when the

test is negative.
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NPV =— =

Unlike sensitivity and specifigit PPV and NP\are closely related to the prevalence of
the disease in the population. Assuming that all other factors remain constant, as the
prevalence declines, the PPV decreases while the NPV inc(@d2e413)

Accuracy is the ability of the test to correctly identify those with and without a disease or

outcome of interest.

Accuracy= =

Likelihood ratio (LR) is used to determine the usefulness of a test by compaxring it
sensitivity and specificity athe ratio of its true positive rate to its false positive.rabe
positive LRis how likely the test result being positive in an individual with a specific
disease or outcome of interest compared to the same test resgt dositive in an
individual without the disease or outconifethe test result would change the probability
of having or developing a disease in an individiderefore, the higher the positive LR
the better the classifier, whereas the lower the negat, the better the classifi€r13)

LR* =

LR =

Receiver operating characteristic curves (ROC)

The ROC curve is used to assess the ability of a diagnostic or prognostic test to identify
individuals who have or will develop a given disease. It is a plot of the true positive rate of
a test (sensitivity) on the-gxis against its false positive rate gpecificity) on the »axis,

for every possible cenff point (113, 114) hence depicting the traddf between the
sensitivity and the specificity of the test of inter&sir logistic regression models, the ROC
curve evaluates the discriminative or classifimatperformance of the model; the ability

of the model to identify individuals with or developing a given disease at all possible cut
off points. Figure 3.5hows that the closer the ROC curve to the ideal point (top left corner

with 100% sensitivity and ggificity), the better the performance of the classifidr3)
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The area under the curve (AUC) represents the overall accuracy ot@ destriminate
between those who have or will develop a given disease from those who do not, over all
possible thresholds or cotfs. The AWC ranges from 0.5 to 1. The larger the area the better

is the classifier; where 1 is the optimal test or classifier (100% specificity and 100%
sensitivity) and 0.5 is a worthless test or classifier (50% specificity and 50% sensitivity)
that is not differenfrom flipping a coinln Figure 3.1, the upper curve (C) represents a test
with high sensitivity and specificity and AUC approaching 1.0, while the dotted A line
represents the line of discrimination with an AUC of 0.5. The AUC of most tests used in

heath research lies between these two extremes (curve B).

100

True positive fraction

0 20 40 60 80 100
False positive fraction

Figure 3.1. Receiver Operating Characteristics Curve
With permission fromlalkhen AG, McCluskey A&linical tests: sensitivity and specificity.[3]L
(A) line of 0 discrimination (AUC = 0.5); (Bypical clinical test (AUC = 0.8..0); (C) perfect test
(AUC =1.0)

For prediction models, ROC curves can be used for identification of an optimal classifier
because they provide the @it point at which sensitivity and specificity are maximized
relative to one anotherThe ROC curve is also useful to compare differelassifiers
(models) based on the AUC that provides an unbiased measurement of the performance of

prediction across different modé€lkl4)
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3.3.2 Logistic Regression

One of the main goals of epidemiological research is to examine the association between an
exposure and an outcome of interest. Measures of association can be assessed using absolute
measures (attributable risk or risk difference) or relative measuresaf@®R). Logistic
regression has been traditionally used in health research to assess the relation between
independent observations/exposures and a binary outcome both for association and for

prediction.

Risk prediction models are used to estimate thle af having a specific prevalent disease
(diagnostic) or developing one (prognostic). Multivariable prediction models are one method
to estimate the probability of a certain outcome in individuals, given their set of predictors
(115, 116)These models can be adoped from prospective cohort, randomized clinical
trials, or nested casmntrol studies using both categorical and continuous explanatory
variables(116). For a binary outcomeariable, such as CP, logistic regression provides the
odds of CP (the ratio of the probability of developing CP to the probability of not developing
CP) using the following formula:

Odds of CP = P/(P) Probability of CP (P) = &)/ 1+ e@

In logistic regression, the OR or the ratio of the oddpresents the constant effect of a
predictor X on the likelihood that outcome Y (CP in this study) will o¢td6) Whereas

with probability, the effect of a predictor X on the probability of the outcome Y is not

constant and hatifferent values depending on the value of X.

Risk prediction models are increasingly used in clinical medicine as adjuncts to guide clinical
reasoning and decisiemaking, provided that accurate estimates of the probability risk and
validation, both iternal and external, were performed. Moons et al proposed important steps
for development, validation and reporting of risk prediction models. The following section
on developing a multivariable model and assessing its usefulness and its performance is
derived from the recommendation of the first series of Moons(@tl&l) External validation

of the developed model is based on the second series of Moor{d Et)al
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Model Development

Prior to developing the logistic regression model, both the outcome of interest and the
predicors should be clearly defined and measured in a standardized and reproducible way.
The selection of relevant predictors is usually based on expert opinion derived from
scientific knowledge of the outcome of interest. Careful selection of predictorsdalcrit

and should include not only causal but all potential correlates. However, attention should
be paid to the number of predictors to be included in the model, using the rule of 1 to 10
event per variable; at least 10 individuals having (developed) theroa of interest are
required per 1 predictor in the mod&IL8). For the outcome, the methods used to measure
and ascertairht outcome, independent of or blinded to the studied predictors, and the

duration of followup should be clearly defined.

Analysis of Logistic Regression Model

0 Missing values: Multiple imputation of missing data may be performed to avoid bias

if the anaysis included only individuals with completely observed data.

O«

Continuous predictors: Testing for linearity and using simple transformation of non
linear continuous predictors increases the predictive ability of the model.

0 Predictor selection in the mulaviable model is preferably performed using a full
model approach or backward selection procedure, rather than inclusion of only

univariate correlates.

O«

Logistic regression provides regression coefficients (Wald test or LR test) that assess
the relative coftribution or the relative weight of each predictor in the model (the
effect of one unit change in the predictor X on the outcome Y, when all other
predictors were kept constant). The mod
an individual to develp the outcome of interest, if all predictor values were zero
(115, 116)

0 The linear predictor from the logistic regression model can be transformed to provide

a predicted probability. The ROC curve is used to determine the optimal cutoff. The
model performancean be assessed quantitatively using discrimination (AUC),
calibration (plots), and classificati¢h15, 116)
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Internal Validation

The probability of developing an outcome as predicted by the model compared to the
observed one, provides the O0goodness fito
models are expected to optimally fit the development sample. However, they aceigsse

when tested in new, but similar, individuals due to overfitting to the development sample.
The potential for overfitting is indirectly proportional to the number of outcomes/events in
the development sample and is directly proportional to thebeuwf predictors (relative to

the number of event§)l16) To test for overfitting of prediction models, internal validation

can be performed using different methods:

1. Split sanple: The training data is randomly split once into two subsamples: one to
develop the model and the other to test its performance. Splitting can be done as split
half or other fractions. The measures of performance are based on similar but
independent datérom the same population. However, this method is inefficient
because of data wastiif19)

2. Crossvalidation: This is an extension of the split method where the model is
developed on several random splits of the data; within each split, one part serves as
the training set and the other part serves as thidati@n or testing set. The
performance of the model at each split is calculated and the process is repeated, with
one data subset left out at a time, until all subsets served once to test the model (e.g.
if within each random split, 90% of the data areduto develop the model and 10%
to test it, then the process is repeated at least 10 times). The average performance of
the final model is then calculated from all the splits and the stability of the- cross

validation improves with more repetitions (100 ¢isi(119)
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3. Bootstrapping: This method uses an intensive comjib#ieed resampling
technique, odrawing with replacementf around 106600 subsamples, from the
original sample and each bootstrap sample is of the s&e as the original sample.

The prediction model may be developed from the bootstrap sample and tested on
the original sample, or vice versa, so that 100% of the data is used for model
development and 100% for model testing. The estimates of perfoentancbe
assessed on each bootstrap subsample and the final model accuracy can be then
computed by the average performance of the prediction models. Compared to the
split methods, bootstrapping is considered to be a more preferred method for
validation asall the data set will be used without wasting. It is considered to be the
most efficient validation method, particularly when the sample size is small or with

a large number of predictof$19, 120)

However, the main disadvantage of the cross validation and the bootstrapping approaches
is their computebased automated model selection procedure that does not allow
exploraton of the data or the use of judgment during the selection of predictors.

External Validation

External validation is a method used to assess the predictive performance of a previously
developed model when applied to a sample that is temporally oragucally different

from the devel opment sample and it is cons
developed model when applied to different populat{@is) The process includes: taking

the original model with its predictors and regression coefficients, assessing the predictor

and outcome measures in the new population, applying the origodel to these new

data and finally assessing the model 6s pr e
before (117) As expected, external validation often results in lower performance than
internal validation, when the developed model is applied to different individuals or
different populations.
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Limitations of Logistic Regression for Developing Prediction Models

Traditionally, logistic regression has been used for prediction of outcomes in health
research, but it has many drawbacks. Logistic regression model requires correct
specification of themain effects and the interactions between predictors, otherwise the
resulting prediction may be biased. Additionally, the model assumes a linear relationship
between the predictors and the outcqih®6) ignoring a norinear relationship would

result in a poorly fitted modeT.o overcome these limitationsyachine learning methods

have been increasingly usddr prediction and probability estimation for genomic,
genetics, biomadal and medical resear¢h21-127), and in clinical epidemiolog{128)

They do not require specification of the underlying model and can handle complex and
nortlinear relationships between the predictors and the out¢@:e23) They are often

used in settings with a large number of predictors relative to the nurmbleservations,

such as genomic research, which would pose a problem if logistic regressions were used.
Machine learning methods are used to develop models that predict an outcome from a set
of predictors and can rank the predictor variables based onrétaiive importance
(weight) for prediction(22, 23) In the following section, | will discuss certain types of
machine learning methods, namely, decision trees and RF ensemble methods. Building
prediction models from decision trees and RF will be described and the difference between

RF and logistic regress will be highlighted (see also Table 3.3).
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3.3.3 Decision Trees and Ensemble Methods

Decision Trees

The Classification and Regression Trees (CART) method was first introduced by Breiman
in 1984 and provided solutions for regression and classificatioiplems that are easily
interpreted with a visual graphic display as inverted trees. The CART, also known as binary
recursive partitioning, are broadly grouped into CT for binary or categorical outcomes and
regression trees for continuous outcorf®y. Di st i ngui shi iI€CPoOACR®M foreo
regarded as a classification problem witthiis learning field.

The CART splits a whole sample in hierarchical manner, starting from the root node and
growing branches using a sequence of binary split rules for the explanatory variables. Each
binary split maximizes the discrimination of the outcome between the rgstliiild nodes

and maximizes the homogeneity between participants within each child node that is known
as node purity(127) This split criterion minimizes the residual sum of squares (for
regression trees) or the Gindex (for CT))22). The branching or splitting continues until

a stopping point iseached or no more splits are possible; these are called the terminal
nodes Each terminal node is assigned a predicted numerical value (regression) or a
predicted outcome category (classification). Once all terminal nodes are identified, the
CART can beused to provide a prediction for regression (the mean response in each
terminal node of the tree) or classification (the majority vote or the most commonly
occurring class in each terminal node of the tr&ébg tree is then subject to pruning, a
process ®»which crossvalidation generates nested trees from a training data set and selects
the optimal final tree when applied to a testing dat§22t As this study investigates CP

as a binary outcome, the remaining section will focus on CT and RF building, performance,

and diagnostic properties.
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Classification Tree

Building a predictionmodel using CT follows the same previously described steps for
building CART with the final decision tree being an inverted tree composed of yes and no
answers at each splfii26) A decision tree can be easily interpreted by healthcare
providers and its output is similar to the clinical reasoning process oratlaigorithms
commonly used to guide patient management. The advantage of a CT in healthcare is its
ability to clearly identify subgroups of patients who are at the highest risk of developing
the outcome of interest, represented as the terminal nodes of CT

The performance of a CT is dependent on the number of explanatory variables, the size of
the tree grown (number of splits, leaf size), and the split critef@® 126) The
performance of CT can be assessed by calculating how correctly CT is able to classify
those with the outcome of interest (sensitivity) and those without (specificity).
Additionally, penaltiesfor misclassification may be used to improve the accuracy of the
prediction(22).

While decision trees are fairly easy to implement, understand, and interpret, they have
limitations. First, the splitting algorithm is "greedy", so that the built tree is optimal at each
split but may not be opti naabll egd owhael rley .s | S egch
in the data may result in a substantially different tree. Thirdly, the algorithm tendsto over
fit to the training data, resulting in a much weaker performance in a testing data set. The
predictive accuracy and robustness of siedi trees can be improved by aggregating many

decision trees using the RF ensemble me{&aj
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Random Forest

To overcome the limitations of prediction using the decision trees, Breiman (2001)
proposed the RF algorithm, by growing a forest or ensemble of CT and letting them vote
for the most popular classification. In comparison to a single tree, using randadmness
building each tree in the forest leads to a better prediction and does not have the problem
of overfitting (23). The RF develops a large number of trees (hence the raest)fin
bootstrapped samples of the whole data set. When building each tree within the forest, only
a random subset of predictors is available at each node to create a split (the random part of
the forest)(23). The treegrowing process is repeated until a preset number of trees are
reached. The ensemble of trees then "votes" on the optimal classification or the majority
vote (mode of the classification of the individuakts). The predicted outcome is estimated

by the most frequent predicted outcome from each component tree (for classifi@g)on)
Important tuning parameters of the Riegicted model include: the number of trees, the
size of the terminal node, the number of features available at each split and the number of
predictors used at each node in growing each(B8g The diversity of the trees helps to
improve the accuracy and stability of the prediction, because the aggregate vote of several
decision trees is less susceptible to noise and outliers than a sing{83reA main
advantage of RF is providing information on what variables are important in the
classification by computing an importance score for each variable, based on how much
their presence in the fiest improves the prediction compared to a model without the
variable. This score can be then used to rank variables relative to eact28}ther

A fundamental concept infRis the oubf-bag (OOB) sample, which refers to the set of
observations that were not included in the bootstrap sample, corresponding to
approximately onghird of the original data s€23). Each tree within a RF uses a different
bootstrap sample and therefore a different OOB sample. The OOB sample is then used to
evaluate each component tree within the forest by estimating the generalization error,

defined as the errorteof the OOB classifier on the training £28).
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Classification using RF is a useful tool for prediction of a binary outcome because of its
discriminative ability. However estimating the probability of an outcome (risk) is
important in clinical medicine. Recently, RF has been used as a probability machine to
estimate the conditional probability for binary outcomes and providing risk estimates and
effect size (OR with theiB5% confidence intervals) as well as the interaction effects
between predictor&l 24, 129, 130)

3.3.4 Comparison of Random Forest and Logistic Regression

Both RF and logistic regression have been used for risk prediction in health research.

However, they differ substantially in theethod of model development and the output.

Logistic regression is explanatory; it provides regression coefficients that determine the
relative contribution of each predictor in the model, when other predictors are kept
constant. Wher el@ashoXd tisatl i krel ya pirbd wicd e s
model and their importance ranking. Table 3.3 highlights some of the main differences

between risk prediction using multiple logistic regression and RF ensemble methods.
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Table 3.3: Comparison of Multiple Logistic Regression and Random Forest.

Methodological

issues

Multiple logistic regression

Random forest

Sample size

A large sample size is required
provide a sufficient number in bot

categories of theutcome variable.

No minimum sample size

Effect estimates

OR and their confidence intervals.

By default, only variable importang
rankings are produced. Risk ratios ¢g
their confidence intervals may be produg

using additional stepd.28)

Selection of

explanatory variables

The number of explanatory variabl
must be selected first and th
should not exceed 10% of the eve

number.

All available variables may be used. &M
building each tree, only a random subse

predictors is used.

Linearity assumption

Assumption of linear relationshi
between each explanatory varial

and the logit of the outcom

No assumption about the shape of
relationship between the explanatory &

the outcome variables.

variable.
Distributional No assumptions about th No assumptions about the distribution
assumptions distribution of the explanator| the explanatory variables.

variables.

Dealing with complex

interactions

Interactions (especially higher ord
ones) between explanatory variab

are difficult to identify and interpre

Can deal with higher order interactions |
does not explicitly identify them in th

final model.

Adapted from Henrard et £126)
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Recent studies compared conventlomgression models (logistic or Go&gression) to
different machine learning methods (RF, neuronal network, support vector machines and
gradient boosted decision trees) for prediction of clinical outcomes. These studies reported
superior prediction (AULof machine learning methods over conventional regression or
clinically-based risk scores in the adult populatid81-135) Examples of clinical
outcomes predicted by these stgdrecluded: cardiac complications in patients with acute
chest @in(131), re-hospitalization in patients with heart faily(@82), mortality in patients

with sepsis(133), disposition of adults with acute obstructive airway dis€a84) and

triaging of adult patients in Emergency Departnm(@36).

There is energing literature comparing machine learning methods to conventional logistic
regression in perinatal, neonatal or even pediatric research. Recently, Goto et al (2019)
reported superior performance of RF over conventional regression in predictioncaf criti
care and hospitalization among children admitted to the emergency departh3&)ts
Similarly, Carlos CampilleArtero et al (2018) studied data of 6,157 singleton births and
reported superior performance of RF over logistic regression for predicting emergency
Cesarean section (AUC 0.94 (95% CI: 6.935) vs AUC 0.78 (95% CI 0.76.8))(137).
However, other studies reported inferior performance of RF compared to logistic
regression when clinical predictors were used with lower AUC and worse predictive
accuracy. Kuhle et al (2018) conducted a populabiased study 080,705 singleon
infantscomparing logistic regression toachine learning methods for prediction of fetal
growth abnormalities. The study showed that machine learning methods did not add
advantage to the conventional logistic regression and reported poor predidtiGro(&

0.7) for primiparous women and fair prediction (AUCT@.B) for multiparous women,
irrespective of the method usgiB8).
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In summary, recent studies comparing macheerning methods, including RF, to
conventional logistic regression for their discriminative ability in prediction of clinical
outcomes reported conflicting results from superior to similar or even inferior performance.
The conflicting results suggest thabne of the prediction methods is superior and the
predictive accuracy may rely on the settingshe dataset@nd may not be constant across
different studies. The main advantage of machine learning over conventional regression is
its ability to handlelarge/multidimensional datasets (where the computer can learn
iteratively from the data to develop prediction) or complex datasets (witHirmezr
relations between predictors and outcome or interactions between predictors). However,
their predictive pedrmance compared to conventional regression outside these settings, is

yet to be explored.
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3.4. Relevance and Rationale

Cerebral palsy is the most common physical disability in children worldwide. Although
the perinatal insult of CP is considered static, the associated disability is progressive, and
its severity increases over time. In addition to spasticity, weaknessyarability, CP is
commonly associated with major comorbidities (epilepsy, behavioral disorders,
developmental delay, dysphagia or tube feeding, hip dislocation and muscle contractures).
This disabling disease has a lifelong impact on the general healffiected children, their
societal integration and qualitf-life. Additionally, it burdens their families, society and

the healthcare system with both healthcare cost and services utilization.

The risk of CP in preterm children is 10 times higher than ofi the general population,

with extreme preterm children being at the highest (Bk As early diagnosis and
intervention are important in the managemehtC®, timely identification of preterm
children at risk of CP is desirable to benefit from rehabilitation programs with the potential
to improve their functional outcomes and quality of (if&, 27, 7476).

There is a need for reliable tools to accurately predict CP in preterm children early on, as
the approach for diagnosis and management is challenging; (i) there is no specific test to
diagnose CP and thaiagnosis is solely dependent on detailed neurologic examination
which may delay the diagnosis if not performed timely and by expert clinicians, (ii) the
criteria for referral of high risk preterm children to intervention programs varies across
countries mcluding Canada; depending on the jurisdictional regulations and healthcare
resources, (iii) the time to diagnose CP is variable and depends on the access to specialized
care, particularly outside hospital settings or follow up programs, where the Iclinica
diagnosis may be delayed beyond the commonly established time around 18 to 24 months
of age, (iv) by 5Syears of age, almost one third of children with CP would have already
established comorbidities which impact their future health outcomes and qudlifiy of

(26), (v) the clinical outcomes and healthcare cost have a direct relation with the disease
severity and the associated comorbidities, both have potential to be ameliorated if
rehabilitation and interventions were started early within the fiistéars of age, at the

time of brain plasticity, with the potential for neuronal recovery and improve mobility and
motor functiong11, 27, 7476).

36



Research that focuses on developing accurate prediction models of CP in thiskigh
population is very valuable for patients, their families and healthcare providers. Accurate
prediction of CP in preterm survivors is crucial to enable early identdicand to guide
individualized interventions with the potential for neuronal recovery and improvement of
mobility and quality of life. Multiple studies showed that the severity of CP and the
associated comorbidities are modifiable, if the children at arekidentified early and
referred to the appropriate rehabilitation services. This underlines the importance of early
implementation of accurate tools to identify those preterm children at the highest risk of
CP. In addition to improved mobility, improventeof other developmental domains such

as language, cognitive and probleswiving skills have been reported with early
intervention in preterm children with C@1, 27, 7476). Families of those children
engaged in such programs were shown to have enhanced parenting skills, improved
bondingand parethi | d i nteraction and above all/l [
social activities. Such modifications ofetimeurosensory stimulation and the environment
around CP children have an impact on their behavior, communication and social integration
(77, 78)

For families, accurate predioh is invaluable when counselled about the risk of their

children developing CP, or NDI, after preterm birth or a significant perinatal event.
Interaction between parents of preterm children and healthcare providers constitutes an
integral part of theirngerience in NICUs and during antenatal counselling prior to preterm
birth; such a stressful situation reportec

preterm birth, particularly related to parent child interaction and parental empowerment.

For caegivers, early and accurate prediction of CP may assist in selecting the appropriate
treatment and providing individualized interventions for this frigk patient population.

It would also enable targeting the necessary resources to those childeehightst risk

who would most likely benefit from early detection and intervention.
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Finally, logistic regression has been traditionally used for risk prediction in neonatal
literature. The emergence of novel prediction methods, that overcome the limsitatio
logistic regression, has stimulated researchers to explore and compare the predictive
accuracy of these methods to conventional logistic regression. The method with the highest
accuracy and ability to discriminate between those children at risknfautcome of

interest from those who are not can be implemented in clinical practice.

The predicted probability of an outcome of interest, such as CP, for each preterm infant
given their set of predictors, can be easily transformed into calculated sesk $@ores and
algorithms. Clinical calculators of these algorithms or-aked scores derived from such
prediction models have been widely used in neonatal practice to aid counselling or when

critical decisions are discussed. Examples of such cliniaa#iylable calculators include:

(i) NICHD calculator for prediction of death or disability when counselling
families regarding active resuscitation at the edge of viability or to provide
prognostication of long term outcomes after extreme preterm birth,

https://www.nichd.nih.gov/research/supported/EPBO(1iS8)

(i) The BPD céculator to decide for selective administration of systemic
steroids among very preterm infants with severe RDS, a therapy known to
increase the risk of CP so selectively given to the sickest infants,

https://neonatal.rti.org/index.cfii40).

(i) Vincer et al developed an algorithm for prediction of mortality at
extreme preterm birthusing the same population database of the current
study(141)
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Knowledge Gap and Rationale

Despite considerable evidence in the literature on the risk factors associated with CP in
preterm children, few studies have advanced beyond risk analyses to develop risk
prediction models and measure their diagnostic ptiggeMoreover, the majority of these
reports were limited by small sample sizes and not being populzdsed (Appendix 1).
Additionally, multiple studies did not investigate CP as the main outcome, but rather
examined NDI, with CP as one component o tomposite outcome. Traditionally, these

studies used logistic regression for predicting CP in preterm children.

The role of machine learning methods, such as the RF, in the prediction of CP in the
preterm population has not yet been adequately explditesl RF method is one of the

most commonly used and accurate machine learning methods. It does not require a model's
specification and can handle complex relationships between predictors and the outcome.
Therefore, RF may result in better prediction ofv@ien compared to logistic regression.
Additionally, it is not known if the claimed superiority of RF over logistic regression would
remain when clinical predictors are used. Therefore, the proposal of this study is to explore
the role of RF in predictiorof CP using clinical predictors and to compare RF to
conventional logistic regression for the accuracy in prediction of CP among a large
populationbased cohort of very preterm children in Nova Scotia. To my knowledge, no

study compared RF to logistic regsion in this context to date.

As early identification and referral of preterm born children at risk of CP has been shown
to improve their outcomes and quality of life, research that focuses on reliable risk
prediction in this population is needed. Walvances in perinatal care and improved
survival of very preterm children over the last few decades, we expect to see more children

at risk of CP which makes a reliable prediction tool more pressing now than ever before.
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CHAPTER 4: METHODS

4.1.Study Population and Design

This study used retrospective data of a prospective populadieed cohort of very preterm
infants. The birth cohort includedl éive born very preterm infants (82- 30F/” weeks
gestation) who were born between Januar0D0 and December 31, 2014, to mothers
residingin Nova Scotia. From this birth cohort, only infants with no major congenital
anomalies or no palliation at birth were eligible for inclusion. Children who died before 36
months of corrected age, those whergvlost to followup, those with missing outcome

data and those who had their last assessment before 18 months of corrected age were
excluded. Data of surviving very preterm infants who received standardized
neurodevelopmental assessment up to 36 momitisated age were collected from the

Nova Scotia PFUP database and were evaluated for the primary outcome of CP.

Candidate variables were classified into three groups according -spgcdied time

points in a chronological fashion: prenatal period émadl, pregnancy and fetal factors),
perinatal period (factors related to intrapartum period up to 6 hours after birth), and
postnatal period (short term morbidities up to hospital discharge at or near the expected
date of delivery). For the purpose ofgtstudy, we defined those three time points being
relevant for prediction of CP both for families and caregivers. Accurate prediction of CP
at these three phases are crucial to aid in counselling families for prognostication or when
informed critical deci®ns are discussed: (i) before birth (to decide if active resuscitation
will be provided for extremely preterm infants), (ii) within the first 6 hours after birth (to
decide regarding continuation or withdrawal of intensive care if a catastrophic perinatal
event occurred), and (iii) at hospital discharge (to assess thédiongrognosis and to
guide referral of highisk infants to early intervention programs and other developmental

services).

Before analysis, the full dataset was randomly dividedtiaiaing and testing subsets in

a 70:30 ratio. Prediction models of CP using logistic regression and RF were developed in
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the training dataset and were validated in the testing dataset. The internal validation was
performed to assess for model overfittangd to examine how the model would perform in

a similar but independent sample from the same population. For internal validation, the
splitting method was preferred overf&ld crossvalidation or bootstrapping as the model
building procedure for logistiegression requires human intervention that cannot be easily
automated. The validated prediction models were compared with regard to their
discriminative ability (AUC), accuracy (correct classification) and diagnostic properties
(sensitivity, specificityPPV, NPV, LR).

4.2. The AC Allen Provincial Perinatal Follow Up Program Database

The AC Allen Provincial PFUP database is the data source for this study. Since 1993, the
PFUP has enrolled all liveborn very preterm (<31 weeks) infants bamotbers who
resided in Nova ScotiaThe database collects a broad range of data including
sociodemographics, prenatal, perinatal, and postnatal clinical data as well as
neurodevelopmental data up to 36 months of corrected age. The database alsoatallects d
on delivery room deaths at any hospital in Nova Scotia. The PFUP database contained
records on all 1111 very preterm infants born to mothersingsiad Nova Scotia between

2000 and 2014. The Program Medical Director (Dr. Michael Vincer) and the databa
manager perform periodic audits and code checks of the database including retrospective
updating of coding schemes (in case of changes in coding definitions) in order to maintain

the database consistency.

The PFUP performs a standardized neurodevelopghessessment of all surviving
preterm children up to 36 months of corrected age with a falijpwate around 96%.
Following discharge from NICU, all very preterm infants are scheduled for visits to the
PFUP clinic at 4, 8, 18, and 36 months of correcigél. If an abnormality is detected at
any visit, more frequent followmp may be required. Each infant is assessed during those
visits by a multidisciplinary teamincluding pediatricians, nurses, physiotherapist,
occupational therapist, dietician and spgetterapistEach visit includes a complete history

and physical assessment including a detailed neurologic examination. If serial neuromotor
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assessments are completely normal up t24.8nonths of corrected age, no further
neurologic exam igequired, but detailed developmental assessment of motor skills
continues up to 36 months of corrected age using standardized validated tests as described
below. However, if an exam shows an abnormal finding or parental concerns were
identified at the 184 months visit, then a detailed neurologic exam is conducted at each

subsequent visit up to the 36 months to assess for milder forms of CP.

Additionally, standardized neurodevelopmental screening tests are conducted at each
PFUP visit to assess gross mofunctions. TheAlberta Infant Motor Scale (AIMS) is
performed up to 8 months of corrected &b@7) andthe adapted Bayley Scale of Infant

and Toddler Development (BSITBgreeners used to evaluateothfine and gross motor

skills beyond 8 months of corrected a@€?2) The cognitiveand language development

are also assessed at each visiing theadaptedCAT/CLAM (Cognitive Adaptive
Test/Clinical Linguistic and Auditory Milestone Scal@7, 143) These validated tests
were shown to predict motor and cognitive/language outcomes, respe(Qivelp7, 142,

143) Finally, standardized developmental testing (BSITD, Editiah)| conducted at 36
months of corrected age, provides psychomotor and mental developmental scores
(cognitive and language development) that are widely used in longitudinal studies of
preterminfants(144, 145)

If CP is suspectedhe child is referred to a pediatric neurologist to confirm the diagnosis
and to initiate the management, including referral to a rehabilitation program. Once the
diagnosis is confirmed, children with CP are further classified based on ambulation into
mild CP (level 12) or moderate to severe CP (leved)3using the Palisano GMFG83).

The GMFCS is a validated tool that has been used extensively for classification of CP in
literature and to standardize reporting of CP allowing comparison of these studies-in meta

analyses and systematic reviews (Appendix 1).
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4.3 Outcome

The outcome of the study is the presence of CP of any severity, defined as a disorder of
control of movement, muscle tone and/or reflexes or posture secondary to- a non
progressive brain lesion. The prevalence of CP was determined at 36 wiocth®cted

age, rather than at 12 or 24 months, as the diagnostic accuracy is higher, particularly for
the mild form or the ambulatory subty(@4, 25) If the sssessment at 36 months is not
available, then the most recent standardized assessment close to 36 months {4@2hge 18

months) was used to determine CP.

The clinical diagnosis of CP at the PFUP is described above. Cerebral palsy is coded in the
PFUP datahse in three ways: as a binary categorical variable (yes/no), as a nominal
categorical variable based on the clinical subtypes (spastic, athetotic, hypotonic, or ataxic),
and as an ordinal variable based on the standardized GMFCS level. The definit®n of C
the primary outcome of this study, has been standardized in the PFUP database since its
inception and the severity classification of GMFCS levels has been standardized in the
PFUP database since 2000.

4.4 Candidate Predictors

Potentialpredictors of CP in this analysis included the maternal and infant factors described
in Section 3.1.4, or other variables that are associated with CP (e.g., maternal age) or have
biologic plausibility or are antecedents to CP (e.g., birth asphyxia, ofieatr brain

injury). The complete list of the predictors with detailed information of their corresponding

codes and definitions is provided in Appendix 2.

Prenatal factors included (i) maternal factors (age, parity, socioeconomic status as per

Hollingshed classification, single parent, previous neonatal deaths or previous stillbirths);

(i) pregnancy factors (exposure to smoking, alcohol or drugs during the current pregnancy,
gestational hypertension/peelampsiadiabetes, idiopathic preterm labor, dbdics, pre

labor premature rupture of membranes, chorioamnionitis, antepartum hemorrhage); and
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(iii) fetal factors (multiple gestation, fetal growth restriction, fetal distress).

Perinatal factors included (i) intrapartum factors (intrapartum magnesiunifate,

antenatal steroids, mode of delivery, gestational age, birth weight, SGA, infant sex, outborn
status, birth asphyxia, need for resuscitation (chest compression or epinephrine) at birth,
and 1 and 5minute Apgar scores); and (ii) factors relatedhe first 6 postnatal hours
(infantds body temperature, hemogl obi n, an
Birth weight zscores were determined relative to a Canadian reference population to assess
infant growth independent of gestational age se146)

Postnatal factorsincluded (i) postnatal treatments (surfactant, prophylactic indomethacin,
ibuprofen or indomethacin for medical closure of patent ductus arteriosus, inhaled nitric
oxide, antireflux medications, musalelaxants and systemic dexamethasone); (ii) neonatal
morbidities related to preterm birth (hypoglycemia, hyperglycemia, anemia,
thrombocytopenia, respiratory distress syndrome, severe IVH (defined as grade 3 or 4 IVH
as per Papile classificatio(§1), parenchymal echodensitjeerebral white matter cystic
lesions (PVL or porencephaly), BPD (defined as oxygen dependency for at least 28 days
with cystic changes on chestay), severe ROP (defined as stage 3 or higher based on the
revised international classification systébd7)or requiring intervention), NEC (defined

as Bell stage 2 or highe(49), sepsis (defined as positive bacterial, viral, or fungal blood

or cerebrospinal fluid culture); (iii) severe neonatal illnesses (resuscitation during NICU
stay, pneumothorax, inotropes for hypotension or cardiac dysfunction, major surgery and
dischar@ on home oxygen); and (iv) the number of days on mechanical ventilation and

length of hospital stay.
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4.5. Data Preparation

Data coding, checking for missing values, assessment of distribution of continuous
variables, and testing for linear relationsHyesween continuous variables and the logit of

CP were performed.

Three observations with unusual clinical courses were removed from the data (1 child with
extremely long hospital stay and 2 children with extremely long mechanical ventilation
days).Biobgi cal |y i mpl ausi bl e values were repl a
were checked for extreme values for recording or abstraction errors and no abstraction
errors were identified. Extreme values confirmed to be true values were retainedsand tho

with presumed error on recording or abstraction were replaced by missing values.

Data coding included dichotomization of some continuous variables: number of cigarettes
smoked/day to maternal smoking during pregnancy, duration of rupture of memioranes t
prelabor premature rupture of membranes >18 hours, and duration of nasal continuous
positive airway pressuf@PAP to nasal CPAPSome continuous variables were used to
create new categorical variables: gestational age in weeks to create extremely low
gestational age (<26 weeks), birth weight in grams to create extremely low birth weight
(<1000 g), duration of antenatal steroids to create appropriate antenatal steroids (>24 hours
prior to delivery), and mean blood pressure to hypotension on admis$it@Uo(If mean

blood pressure value is less than gestational age at birth). For variables with multiple
codings/definitions (e.g. maternal diabetes), the most accurate definition or the one with

the lowest missing data was selected.

New variables were cat¢ed for any maternal hypertension (to include-gxisting
hypertension, gestational hypertension or-gempsia), neonatal inotropes (to include
receipt of dopamine or dobutamine) and cystic white matter lesions (to include cystic PVL
and porencephalicyst). There was a change in practices over time for PDA medical
treatment (from indomethacin to ibuprofen) and for ROP treatment (from laser surgery to

intravitreal injection of bevacizumab); therefore, new variables were created to reflect any
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treatment regardless of the year of birth: PDA medidaéatment (ibuprofen or

indomethacin) and any ROP treatment (laser surgery or bevacizumab).

Checking for missing data revealed 16 variables with missing values in the dataset; the list
of those variables is pvided in Appendix 2. No imputation for missing variables was
conducted, as the proportion of missing values was low. Only two variables had equal or
>5% of missingness (maternal smoking 5% and SES 11%), and a "missing" category was
created for these twaaviables Pairwise deletion was used for model development where
observations with complete data for predictors were included in the model, whereas those

with missing data for other predictors were excluded.

Histograms were created to assess the disioibatf continuous variables; maternal age,
birth weight, zscores of birth weight, admission temperature and admission hemoglobin

were normally distributed (Appendix 2).

Testing for linear relations between continuous variables and the logit of CP was
conducted. The continuous variables, blood pressure on admission, duration of CPAP, and
duration of high frequency oscillatory ventilation, were dichotomized as they showed a
nonlinear relation with the logit of CP. The relation of the remaining continuatgbles

was reasonably linear over datanse sections of the independent variables (Appendix 2).

4.6 Statistical Analysis

Comparison of variables between the groups of children with and without CP in the full
dataset was done using Fisherxsct tests for categorical variables astdsts or Mann
Whitney tests for continuous variables as appropriate. Then, the full dataset was randomly
divided into a training (70%) and a testing (30%) datasets prior to analysis. Stata/IC 16
(Stata Corp., Ctége Station, TX, US) was used for all analyses with the exception of the
RF models.
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Objective 1: Logistic regression model

Model building. Using the training dataset, candidate predictors of CP were identified
using a series of logistic regression modé€lsst, unadjusted models were run for each
candidate predictor of CP. Then, three multivariable regressions were built using the
candidate predictors available at each of the prespecified time points (prenatal, perinatal,
and postnatal). Variables with < 0.1 in the unadjusted analysis were entered into the
corresponding multivariable model, and variables Witk 0.05 were removed from the
model(149)

The set of candidate predicsofrom these three logistic regression models developed at
each time point were then added incrementally together and only variables wiiti p
were retained, resulting in three multivariable regression models as follows:

0 Prenatal Model: Maternal andggnancyrelated variables.

O«

Prenatal/Perinatal Model: Prenatal Model plus perinatal variables (intrapartum and

early neonatal variables within 6 hours from birth).

O«

Full (Prenatal/Perinatal/Postnatal) Model: Prenatal/Perinatal Model plus postnatal

variablesup to hospital discharge.

Model testing.For each of the three models that were developed, the predicted probability
of developing CP for each participant given their set of predictors was computed in both
the training and testing datasets ugihg5)

P(CP=1)=¢éa+*blx1+b2xpp@(dtxiyl+b2x2+é. bixi)
Performance of the logistic regression models at the three time points were assessed for
discrimination, calibration, and classification. The diagnostic properties of the models were
determined149).

Discrimination of the models was assessed usisigttstics or AUC to estimate the overall
ability of the prediction models to discriminate between children who develop CP from
those who do not. The AUC, based on the traii®etweerthe true positive (sensitivity)

and the false positive {dpecificity) rates of CP, was evaluated from ROC curves at the

three predefined time points.
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Calibration was assessed using the goodness of fit of the prediction models to evaluate the
agreementdt ween the observed and the predicted
and across different risk deciles by the Hosireameshow metho@L50). Evidence of poor

fit is indicated i f either test showed st a
the training full model fits reasonably well with p = 0.32. However, the numbevafiate

patterns was close to the number of observations (528 and 533 respectively), making the
applicability of the Pear son 6 2lemeshent gue s
method regrouped the data by forming 10 almost esjaall groups based on pentiles

of the predicted probabilities of CP (each group has the same or similar predicted
probability) (150).

The model sd cl assi f i thadverageclassiicatiordaecuracy (the n e d
proportion of correctly classified observations) ane diagnostic properties (sensitivity,
specificity, PPV, NPV, and LR) at a selected-offitof a predicted probabilitf151)

Accuracy was determined as the proportion of both true positive and true negative
predcted cases in relation to the whole prediction (both true and false).

The selected ctaff for each model was based on maximizing sensitivity, specificity and
correct classification, while considering the clinical context in whichptieeliction was

used. For prenatal and perinatal prediction, the aim was to ensure high specificity and
negative predictive value to enable prediction of true negative cases of CP to guide
counseling parents when providing life support or intensive caee @ttreme preterm

birth. By contrast, the postnatal prediction is used to counsel parents about thertong
outcome and to refer high risk infants for early intervention, and therefore should have a
high sensitivity to identify most cases of CP, buthwiitw false positive rate to avoid

creating anxiety and burden on families and overuse of health care services.

Internal validation. The logistic regression models developed on the training dataset were
validated using the testing datasBte AUC of thevalidated models, their accuracy and
diagnostic properties (sensitivity, specificity, PPV, NPV, and LR) were determined at the

selected cubff of a predicted probability.
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Objective 2: Random Forest Model

Model building. The RF ensemble method was useprtmict CP from prenatal, perinatal

and postnatal candidate predictors, as described before. Since RF, in the presence of an
imbalance of the predicted classes (11% CP vs. 89%CiR)will favor the majority class,
up-weighting of the minority class (CP)as performed before the analysis to achieve an
even ratio of the two classé€ss2) The number of variables availaldor splitting at each

node (210) was optimized using #@ld cross validation, repeated 10 times, over a
parameter grid in the training data; 500 trees were used for the RF. Classification of CP
(yes/no) for each observation was based on the majartiéyof the RF trees. | qualitatively
assessed the relative importance of predictors using the variable importance plots. RF
models were implemented in R / RStudqib3) with the caret package(154) and the
randomForespackagg155).

Model testing. Due to the upweighting of the minority class, assessment of model
calibration was not meaningful. Discrimination was assessed using AUC and the

classification accuracy was evaluated based on the confusion matrix for each model.

Internal validation. The R- models developed on the training dataset were validated using
the testing datasef he vali dated model sd AUC, accur a
(sensitivity, specificity, PPV, NPV, and LR) were determined.

Objective 3: Comparing Logistic Regression ad RF Prediction Models

The cstatistics or AUC, for both the logistic regression and RF full models, provided an
assessment of their discriminative ability to correctly identify those preterm children who
do develop CP from those who do not. Using the Alfliantitatively compared both full
prediction models to identify the model that provided a better discrimination of CP.
Discrimination was considered poor if AUC was-0.3, fair if AUC was 0.70.8, good if

AUC was 0.80.9 and excellent if AUC was >9
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4.7. Ethics

The research protocol was reviewed by the Data Management Committee of the PFUP and
the Research Ethics Board at the IWK Health Centre (file # 1024274jleDtfied data
were stored on the NS Health secure network drive and accissadh a password

protected computer at the IWK Health Centre.
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CHAPTER 5: RESULTS

5.1 Study Population

A cohort of 1,111 very preterm infants (<
period. After the exclusion of infants with congenital aabas (n=44) or receiving
palliation at delivery (n=117), 950 very preterm infants were eligible for inclusion in this
study. Of those, 112 infants died prior to 36 months of corrected age (majority during NICU
stay), 16 children were lost to folleup, ar 42 children had their last assessment done
prior to 18 months corrected age. A further three infants with influential values were
excluded from the analysis at the modeling stage; 1 with hospitalization for 729 days and
2 with > 6 months of mechanicalMiation (4356 hours), leaving 777 preterm survivors

(93% of the eligible cohort) in the analysis sample.

The mean gestational age in this cohort was 28 weeks (SD 1.9), ranging from 22 to 30
weeks, and the mean birth weight was 1140 g (SD 324), rafrgimg460 to 2180 g. Of

the 777 infants included in the analysis, 108 (14%) were of extreme low gestational age
(<26 weeks) and 274 (35%) were of extreme low birth weight < 1000 g. The mean duration

of follow-up was 35 (SD 9) months of pgstm age.

Within this cohort, 86 children were diagnosed with CP (11%) and 691 children were free
from CP (89%) (Figure 5.1). AlImost two thirds of children with CP (65%) had mild disease
(GMFCS level I: n=57) and the majority (84%) were ambulatory (GMFCS level I: n=57,
GMFCS level II: n=15). Only 14 children (16%) had rambulatory CP (GMFCS level

lll: n=8, GMFCS level IV: n=4, GMFCS level V: n=2).
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Preterm 2230 weeks

(2000:2014)
N=1111

Excluded

N=44 congenital anomalies
N=117palliation at birth

N=112died

N=16 lost to follow up

N=42 last seen before 18 months of &
N=3 dropped (extreme outlier)

Preterm 2230
weeks included in
analysis
N=777

CP
N=86
(11%)

No CP
N=691
(89%)

Figure 5.1 Study Population Flow Chart

5.1.1 Comparison of Children With and Without CP in the Study Cohort

Table 5.1 shows the prenatal, perinatal, and postnatal characteristics of children with and
without CP.

Prenatal variables: Mothers of children with CP were more likely to be goaglat, but
less likely to have suffered from gestational hypertension compared to mothers of children
without CP.
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Perinatal variables: Children with CP were less likely to be exposettin to antenatal
steroids or magnesium sulfate, had lower gestatiages and birth weights compared to
those without CP. They were more likely to be of extremely low gestational age and
extremely low birth weight compared to those without CP. They also had higher rates of
severe birth depression and delivery room ragtsmn (chest compression or
epinephrine), lower Bninute Apgar scores, and lower blood pressure and hemoglobin
levels within the first 6 hours of admission to NICU compared to children without CP.
Postnatal variables: Children with CP were generallyesithkan those without CP as
indicated by higher rates of respiratory morbidity, severe brain injury (including cystic
white matter lesions, posthemorrhagic hydrocephalus and cerebral parenchymal echodense
lesions), hemodynamically significant ductus adsus, sepsis, NEC, severe ROP, and
hematologic abnormalities compared to those without CP. They also received more
intensive medical and surgical therapy during their NICU stay and they had longer median

length of hospitalization compared to those withGBt(Table 5.1).
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Table 5.1: Comparison of Children With and Without CP in the Study Cohort

Variable " P No P
Type Missing (n=86) (n=691)
PRENATAL VARIABLES
Maternal age (mean, SD) Continuous - 27.2 (2.1) 27.9 (1.9)
Married or common law Binary 1 63/86 (73) 584/681 (86)
SES Categorical 11
Class | 8/76 (11) 58/613 (10)
Class Il 18/76 (24) 209/613 (34)
Class Il 22/76 (29) 176/613 (29)
Class IV 15/76 (20) 108/613 (18)
Class V 13/76(17) 62/613 (10)
Urban residence Binary - 67/86 (78) 500/691 (72)
Primigravida Binary - 39/86 (45) 290/691 (42)
Multiparity Binary - 13/86 (15) 98/691 (14)
Abortion/miscarriages Binary - 27/86 (31) 233/691 (34)
Previous stillbirth Binary - <5/86(5) 16/691 (2)
Smoking Binary 5 24176 (32) 180/661 (27)
Substance use Binary - 6/86 (7) 76/691 (11)
Psychiatric disease Binary - 11/86 (13) 90/691 (13)
Antidepressants Binary - 5/86 (6) 50/691 (7)
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Variable " P No P

Type Missing (n=86) (n=691)
Hypertension Binary - 11/86 (13) 141/691 (20)
Diabetes Binary - 5/86 (6) 34/691 (5)
Tocolytics Binary - 25/86 (29) 247/691 (36)
Indomethacin (for tocolysis) Binary - 12/86 (14) 98/691 (14)
Prelabor premature rupture _
Cembranes Binary - 16/86 (19) 187/691 (27)
Chorioamnionitis or funisitis Binary - 11/86 (13) 84/691 (12)
GBS colonization Binary - 8/86 (9) 73/691 (11)
Intrapartum antibiotics Binary - 36/86 (42) 309/691 (45)
Abruption Binary - 9/86 (11) 49/691 (7)
Antepartum hemorrhage Binary - 25/86 (29) 151/691 (22)
Multiples Binary - 24/86 (28) 216/691 (31)
Fetal growth restriction Binary - 9/86 (11) 97/691 (14)

63/691 (9)
Fetal distress Binary - 8/86 (9)
PERINATAL VARIABLES

Intrapartum magnesium sulfate Binary - 13/86 (15) 213/691 (31)
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_ % CP No CP
Variable o
Type Missing (n=86) (n=691)
Any antenatal steroids Categorical 0.1 68/86 (79) 636/691 (92)
Antenatal steroids (>24 hours prior ]
_ Binary 0.1 35/86 (41) 509/690 (74)

delivery)
Cesarean section Binary - 42/86 (49) 408/690 (59)
Moderatesevere asphyxia Binary - 75/86 (87) 501/691 (73)
Chest compression/epinephrine Binary 0.5 15/84 (18) 33/689 (5)
Outborn Binary - 9/86 (10) 44/691 (6)
Male sex Binary - 42/86 (49) 369/691 (53)
Gestational age in weeks _

Continuous - 27.2 (2.1) 27.9 (1.9)
(mean, SD)
Extremely lowgestational age Binary - 24/86 (28) 84/691 (12)
Birth weight in grams (mean, SD) | Continuous - 1089 (344) 1148 (321)
Extremely low birth weight Binary - 39/86 (45) 235/691 (34)
Birth weight zscore (mean, SD) Continuous 0.2 0.125 (0.88) -0.035(0.84)
Small for gestational age Binary - 6/86 (7) 49/691 (7)
Apgar at 1 minute (median, IQR) Continuous 1 4 (4) 5(3)
Apgar at 5 minutes (median, IQR) | Continuous 1 7(2) 8 (3)
Admission temperature _

Continuous 2 36.6 (0.8) 36.7 (0.8)
(mean, SD)
Admission hemoglobin Continuous 1 153 (28) 162 (27)
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% CP No CP
Variable o
Type Missing (n=86) (n=691)
(mean, SD)
Hypotension on NICU admission Binary 2 20/83 (24) 94/679 (14)
POSTNATAL VARIABLES
Lowest hemoglobin during first 2 _
_ Continuous 0.6 83 (12) 86 (6)
hours (median, IQR)
Sever e grhdé BlIVH) O Binary - 35/86 (41) 38/691 (6)
Posthemorrhagic hydrocephalus Binary - 22/86 (26) 11/691 (2)
Ventriculoperitoneal shunt Binary - 18/86 (21) 5/691 (1)
Cystic brain lesions _
Binary - 40/86 (47) 9/691 (1)
(PVL, porencephaly)
Parenchymal echodense brain lesi¢  Binary - 15/86 (17) 99/691 (14)
Severe RDS Binary - 80/86 (93) 453/691 (66)
Surfactant for RDS Binary - 77/86 (90) 486/691 (70)
Hours on mechanical ventilatig _
_ Continuous - 349 (1091) 44 (442.3)
(median, IQR)
Cystic BPD Binary - 28/86 (33) 119/691 (17)
Dexamethasone for BPD Binary - 26/86 (30) 107/691 (16)
Home oxygen at discharge Binary - <5/86 (4) 30/691 (4)
Nasal CPAP Binary - 63/86 (73) 552/691 (80)
High frequency oscillation Binary - 22/86 (26) 65/691 (9)
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Variable " P No P
Type Missing (n=86) (n=691)
Pneumothorax Binary - <5/86 (5) 30/691 (4)
Pulmonary hemorrhage Binary - 5/86 (6) 18/691 (3)
Treatment for ROP Binary - 50/86 (58) 320/691 (46)
Significant PDA Binary - 37/86 (43) 167/691 (24)
Medical treatment for PDA Binary - 40/86(47) 212/691 (31)
PDA ligation Binary - 18/86 (21) 60/691 (9)
NEC O Bell stageg Binary - 6/86 (7) 18/691 (3)
Duration of TPN (Median, IQR) Continuous 2 40 (34) 26 (27)
Neonatal septicemia Binary - 32/86 (37) 160/691 (23)
Clinical (culturenegative) sepsis Binary - 5/86 (6) 72/691 (10)
Systemic infection Binary - 38/86 (44) 242/691 (35)
Neonatal anemia Binary - 77/86 (90) 522/691 (76)
Neonatal thrombocytopen| _
(<100,000) Binary - 33/86 (38) 123/691 (18)
Severe neonatal hypoglycemia _
(<1.67 mmollL) Binary - 14/86 (16) 77/691 (11)
Insulin for neonatal hyperglycemia Binary - 22186 (26) 70/691 (10)
Inhaled nitric oxide Binary - 13/86 (15) 37/691 (5)
Prophylactic indomethacin Binary 0.1 9/85 (11) 68/691 (10)
Inotropes Binary - 34/86 (40) 79/691 (11)
Muscle relaxant Binary - 26/86 (30) 111/691 (16)
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_ % CP No CP
Variable o
Type Missing (n=86) (n=691)
Major surgery Binary - 21/86 (24) 53/691 (8)
Antireflux medications Binary - 14/86 (16) 97/691 (14)
Resuscitation during NICU stay Binary - 13/86 (15) 32/691 (5)
Hospitalization days _
_ Continuous 1 87 (60) 70 (44)
(median, IQR)

Data are presented as n/N (percentage), mean (xSD) or median (IQR).
Abbreviations: BPD (bronchopulmonary dysplasia), CP (cerebral palsy), CPAP (continuous positiye airwa
pressure), GBS (group B streptococci), IVH (intraventricular hemorrhage), IQR (interquartile range), NEC
(necrotizing enterocolitis), NICU (Neonatal Intensive Care Unit), PDA (patent ductus arteriosus), PVL

(periventricular leukomalacia), RDS (respiratalistress syndrome), ROP ( retinopathy of prematurity), SD

(standard deviation), SES (socioeconomic status).

The full population dataset was then randomly assigned to a training set (70%, n=544) to

The dash indicates no missing data

develop the prediction models and a testing set (398233) to test their predictive

performance.

Table 5.2: Random Splitting of Population Dataset

CP No CP Total
Testing Dataset 26 (11) 207 (89) 233 (100)
Training Dataset 60 (11) 484 (89) 544 (100)
Total 86 (11) 691 (89) 777 (100)

Data aregpresented as number (percentage)

59




5.2 Logistic Regression Model Development and Testing

The development and internal validation of the CP prediction models at the three time
points (prenatal, perinatal, and postnatal) was reported as per the TRIPOD rdtateme
ATransparent Reporting of a Multivariabl e
Di agnosi s ohttg:/ARtrip&@iBtatement.org/TRIPOD/TRIPGDBhecklists.

5.2.1 Uhivariate analysis of the Training Dataset

The list of the prenatal, perinatal, and postnatal candidate predictors and their unadjusted
association with CP (OR with 95% CI) are provided in Tables 5.3).(Thirty-eight
candidate predictors were associatgtth CP at the three time points with p < 0.05.

60


http://www.tripod-statement.org/TRIPOD/TRIPOD-Checklists

Table 5.3.1 Prenatal Risk Factors Associated with CP on Univariate Analysis

Variable Unadjusted OR (95% CI)
Maternal age 0.97 (0.931.02)
Married or common law 0.4 (0.220.74)
SES Class | Ref. Ref.
Class Il 0.59 (0.191.80)
Class llI 0.80 (0.27-2.38)
Class IV 1.41 (0.656.41)
Class V 2.04 (0.47-4.24)
Urban residence 2.28 (1.094.76)
Primigravida 1.01 (0.581.73)
Multiparity 1.12 (0.532.38)
Abortion/miscarriage 1.03 (0.591.81)
Previous stillbirths 3.13 (0.81:12.14)
Smoking 1.21 (0.662.24)
Substance use 0.79 (0.30:2.06)
Psychiatric disease 0.72 (0.301.73)
Antidepressants 0.92 (0.31:2.67)
Hypertension 0.51 (0.221.15)
Diabetes 1.43 (0.484.29)
Tocolytics 0.79 (0.441.43)
Indomethacin 1.56 (0.77-3.16)
Prelabor premature rupture of membran 0.67 (0.351.31)
Chorioamnionitis or funisitis 1.45 (0.722.93)
Maternalantibiotics 0.96 (0.56-1.66)
Antepartum hemorrhage 1.90 (1.07-3.36)
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Variable Unadjusted OR (95% CI)

Multiples 0.83 (0.461.53)
Fetal growth restriction 0.84 (0.371.92)
Fetal distress 1.17 (0.482.88)

Data presented as unadjusted OR (95% CI), bold font indicates statistical significance

Abbreviations: CI (confidence interval), CP (cerebral palsy), OR (Odds ratio), SES

(socioeconomic status)
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Table 5.3.2: Perinatal Risk Factors Associated with CP odnivariate Analysis

Variable Unadjusted OR (95% CI)

Cesarean Section 0.55 (0.320.94)
Intrapartum magnesium sulfate 0.40 (0.190.84)
Antenatal steroids 0.23 (0.130.40)
Moderatesevere asphyxia 2.49 (1.155.38)
Chest compression/epinephrine 4.03 (1.87-8.66)
Gestational age 0.83 (0.730.95)
Extreme prematurity (< 26 weeks) 2.92 (1.585.34)
Birth weight 1.0 (1.00-1.00)
Birth weight z score 1.34 (0.97-1.85)
Extreme low birth weight (<1000 grams) 1.48 (0.862.55)
Small for gestational age (<@entile) 1.28 (0.483.43)
Male 0.79 (0.461.36)
Apgar at 1 minute 0.82 (0.730.92)
Apgar at 5 minutes 0.77 (0.67-0.88)
Admission temperature 0.85 (0.571.27)
Admission hemoglobin 0.99 (0.981.00)
Hypotension on admission to NICU 2.09 (1.084.04)
Outborn 1.47 (0.59-3.66)

Data presented as unadjusted OR (95% CI), bold font indicates statistical significance

Abbreviations: CI (confidence interval), CP (cerebral palsy), NICU (Neonatal Intensive Care
Unit), OR (Odds ratio)

Table 5.3.3: Postnatal Risk Factors Assodied with CP on Univariate Analysis

Variable Unadjusted OR (95% CI)
Lowest hemoglobin during first 24 hours 0.97 (0.960.99)
Severe | VH (O grad 10.46 (5.5219.81)
Posthemorrhagic hydrocephalus 19.83 (7.9849.32)
Ventriculoperitoneal shunt 40.08 (10.93147.00)
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Variable

Unadjusted OR

(95% Cl)

Cystic brain lesions (PVL, porencephaly 83.83 (30.33231.68)
Parenchymal echodense brain lesions 1.24 (0.602.57)
Severe RDS 5.00 (2.11:11.88)
Surfactant for RDS 3.21 (1.427.22)
Nasal CPAP 0.63 (0.341.16)
Home oxygen at discharge 1.11 (0.323.81)
Duration of tracheal intubation 1.00 (1.001.00)
Cystic BPD 2.42 (1.364.32)
Dexamethasone 1.86 (1.01:3.41)
Pneumothorax 0.72 (0.17-3.16)
Pulmonary hemorrhage 2.26 (0.61-8.35)
NEC s(tdge 2 Bell 0s 3.91 (1.31:11.67)
Days of parenteral nutrition 1.02 (1.001.03)
Neonatal septicemia 2.32 (1.334.06)
Clinical sepsis 0.66 (0.231.91)
Systemic infection 1.96 (1.153.30)
Severe ROP (O stag 3.70 (1.907.22)
Treatment foROP 1.44 (0.842.48)
Prophylactic Indomethacin 0.50 (0.151.65)
Significant PDA 2.60 (1.504.49)
Treatment for PDA 1.93 (1.123.32)
PDA ligation 2.97 (1.525.82)
Neonatal thrombocytopenia 3.14 (1.775.57)
(<100,000 10 e/L))

Neonatabnemia 3.55 (1.399.07)
Severe neonatal hypoglycemia 1.63 (0.783.40)
Inhaled nitric oxide 3.52 (1.667.49)
Antireflux medications 0.84 (0.381.84)
Insulin for hyperglycemia 3.46 (1.81-6.62)
High frequency oscillatory ventilation 3.30 (1.736.30)
Inotropes 4.48 (2.498.06)
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Variable Unadjusted OR (95% CI)

Muscle paralysis 2.01 (1.103.66)
Major surgery 1.26 (1.907.22)
Resuscitation during NICU stay 3.24 (1.437.32)
Length of hospitalization 1.00 (1.001.01)

Data presented as unadjusted OR (95% ClI), bold font indicates statistical significance

Abbreviations: BPD (bronchopulmonary dysplasia), Cl (confidence interval), CP (cerebral palsy),
CPAP (continuous positive airway pressure), IVH (intraventriculamndrage), NEC (necrotizing

enterocolitis), NICU (Neonatal Intensive Care Unit), OR (Odds ratio), PDA (patent ductus
arteriosus), PVL (periventricular leukomalacia), RDS (respiratory distress syndrome),ROP

(retinopathy of prematurity)

5.2.2Multivariable Logistic regression Model Development on Training Dataset

The prediction models at each time point with their predictors and diagnostic properties are
reported below. Table 5.4 compares the individual logistic regression and the full model
developed from these multiple regressions in incremental steps using prenatal, perinatal,
and postnatal predictors. The predictors for each model with their adjusted OR (95% CI)

and the model s AUC are provided.

Prenatal Model (Time Point 1)

Maternal charaeristics identified as independent predictors of CP in the Prenatal model
included: marital status (being married or comrAwm), receipt of tocolytics,
hypertension, geographic area of residence, and indomethacin therapy). No evidence of a
poor fit was @monstrated by the goodness of fit (p = 0.95) and Hotmr@eshow (p =

0.66) tests. The Prenatal model discrimination was poor (AUC 0.68, 95% G0.0&)1

The model correctly classified 80% of chil
diagnostic poperties were: sensitivity 42%, specificity 85%, PPV 26%, NPV 92%, LR+

2.75, LR 0.69, false positive rate 15%, and false negative rate 58%.
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Perinatal Model

Using only perinatal predictors, antenatal steroids, small for gestational age, receipt of
restscitation at birth (chest compression or epinephrine) and one unit change in the
exponentially transformed birth weight z scores (cubed birth weight z scores) were
predictors of CP, when other predictors were kept constant. There was no evidence of poor
fit as demonstrated by the goodness of fit (p = 0.68) and Hdssnsshow (p = 0.62)

tests. The perinatal model discrimination was fair (AUC of 0.76, 95 % CID&8).

Combined Prenatal and Perinatal Model (Time Point 2)

In the combined prenatal/periahimodel, marital status, receipt of antenatal steroids, small

for gestational age, resuscitation at birth, and birth weigitiore were predictors of CP.

There was no evidence of poor fit as demonstrated by testing for goodness of fit (p = 0.2)

and HosmeLemeshow (p = 0.7) tests. Adding perinatal variables to the prenatal model
improved the discriminative performance from poor to fair (AUC 0.77, 95% Ci@&4).

The combined prenatpler i nat al model correctly <cl assif
diagnostic properties were: sensitivity 68%, specificity 78%, PPV 27%, NPV 95%, LR+

3.06, LR 0.41.

Postnatal Model

Cystic white matter lesions, brain parenchymal echodensities, posthemorrhagic
hydrocephalus, severe RDS, treatment for ROP, receipt obpesty and receipt of nasal
CPAP were predictors of CP. There was no evidence of poor fit as demonstrated by
goodness of fit (p = 0.99) and Hosriegmeshow (p = 0.84) tests. The postnatal model
discrimination was good (AUC 0.88 (95 % CI 0:833).

Full Mo del (Combined Prenatal/Perinatal/Postnatal Model) (Time point 3)

All prenatal, perinatal, and postnatal predictors from the three models were combined to
develop the full prediction model of CP. Marital status, antenatal steroids, birth weight z
score, cyBc white matter lesions, brain parenchymal echodensities, posthemorrhagic
hydrocephalus, treatment for ROP, neonatal thrombocytopenia, receipt of nasal CPAP and

medical treatment of reflux were independent predictors of CP. There was no evidence of
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poor fit by goodness of fit (p = 0.32) and Hosri@meshow (p = 0.53) tests. The full
model had excellent discrimination with AUC of 0.91 (95% CI €08¥6) and correctly
classified 86% of children with and without CP. The model diagnostic properties were:
sensiivity 80%, specificity 87%, PPV 43%, NPV 97%, LR+ 6.29,-l0R23.
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5.2.3 Comparison of Logistic Regression Models of CP on the Training Dataset

The performance of the logistic regression models in the training dataset at the three time
points (prenatalperinatal, and postnatal) was assessed using discrimination, calibration
and classification. Table 5.4 compares the logistic regression models of CP in the training

dataset.

Table 5.4: Logistic Regression Models of CP in the Training Dataset

Prenatal Perinatal Prenatal/ Postnatal Full
Model Model Perinatal Model Model (Time
(Time Model point 3)
point 1) (Time
point 2)
No. candidate predictors 25 19 13 38 24
No. predictors in model 5 4 5 7 11
AUC 0.68 0.76 0.77 0.88 0.91
(95% ClI) (0.62:0.76) | (0.69-0.83) (070-0.84) (0.830.93) (0.87-0.96)

Odds ratio (95% CI)

Prenatal Variables

Married or common law 0.44 0.48 0.24
(0.230.85) (0.240.98) (0.11-0.55)
Urban residency 2.64 2.07
(1.104.98 (0.954.54)
Maternal Indomethacin 3.21
(1.099.50)
Tocolytics 0.39
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Prenatal Perinatal Prenatal/ Postnatal Full
Model Model Perinatal Model Model (Time
(Time Model point 3)
point 1) (Time
point 2)
(0.16:0.98)
Maternal hypertension 0.37
(0.150.91)
Maternal diabetes 2.64
(0.838.42)
Smoking 1.01
(0.991.02)
Prelabompremature rupture o 0.52
membranes (0.26:1.03)
Perinatal Variables
Antenatal steroids 0.21 0.22 0.43
(0.11-0.40) (0.120.42) (0.200.93)
Resuscitation at birth 2.53 3.38
(1.07-5.97) (1.467.86)
Small for gestational age 6.21 5.51
(1.67-23.05) | (1.47-20.67)
Birth weight zscore 1.75 1.73 1.81
(1.162.63) (1.152.61) (1.132.89)
Hypotension on admission 2.02 1.87
(0.984.15) (0.903.87)

Postnatal Variables




Prenatal Perinatal Prenatal/ Postnatal Full
Model Model Perinatal Model Model (Time
(Time Model point 3)
point 1) (Time
point 2)
Cystic white matter lesions 128.63 100.57
(34.80475.39)( (29.76340.61)
Parenchymal echodensities 2.76 3.45
(1.096.81) (1.388.63)
Posthemorrhagic 7.76 5.36
hydrocephalus (1.9331.20) (1.3221.84)
Severe RDS 3.99
(1.3611.72)
Nasal CPAP 0.17 0.34
(0.06:0.48) (0.140.84)
Inotropes 3.91
(1.2512.19)
ROP treatment 3.97 2.68
(1.629.73) (1.166.16)
Thrombocytopenia 2.48 2.60
(0.986.24) (1.01-6.68)
Reflux treatment 0.30 0.26
(0.091.01) (0.080.91)
Necrotizing enterocolitis 0.05
)0.021.53)
Dexamethasone 0.36
(0.11-1.15)
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Abbreviations: AUC (Area under the curve), Cl (confidence interval), CP (cerebral palsy), CPAP
(continuous positive airway pressure, OR (Odds ratio), RDS (respiratory distress syndrome), ROP
(retinopathy of prematurity).

Discrimination of the three logistic regression models of CP in the training dataset was
determined by AUC as shown from ROC curves in Figure 5.2. The Prenatal model had
poor discrimination of CP. The modelrsbs di s
were added to the prenatal model. The combined prenatal/perinatal/postnatal predictors
had excellent discrimination with an AUC of 0.91 (95% CI €0896).
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Figure 5.2 The ROC Curves of Logistic Regression Models of CP in the

Training Dataset
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The calibration for all the three logistic regression prediction models in the training dataset
showed no evidence of poor fit as demonstrated by goodness of fit and Hasmesshow

tests.

The classification of the three models in the training dataset desermined by the
proportion of correctly classified observations at the selectedftpbints, as described
before. Both the prenatal and the combined premeatahatal models had poor sensitivity
(42% and 68%, respectively) but relatively good sty (85% and 78%, respectively).

They both had high NPV (92% and 95%, respectively) and correctly classified 80% and
77% of children with and without CP, respectively. The full model provided the highest
sensitivity, specificity and NPV (80%, 87%, 97%spectively) with a low false positive

rate of 13% and yielded the best accuracy correctly classifying 86% of children on the basis
of CP status.

5.2.4 Internal Validation of the Developed Logistic Regression Model of CP

The AUC of the models in the tasy dataset at the three time points are shown in Figure

5.3. Similar to the training dataset, the prenatal model including only maternal and fetal
predictors resulted in poor discrimination of CP. Combining prenatal and perinatal
predictors improvedthmodel 6 s di scri mination only slig
model combining predictors from all three time points showed a good discrimination with

an AUC of 084 (95% CI 0.74.95).
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Figure 5.3: The ROC Curves of the Logistic Regression Models offGin the Testing Dataset

The calibration for all three models of CP in the testing dataset showed no evidence of poor

fit as demonstrated by goodness of fit and Hosbeeneshow tests.

Table 5.5 compares the discrimination (AUC), correct classification (accuracy) and

diagnostic properties of the three validation models. Both the prenatal and perinatal models

had poor sensitivity, but relatively good specificity. They both had high NBY% (@nd

92%, respectively) and correctly classified 74% and 76% of children with and without CP,

respectively. The full model provided the highest sensitivity, specificity and NPV (77%,

85%, 97% respectively) with a low false positive rate of 15% and yieldebest accuracy

correctly classifying 84 % of children with and without CP in this cohort.
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5.3 RANDOM FOREST DEVELOPMENT AND TESTING

The discrimination (AUC), accuracy and the diagnostic properties of the RF prediction

models of CP at the thréiene points in the testing dataset are shown in Table 5.5.

Figure 5.4 shows the AUC of the three RF models in the testing dataset. Similar to logistic
regression, the prenatal model discrimination was poor. The addition of perinatal predictors
to the preatal model improved the model performance by 11%, resulting in fair
discrimination. The full model resulted in 14% further improvement and good
discrimination with an AUC of 08(95% CI 0.730.93).

Prenatal Model PrenatdPeinatal Model Full Model

08 06 04 02

Figure 5.4: The ROC Curves of RF Models of CP in the Testing Dataset

The prenatal and combined prengiatinatal RF models correctly classifié2? and %
of children with and without CP. The full RF prediction model, combining predictors of
all three time points, had the best accuracy correctly classifyitgd children with and

without CP in this cohort of very preterm children.
Figures 5.5.45.5.3 show the variable importance plots of the three RF models. Maternal

age, antenatal steroids and cystic white matter lesions were identified as the most important

predictas in the prenatal, combined prengtatinatal, and the full model, respectively.
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Figure 5.5.1: Variable Importance Plot of the Prenatal RF Model in the Testing Dataset
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Figure 5.5.3: Variable Importance Plot of the Full RF Model in the Testing Dataset
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5.4 Comparing Logistic Regression and RF Prediction Models

Table 5.5 shows the comparison of the discrimination (Ad@J accuracy (correct
classification) between the validated logistic regression and RF models in the testing
dataset at the three time points. The discrimination (AUC) and accuracy (correct
classification) were similar between RF and logistic regressialhthtee time points. For

the full prediction model, both RF and logistic regression yield comparable AUC (0.83 and
0.84, respectively) with similar precision for both methods. Similarly, RF prenatal and
perinatal models yield comparable AUC and confaenntervals compared to the
corresponding logistic regression models. Regardless of the method used for prediction,
including only prenatal predictors resulted in poor discrimination of CP. Combining
prenatal and perinatal predictors, slightly improvesldiscrimination, but it remained only
poor to fair. The full prediction model, combining predictman all three time points,

resulted in good discrimination and the best accuracy in prediction.of CP

Table 5.5: Comparison of RF and Logistic Regressin Models of CP in the Testing

Datasets
Prenatal/Perinatal
Prenatal Model Full Model
Model
Log. Reg. RF Log. Reg. RF Log. Reg. RF
AUC 0.53 0.52 0.66 0.70 0.84 0.83

(95% CI) | (0.41-:0.66) | (0.390.65) | (0.540.78) | (0.580.82) | (0.740.95) | (0.730.93)

Accuracy 74% 72% 76% 82% 84% 91%

Data presented as percentages and AUC (95% CI)
Abbreviations: AUC (area under the curve), Cl (confidence interval), Log. Reg. (logistic
regression), LR (likelihood ratio), NPV (negative predictiadue), PPV (positive predictive

value)
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Tables 5.6 and 5.7 show the comparison of the diagnostic properties, at the three time
points, between the logistic regression models and RF models in the testing dataset,

respectively.

Table 5.6:Comparison of the Diagnostic Properties of Logistic Regression Models of

CP in the Testing Dataset

Prenatal Model Prenatal/Perinatal Full Model
Model
Cutoff 0.16 0.14 0.1
Sensitivity 23% 44% 77%
Specificity 81% 80% 85%
PPV 13% 22% 40%
NPV 89% 92% 97%
LR™ 1.19 2.21 5.26
LR" 0.95 0.70 0.27

Data presented as percentages
Abbreviations: LR (likelihood ratio), NPV (negative predictive value), PPV (positive predictive

value)
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Table 5.7: Comparison of the Diagnostic Properties of RF Models of CP the Testing

Dataset
Prenatal Model Prenatal/ Perinatal Full Model
Model
Sensitivity 23% 36% 24%
Specificity 79% 88% 98%
PPV 12% 27% 75%
NPV 89% 91% 91%
LR* 1.00 3.00 12.0
LR" 1.00 0.73 0.78

Data presented as percentages
Abbreviations: LR (likelihood ratio), NPV (negative predictive value), PPV (positive predictive
value)
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CHAPTER 6: DISCUSSION

6.1 Summary of Results

In this study, | developed and compared prediction models for CP usistiddoggression

and RF in a population cohort of very preterm children in Nova Scotia. The full prediction
model of CP was developed by incremental addition of predictors that were identified from
three models that included prenatal, perinatal, and pastwariables, respectively.
Logistic regression identified maternal marital status (being married or cotiamw®n
antenatal steroids, birth weight z scores, cystic white matter lesions, parenchymal
echodensities, hydrocephalus, treatment of severe REdptrref nasal CPAP, treatment

of reflux and neonatal thrombocytopenia, as independent predictors of CP. By contrast, the
variable importance plot from RF ranked maternal age, antenatal steroids and cystic white
matter lesions to be the most important pnis of CP at the three time points,

respectively.

On internal validation, both RF and logistic regression provided good discrimination
between children with and without CP in this cohort. In this study, using clinical predictors,
both RF and logistic regression provided similar AUC (0.83 and 0.84, reshgcand
comparable classification accuracy (91% and 84%, respectively). Regardless of the method
used for prediction, the full model that included predictors from all three time points
provided the highest discrimination and the best accuracy.

This isthe first populatiorbased study that developed a prediction model for CP based on
clinical predictors using the RF ensemble method. The study is also the first to compare
the predictive performance of RF to the traditionally used logistic regresstua aohtext.

6.2 Generalizability and Validity

The CP prediction models in this study are likely to be generalizable as they were
developed from a sample that is representative to other preterm populations in Canada and

developed countries. Those pagtidns share similar characteristics in relation to survival,
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CP rates and the maternal and inf@otsaracteristics that are considered to be antecedent
to CP, as shown in table 5.1. The 12% mortality rate of eligible infants in this cohort
(112/950) is omparable to that reported in the literature, including the International
Network for Evaluation of Outcomes (iINEo0) in neong#s156158). The iINEo reported
hospital mortality rate 09.9% (range 4.7947%) among 154,233 infants (<32 weeks,
<1500 grams) across 11 developed countries including: Canada, Australia, New Zealand,
Finland, Sweden, Switzerland, United Kingdom, Tuscany region in Italy, Spain, Israel and
Japan(2). In this cohort, 11% of children born very preterm developed CP, which agrees
with the inadence rates of CP reported by large populatiased studies from Canada and
other developed countri€8, 9, 20, 26, 28)Of note,Center variability and care practices

may impact the rated brain injury antecedent to CP, limiting the generalizability of this
analysis. However, the rate of cystic white matter lesions, alone or as part of severe
neurologic injury, identified as the most important predictor in this study, is comparable to
thepublished rates in large cohorts of preterm infgs®s54, 157, 158)

A common concern regarding the applicability or the generalizability of prediction models

is the inconsistency in the definition, assessment procedure or timing of the predictors.
Database studies that span a longer time period generally have thgdmof changes in
variable definitions over time or even changes in the diagnostic criteria to define some
variables. However, the AC Allen Provincial PFUP database has kept all codes constant
with addition of new codes over time and the program dirgdfo Vincer) and database
manager conduct periodic audits to ensure the accuracy and the reliability of the database
coding. Importantly, the definition of CP has been standardized in the database since its
inception and the severity classification of @ng GMFCS has been standardized in the

database since 2000 (over the study period).

In diagnostic prediction models, bias may be introduced by misclassification of outcome
status due to multiple definitions of the outcome, assessment done at diffierest
assessment not following a standardized referenced method or requiring subjective
interpretation. The risk of ascertainment bias is low in this study, since the clinical

diagnosis of CP relied on standardized multiple neuromotor assessment &tdrdal in
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this cohort at regular intervals, regardless of their postnatal course of illness. The
ascertainment of the outcome in this study was done using a standardized validated method
(GMFCS¥! performed by clinical experts and confirmed by a Pediateorblogist. This
approach reduces the risk of bias due to unblinding of the assessors to predictors (e.g.,
abnormal findings on brain imaging). Outcomes assessed at different occasions may
introduce risk of bias, if the frequency of the assessment betpaatinipants varied.
However, this is not the case for this study as participants were assessed at regular intervals
(at 4, 8, 18 and 36 months of corrected age), and the diagnosis of CP was confirmed at or
close to 36 months of corrected age. Additionalere is low risk of selection bias with

100% of the birth cohort identified and 93% of eligible preterm survivors in this cohort

having their neurodevelopmental assessments completed.

6.3 Predictors of CP

In the following section, the most pertinenegictors of CP that were identified in the
current analysis will be discussed in the context of the relevant literature. While most of
these predictors have physiologic plausibility for their relationship with CP, it should be
emphasized that the curreartalysis was not designed to identify explanatory (i.e. causal)
factors. Some of the studies cited below, however, aimed to assess explanatory factors, and

hence, the comparability with the current study and predictors identified herein is limited.

6.3.1Marital status

In this cohort, being married or in a comrAaw relationship was identified as an
independent predictor of CP by logistic regression and was ranked the third on the variable
importance plot of the prenatal model using RF. A recent Canatisly reported
increased risk of mortality (18% vs. 11 %,
preterm infants born to a single parent compared to those born-fratent familieg159).

Almost one in five Canadian families are of single parent status, the major®0¥8Pof

those being female single parents, with Nova Scotia having the highest rate of children
living in lone parent families in Canaie&60) There are two postulated pathways by which
single parent status may adversely affect parental mental health and infant outcomes.

Firstly, single mothers have high stress levels, which may disrupt the plaoectaon of
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maintaining materndietal intermediary homeostasis, and adversely affect the developing
fetal brain (161) this is supported by data from human and animal studies showing
negative adverse effect of parental stress and uterine environment on the neuroplasticity of
the developing brain, the parental bonding, tiedsubsequent psychosocial and behavioral
development of the offspring@61). Secondly, single parents often have lower education,
lower income, and less access to adequate prenatal care and they are more likely to face
financial and social challenges compared to-pacent families(162, 163) Thirdly,
parental stress may affect maternal perceptions, attitwael parenthild
interaction/attachment, thus negatively impacting the social environment and neurosensory
stimulation of the child and leads to behavioral and emotional adverse develgp6#nt

165) Preterm infants may be at special risk of adverse behaviodapsychosocial
outcomes related to parental stress compared to term infants, owing to their inherent
biologic risk for brain injury and the vulnerability of their developing brains to
environmental stressorlaternal stress related to preterm birth, augtee by the lack of
support from a partner, was associated with internalizing and externalizing behavior of

their children at 3 years of corrected ##j65)

6.3.2 Maternal age

Maternal age was identified as an independent predictor of CP in the RF model (see Figure
5.5.1 and Figure S3a in Appendix 2), but not in logistic regression. In the RF variable
importance plot, maternal age ranked the first on the prenatal model arid, thet f 30
predictors, in the full prediction model of CP. Several studies and a recent systematic
review reported an association between advanced maternal age (>35 years) and CP
particularly in late preterm and term infar{fic66). However, other studies identified a
nonlinear (U or J shaped) relation between maternal age at childbirtteaeldpment of

CP in their offspring(167, 168) A recent report on 1391 children with CP from the
Canadian CP Registry showed that 19%hoEe childrenvere born to mothers aged 35 or
older and 4% were born to mothers yountien 20 year$167) The Australian Early
Development Census compared 107,666 aboriginal andalmamginal children and
reported similar findings with arglation between maternal and neurodevelopment of the

offspring at 5 years age; being highest (40%, 95% CI-39) in children born to mothers
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younger than 16 years of age and lowest ({[B%) in children born to mothers 3%

years of age, to increase again (reaching-24%) for children born to mother older than

35 years of agél68). Both studks identified ageelated socioeconomic or pregnancy risk
factors at both extremes of maternal age. During logistic regression development, |
examined the shape of the relationship between maternal age and the logit of CP and found
it to be linear; therefre, | did not categorize the maternal age variable. The fact that RF
identified maternal age as a predictor may be due to an interaction of maternal age with
another variable that was strongly predictive of CP; such interaction was not considered in

the main effectsonly logistic regression model.

6.3.3 Antenatal steroids

Use of maternal antenatal steroids was identified as an independent predictor of CP in both
the logistic regression and RF models. Timsgling is in agreement with a large body of
evidence on the role of antenatal steroids in improving survival, reducingtehort
morbidities (such as RDS, IVH, NEC), and improving ldagn outcomes in preterm
infants (169). A systematic review oflinical trials of singlecourse of antenatal steroids
for preterm birth (before 34 weeksd gest at
studies, 146 of 1379 infants; RR 0.68, 95%CI| €03#l), severe NDI (RR 0.79, 95%CI
0.73-0.80) and a significant iptovement of intact survival (RR 1.19, 95%CI 1183)

(169) The exact mechanism is unknown, but animal studies showed that antenatal steroids
resulted in maturation of the sympathoadrenal mechaniswslved in postnatal
adaptation of preterm sheep, thus optimizing the metabolic, cardiac and respiratory

responses to preterm birh70).

6.3.4 Cystic white matter injury

Both RF and logistic regression showed that cystic white matter lesions (defined as cystic
PVL and/or porencephaly) was the strongest predictor of CP in this cohort. The strong
association between cystic white matter lesions and CP agrees with a systewasic

and meteaanalysis of 12 studies of CP in preterm child(é8). The definition of cystic

white matter lesions in the current analysis included both ischemic (cystic PVL) and

hemorrhagic (porencephalic cye$ a consequence to parenchymal hemorjHag®ns.
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This is consistent with definitions of preterm white matter injury defined in literature based
on abnormalities of brain imaging, with parenchymal hemorrhage, alone or in combination
with cystic PVL, being the standard definition used by masfies (1317, 21,50-52,
155,156). Cysti®® V L , al so called fAnencephal opathy of
disease that affects the white matter, but may extend to include the thalamus, basal ganglia,
brainstem and cerebelluml(3 Cystic PVL ischaracterized by ischemia reperfusion injury,
influx of inflammatory mediators, apoptosis and delayed neuronal matu(atipnVith
advances in perinatal care, the rates of cystic PVL have declined, but the rate of
parenchymal hemorrhagemained unchanged at around 10 to 15% over theldastde
Therefore, this analysis and previous studies have commonly combined the devastating but
rare cystic PVL with other cystic white matter lesions (such as porencephaly) into one
exposure, particutyy in studies with small sample size or with few cases of cystic PVL.

The diagnosis of brain lesions in this cohort was largely based on sequenisadided
cranial ultrasound done at regular intervals from birth until discharge or term age. At IWK,
routine sequential cranial ultrasound is done on days 7, 14, and 42 after birth and at term
equivalent age, with more frequent scans performed if an abnormality is detectedine
screening Sequential ultrasoundp to term agerovided high specificity ad negative
predictive value for the prediction of CP (sensitivity 76%, specificity 95%, PPV 48% and
NPV 99%)(84). Although brain MRI at terrequivalent age has been used for prediction

of CP in preterm childrer{16, 8-89, 102, 109 it is not a standargractice at IWK; it is
sometimes offered for high risk subgroup of preterm survivors, with established severe

brain injury, hence it was not included as a predictor of CP in this study.

6.3.5 Other predictors of CP

Gestational age was not retained agedistor for CP in any of the logistic regression
models, in spite of the welistablished inverse association between gestational age and
CP. In the RF variable importance plot, Gestational age was ranked as 8th and 14th, among
30 predictors, in the comied prenataperinatal model and the full model, respectively.

The lack of association between gestational age and CP was reported by 7 out of 9 studies

included in a metanalysis of CP in preterm childrér9). The explanation for this finding
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in this cdhort is likely the presence of stronger downstream predictors of CP, such as cystic
white matter lesions, that nullified the association between gestational age and CP. Another
contributing factor may be the higher hospital mortality in extremely low @sth age
infants, which may have removed infants from the sample that would otherwise be at high
risk of CP.

The current study was limited to early clinical predictors that could be abstracted from the
medical records prior to term age or hospital cisgh. Therefore, it did not include some

late predictors of CP reported in literature, such as assessment of general movements or
other standardized neuromotor testaducted over the first 52 months of posterm age
(16,91,93,96, 97,102,199The AIMS and the BSITD adapted screener are the only
standardized neuromotor tests collected by the AC Allen Provincial PFUP database and
are done routinely at-8 months of posterm age (105,109). | did not include those tests

as predictors of CP in this study ey are performed beyond the postnatal time point
(term age or hospital discharge) which was selected for early prediction of CP and early
referrals to rehabilitation. Additionally, assessment of general movements was not included

in this analysis as Was not performed in our center at the time the cohort was assembled.

6.4 Comparison of logistic regression and random forest

The main objectives of this study were to develop prediction models of CP using logistic
regression and RF in a populatibesed cohort of very preterm children, to test their
predictive performance individually and to examine whether apasametric model like

RF would predict CP better than conventional logistic regression. In this section, | will
discuss the performance dah prediction method individually and then compare their

predictive performance to what is reported in the literature and to each other.

6.4.1 Logistic regression

Traditionally, logistic regression has been used in neonatal literature for the prediction
outcomes. The logistic regression model that was developed in this cohort provided good
discrimination (AUC of 0.84) and accuracy (84%) in classifying children with and without
CP. Compared to the thirteen prediction studies of CP in preterm childrenlogistic
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regression listed in Table 3.1, only two studies (17,91) reported the discriminative ability

of the developed model (AUCBroitman et al. (2007) reported CP among 2103 surviving
extreme low birth weight infants (<1000 grams) admitted to Nla¢ional Neonatal

Research Network (19 centers). The authors showed that isolated cranial ultrasound
findings were poor predictors of CP compar
(clinical and ultrasound variables up to 36 weeks) improved CP pmdictimpared to
Aearl yo model (clinical and wultrasound var
respectively (P<0.01) (17Ferrari et al. (2002) followed a small cohort of 84 preterm
infants <37 weeksod6 (CP rate 4dnYygs(defmedtab abno
cystic or norcystic white matter lesions or gradel\8H) and examined late clinical

variables (general movement assessmemd standardized neuromotor exanaer the first

5 months) as predictors of CP aB8%ears of age @. Thestudy showed that consistent

cramped synchronized movements to accurately predict CRegadtieda significant

difference in the discrimination between general movementiraound abnormality as

predictors of CPAUC 0.97andAUC 0.88 respectirely (P = 0.001).

The current study reported a higher AUC compared to that by Broitman et al (AUC 0.84
vs 0.78). Both studies used clinical predictors up to hospital discharge or 36 weeks,
including ultrasound abnormalities. However, Broitman et al dedusmaller extreme
preterm infants at higher risk of CP (CP rate 16%) and reported CP as part of composite
outcome of NDI in a multicentre cohort with 23% loss to follow up rate, compared to this

analysis of populatictvased cohort of bigger preterm infamvith low attrition of 7%.

Although the AUCreported by this analysis iisferior to that byFerrariet al both studies
are not comparabiléi) Ferrari et al included small cohort of higher gestational age infants
compared to the populatidrased chort of very preterm infants (<31 weeks) in this
analysis, (iijthe study hadhigh risk of selection bia&CP rate 49%)including onlythose
infants with ultrasoundabnormalities asa selective small highsk sulgroup of their
pretermcohort (iii) and fnally, the authors assessed maildte predictas compared to

early clinical predictors in this analysis.
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The added benefit of including late predictors, particularly general movement assessment
and standardized neuromotor tests, to brain imagingedigifon of CP in the preterm
population has been reported elsewhere. Morgan et al. (2019) conducted a retrospective
case control study on 441 high risk preterm and term infants and combined all three
predictors (neuroimaging, general movements assessamghtHammersmith Infant
Neurological Examination scores at 3 momhgosttermage) to develop a pooled early
prediction model of CP (11). The authors reported a pooled prediction with AUC of 0.99,
which was higher than that for any individual predictath excellent classification
accuracy (98.7%) and diagnostic proper{gsnsitivity 97.9; specificity 99; PPV 98.6;

NPV 98.8) (1.1). Including late variables in future prediction studies of CP may improve
the discriminative abilities of CP prediction n&dglin preterm children. As of 2020, many
follow-up programs in Canada, including the Nova Scotia PFUP, routinely assess the
general movements in preterm infants, so it could be included in future prediction studies

of CP in Nova Scaotia.

The classificatio accuracy of the full logistic regression model in this analysis is
comparable to three small studies reporting accuracy of CP classification of 74%, 80% and
94% (16, 99, 106) All these studies were limited by small gaensize, low absolute

number of CP cases (< 10 per study), and using late clinical predictors (general movements
assessment, term neuroimaging/behavioral assessment, combined motor tests) assessed at

3-12 months of posterm age.

The diagnostic properties of the full logistic regression in this study has a high NPV of
97% and low false positive rate (15%) which makes it useful for clinical use. The PPV of
the full model was low (40%) which is consistent with the findings from eigldigiren

studies of CP using logistic regressamdreporting low PPV ranging from 19%0% (16,

86, 89, 91, 99, 104, 106However, with the exception of AUC, caution with the
interpretation of the diagnostic properties of the developed prediction sm®delvised as

they depend on the selected cutoff and would result in different values for the same sample

if a different cutoffwas selected
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6.4.2 Machine learning

Over the last two decades, health researchers have increasingly used machine learning to
develop diagnostic or prognostic models using clinical variables. In neonatal research, two
small studies used multidimensionaita to develop machine learning prediction of CP in
children born preternOne studyby Hope et al (2008) used RF for prediction of @),

whereas the other study used support vector mac(iiGd$ The study that used RF was

a single centre retrospective Canadian study, conducted at the IWK Health Centre. The
authors predicted CP from quantite@ texture measures of early cranial ultrasound scans
performed within the first seven postnatal days. The study was limited by the small sample
size (37 CP cases and 48 controls) and the@arseol design (B). The authors did not

report AUC or the dignostic properties of their CP prediction model, but they reported the
classification accuracy which is lower compared to the full model in the current analysis
(72% vs 9%, respectively) (83). Stahl et al. prospectively followed 82 infants -41810
weekspostt er m age and pr edi wmdvanént @erng; they meportdde i n f
that acombination of three motion image variables thesnost accurate in predicting CP

(85% sensitivity 88% specificity AUC 0.88 (95% CI 0.7i71.00)(102).

The main diference between this analysis and those studies is their use of machine learning
for CP prediction in the context of multidimensional data, such as video analysis of
movements or texture analysis of ultrasound images, in contrast with the current analysis

testing RF predictive validityelying only onclinical predictors.

The developed prediction model of CP using RF in the present study has many advantages
over other prediction studies of CP using machine learning methods: (i) being the first
population-based study that used RF to predict CP in preterm children and to compare the
predictive performance to conventional logistic regressiothis context (i) being the

first study to test RF based only on clinical predictors that can be abstractegatient

records compared to the multidimensional data used by other studies; (iii) the low risk of
selection bias compared to the other studies that included only a selected high risk subgroup

of preterm infants with CP rates being much higher than therglepopulation; and (iv)
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usingearly predictors, prior to hospital discharge or before term age, whereas Stahl et al.

used relatively late predictors occurring between 10 and 18 weeks of correcté@Bge (

6.4.3 Comparing the predictiveperformance of RF and logistic regression models of

CP

In the present study, both RF and logistic regression yield comparable prediction of CP
using clinical predictors with regards to discrimination and classification. Both methods
resulted in good dismination with similar AUC (0.83 vs. 0.84) and slightly better
classification favoring RF (@6 vs 84%). For binary outcomes with low dimensional data
(the number of covariates is small relative to the sample size), logistic regression is the
conventional stistical method used for prediction, particularly when researchers are
interested in explanation (i.e. estimating the causal association between a risk factor and
an outcome) in addition to prediction. The existing literature comparing different machine
learning methods (RF, neuronal network, support vector machines and gradient boosted
decision trees) over conventional regression (logistic orr€gression) for prediction of
clinical outcomes reported conflicting results from supegl@i-135) to similar or even

inferior discrimination (18-138).

The lack of additional benefit of RF over logistic regression in the current study has been
recently reported in a handful of studies, particularly when clinical variables were used
(111, 136138, 171)Pua et al. followed a cohort of 4026ultpatients and compared seven
different machine learning methods logistic regression for prediction of walking
limitation after total knee arthroplasty using demographic and clinical variables similar to
this analysis. The authors reported similar discrimination of the ordinal logistic regression
and RF (AUC 0.75 vs. ©4) and suggested that this could be expected to occur when the
predictors act additively (i.e. there are no interactions between predictors) or when non
linearity is not substantial enough for machine learning to be of additional H@7éfjt

The conflicting reports in literature, from superior to inferior discrimination of RF

compared to conventional regression, suggest that none of the methods is superior and that
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the predictive validy may rely on the settings or the datasets and may not be constant
across different studies. A recent systematic review of 71 studies published between
January 2016 and August 2017 reported similar predictive accuracy of machine learning
and logistic regession in the group of studies with low risk of bias, but superior predictive
accuracy of machine learning in the group of studies at high risk ofiiay Almost talf
(137/282) of the included studies in the review were at high risk of bias that was attributed
to poor methodology or poor reporting of variable selection procedures, the number of
predictors, checking for linearity and interactions between continuedlscpors, dealing

with class imbalance of the outcome, or valida(ibn2).

Recently, Couronne et al. designed a benchmarking experiment, using 248 cedbset

to compare the predictive ability between logistic regression and RF using the standard RF
variant with thedefault tuning parameters as implemented in the widely used R package
randomForestfor pragmatic comparisor{&73) The authors showed that RF was superior

to logistic regrssion in approximately 69% of the datasets for AUC and accuracy, but the
difference between both methods was small. The authors also observed that certain
characteristics of the dataset such as the sample size and the number of predictors were
associated h superior accuracy of RF over conventional regression when the number of

predictors was O 5 or the ra{l7Bo of predict

Apart from discrimnation (AUC), caution when interpreting the diagnostic properties of
the developed prediction models of CP in the current study is advised. For logistic
regression models, | selected the cutoff that maximized the sensitivity, specificity and
correct classication. However, different cutoffs would result in different diagnostic
properties. For RF, | used the confusion matrix to obtain the diagnostic properties of the
developed RF models. However, this has to be interpreted with caution in view of the
corredion for the class imbalance in the dataset. As the classification algorithms make
assumptions that the test data are drawn from the same class distribution of the training
data, RF will favor the majority class in presence of class imbalance. This nhakes i

challenging to create appropriate testing and training data sets, unless correction of the
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imbalance is performed. In this analysis, the minority class (CP) wa®igped to create

even groups, before splitting of the study sample.

6.5 Strengths and Lmitations

This study provides insight on a novel prediction method of CP using RF applied to a
populationbased cohort of very preterrohildren and it compared its predictive
performance to the traditionally used logistic regression. With increaset/aduof
extreme preterm infants at highest risk for CP, research that focuses on developing accurate
prediction models of CP in those infants is very valuable for patients, their families and

healthcare providers.

This study has severatrengths. First, a major strength is the use of a populbtised

cohort of very preterm children. Second, the attrition was low: 93% of the eligible cohort
had completed the outcome assessment improving the validity of the results, particularly
with thehigh loss to followup (2050%) reported by previous populatibased studiesf

preterm children (16,17831,98,99). Third, the ascertainment of the primary outcome in
this study was based on multiple neurological assessments by experienced caresprovide
and confirmed by expert neurologists with standardized grading of CP severity based on a
validated classification system (GMFCS). The primary outcome was ascertained close to
36 months corrected age, which increases the robustness of the diagnasisrands the
diagnostic accuracy of CP, particularly for the mild ambulatory subtype. Finally, the

analysis used a split sample for internal validation of the developed prediction models.

Compared to the published studies of CP prediction in preternremi[dable 3.1], this

study reported the measures of performance of the developed models (discrimination,
calibration and correct classification) in addition to their diagnostic properties. Importantly,
none of the studies in Table 3.1 performed inter@aditation to test the performance of

the developed prediction models in a similar but independent sample from the same

population.
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The development and reporting of CP prediction using RF and logistic regression in this
cohortcould be considered supermympared to some of the published studies despite the
retrospective design. This could be attributed to multiple factors: (i) the low risk of
selection bias because it was a large populdiased cohort with excellent follow up rate,
compared to the majty of reported studies derived from small cohorts; (ii) inclusion of
very preterm infants (< 31 weeksho areat highest risk of CP compared to bigger preterm
infants included in other studiest(80,93,95,98-100), particularly the largest two studies
429 i nfants <33 weeksO gestat i oabo)dinte 903 i |
predictors identified by this study have established physiological plausibility in the
development of CP and the fact that both RF and logistic regression yielr gireilictors

at each time point, reflects the robustness of these predictors and the validity of the
developed models.

This study used early clinical predictors of CP, starting from the prenatal period, through
the perinatal and postnatal periods andaospital discharge or the expected date of
delivery. This in contrast with the majority of prediction studies of CP in preterm children
relying on late predictors: Thirteen studies in Appendix 1 used relatively late predictors (4
studies at term age,studies at 3 months post term age and 2 studies over the fit& 6
months). The clinical implications and objectives of CP prediction at different time points
vary considerably, both for families and caregivers. Early prediction at birth or during the
first postnatal days are crucial to guide critical discussions around provision or withdrawal
of life support or intensive care for extremely preterm or critically ill infants. The full model
in this study provided prediction at or n¢arm age to enableady referral to targeted
interventions and individualized care planning that impact both patient outcomes and

health services utilization.

This study has some limitations that need to be acknowledged. The retrospective nature of
the data excluded potegitpredictors that were not included in the database (e.g., general
movement assessment), which may have affected the selected predictors and the predictive
performance. Some known predictors of CP (such as race/ethnicity) were not included in

the analys, because of inconsistency in data collection that would have impacted the
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internal validity of the study. The fact that the majority of the population in Nova Scotia
are Caucasians limits the generalizability of the findifrgsn this analysisto other

populations with different ethnic groups or raetated determinants of health.

Missing data is a known limitation, but the proportion of missing values in this study was
small. Only SES had more than 5% missing values (11%). If SES is missing antiatm,

e.g. if a parent's decision to report SES information depends on their SES, estimates from
the model 6s wi |l be biased, which in turn
performance in new data. Additionallgpme variables known to be assted with
mortality and CP in preterm infants were not included in the study, because of a large
number of missing value®.g.neonatal severity of illness scores, physiologic definition

of BPD). However, the model contained several predictors thail@sely related to the

ones omitted, so that the negative effect on model performance is likely negligible.

There is a possibility of misclassification with some children that were classified as having
mild or suspected CP would have been classified mdtor delay without CP, if followed
beyond 3 years of corrected age. A Canadian cohort of preterm children born before 29
weeksd gestation with suspected CP at 18
developmental trajectory at 3 years of age was mydwetween those with CP and normal
children(174). Conversely, preterm children with mild CP may only exhibit clinical signs
after 36 months of corrected age. Although this remains a possibility, the identification of
CP in this cohort was based on multiple assessmenexsrienced clinicians, using
standardized tests, and those with suspected CP were referred to Pediatric neurologists for
confirmation of the diagnosis. Only those with normal neuromotor exams on multiple
assessments up to-28 months of corrected age edee standardized neurodevelopmental
assessment with BSITD at 3 years. If a subtle abnormality in motor development is detected
or a parental concern is raised at that time, a detailed neurologic exalthberepeated

to confirm the findings. Paneth et (@006) argued from a public health perspective that
those children with subtle or subclinical CP should not be counted as CP cases as they lack

the social, familial and medical burden of a typical child with CP (8).
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6.6 Implications for Clinical Practice and Future Research Directions

In this cohort, the full RF model provides similar discrimination and accuracy compared
to logistic regression for prediction of CP in very preterm children. If external validation
of the developed RF model (very preterimitbcohort from PEI) shows superior predictive
performance, then this model may be used as adjunct to improve the identification of
preterm children at risk of CP to target early intervention and to make efficient use of the
limited health care resourceRegardless of the prediction method used, the poor
discrimination of the prenatal and perinatal models do not allow for their use in prediction
or for counselling parents at the respective timepoints. Additionally, clinicians should be
aware of the falsgositive and false negative results of these prediction models when
counselling families of preterm infants. Therefore, these prediction models should not be

used in isolationbut as adjunct to other clinical parameters to aid in the diagnosis of CP.

Parents are often interested in individualized timely prediction of CP or NDI of their
preterm child. Caregivers are often asked about this prognostic information at various
times: prior to preterm birth, within the first few days following NICU admisseomd at

hospital discharge. The prediction models developed in the present study may be used to
predict an infantés probability of develo
predicted probability of developing CP can be easily transformed irtolagdd riskbased

scores and algorithms. The clinical calculators derived from such prediction models have
been widely used in neonatal practice to aid for counselling families or when critical

decisions are discussed and can be made available for abeidigns at hand.

Future research should continue to explore the role of machine learning methods in
prediction of CP and other clinical outcomes using existing datasets. The Canadian
Neonatal Network database collects maternal and infant data faveange of 2500

preterm infants < 33 weeks or VLBW infants < 1500 g admitted tolaleRiary level

Canadian neonatal units every year. The {targn followup data of a subgroup of
survivors who were born befor eye&)dslinkablek sd6 g
through the Canadian Perinatal Follow up Network collecting data from 28 regional follow
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up programs across Cangdd5) These programs collect and share parental demographic
and socioeconomi c dath and growthdatd reeurcelevélapmegtal n e r a |
outcomes and health servcatilization at 1824 months corrected age for research
purposes(175) Accurate risk prediction of preterm survivors would help to redirect
resourcegoward those who armost likely to benefjtincluding rehabilitation, family
resources, and social support. Tools should be developed to implement the use of machine

learning prediction models at the bedside.
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APPENDIX 1

Studies Providing Diagnostic Properties of Prediction of Cerebral Palsy in Preterm Infants

Literature search using the foll owing Mesh

AND SPECIFICITYO0# OR pr edi The dutcdnRwad CRigtherakne or@dparaofac ur a * )
composite outcome of neurodevelopmental impairment (NDI). The search was limited to studies of preterm infants with
birth cohorts at or after 1990 (post surfactant era), mostly published between 2000 arift20Exclusion by title, 325

ter ms; cerl

abstracts were reviewed, of which 41 studies were selected for full review, including some studies selected from citatio

references. The following 21 studies were included in this review table.

study

single centre

weeks of life

CP: Palisano

Study Population Exposure/ Outcome Findings Diagnostic properties
Intervention of model
Amplitude integrated electroencephalography (aEEG)
Wikstronf® | <31 weeks | multiple death or NDI | early aEEG recorded a| for aEEGSens, Spec,
2012 36/49 (73%) | records of at 24 months | 24i 48 postnatal hours, | PPV, NPV & accuracy|
Sweden born 2005 aEEG during | (CP, motor, is predictive of outcome were (89, 67, 63, 91 &
Prospective | 2007 the first 72 cognitive, with around 80% 76) (AUC 0.79, 95%
cohort single centre | postnatal blindness, accuracy Cl, 0.650.93)
hours deafness)
burst suppression, inter
CP: Palisan® | burst intervals (IBI) & | PPV, NPV, accuracy
(GMFCS) IB% predict poor for IBl > 6 sec were
outcome (67, 79, 74) and for
IB% > 55% at 24 hrs
of age were (72,80,79
Schwind® | <30 weeks & | multiple death or NDI | SGAinfants <30 weeks| combined aEEG scorg
2015 SGA records of at 24 months | had less optimal scores Sens, Spec, PPV, NP
Austria 136(47 SGA | aEEG during | (CP, motor, | onearlyaEEGanda | (52,80, 76,53)
Case control| & 89 controls)| the first two | cognitive) poorer outcome &4 respectively

months than the AGA

controls

Cranial Ultrasound (cUS)
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Study Population Exposure/ Outcome Findings Diagnostic properties
Intervention of model
Hope® < 31weeks or| cUS texture | CP at 24 quantitative early Sens, Spec (75, 69).
2008 < 1500grams | measuref months texture measures by | the incidence of CP is
Canada 84 (37 CP, 48| white mattef cUS contain diagnostic| much greater than the
Case control | controls) choroid information relevant to | general population (46
study born199G plexus within | CP: Palisano | CP development vs 11%)
2000 first week
single centre
De Vries* < 33weeks Sequential CP at 24 79% of CP cases had | sequential cUS; Sens,
2004 all 429 high months cUSabnormalities. Spec, PPV, NPV (76,
Netherlands | survivors resolution Sequential cUS detad | 95, 48, 99)
Prospective | born 1990 weekly cUS major US abnormalitie§ The most sensitive
cohort 1999 until term age | CP: Hagber® | in the majority ofCP predictor was cystic
single centre | (40 weeks) children CP PVL
Lacey® <30 weeks |cUSatday?7, | CP at36 LAPI has better for cUS; Sens, Spec,
2004 203/249 28 for IVH & | months diagnostic accuracy PPV, NPV (44, 87, 88
Australia (81%) LAPI before | (delayedmotor than early cUS in 43). LAPI assessed at
Prospective | born 1992 discharge development | prediction of normal > 33 weeks; Sens,
cohort 1996 (Lacey with abnormal| motor development or | Spec, PPV, NPV (86,
single centre | assessment 0] tone) CP at 3 pars of age 83,57, 96)
preterm
infants)
Woodward” | < 31 weeks MRI atterm | CP or NDI at | Moderatesevere white | For CP: Sens, Spec of
2006 164/167 age (81% of | 24 months matter lesions on MRI | any white matter
New Zealand (98%) thecohort had| (CP, were significant abnormalities (94,31)
Prospective | born1998 MRI) cognitive, predictors of severe & for moderatesevere
cohort 2002 blindness, motor delay and CP abnormalities
2centres deafness) after adjustment for (65,84) respectively

CP: Palisano

confounders (neonatal

factors & cUS findigs
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Study Population Exposure/ Outcome Findings Diagnostic properties
Intervention of model
Conventional (structural) MRI
Nanb&® <34 weeks &| MRl atnear | CP at20 & Lesions in the corona | For white matter
2007 <1500 grams| term(36-43 31 months radiata above posterior| lesions; Sens, Spec,
Japan 289/328 weeks) To limb of internal capsule| LR+, LR- (62, 87, 4.9,
Prospective | (88%) assess at termMRI were 0.4).
cohort born 1993 whether PVL | CP: Palisano | predictive of
2000 on MRI motor prognosis For lesions in corona
single centre | (n=62)are in preterminfants radiata; Sens, o
predictive of with PVL (100, 97) respectively
CP & motor
outcomes
Mirmiran® | < 30 weeks orf MRl atterm | CP at 20 & MRI predict CP better | At 31 months
2004 < 1250 grams| age compared 31 months than cUS both at 20 & | corrected age; MRI
us 61/99 (60%) | to cUS 31 months corrected ag Sens, Spec, LR+, LR
Prospective | born 1996 obtained at | CP:Palisano, (86, 89, 10, 0.1)
cohort 1999 least twice Rosenbauf? compared to cUS (43,
single centre | during the 82, 2, 0.7) respectively
first 2 weeks
of life
General movements assessment (GMA)
Ferrarf? < 37 weeks | crampedsync | CP at 2436 | Consistent & Cramped synchronize
2002 with hronized GM | months predominantrampeds | GM predict CP better
Italy significantly | from birth ynchronizedGM thanultrasound (AUC
Prospective | abnormal cUS until 56-60 CP:Ellenberd | specifically predicCP. | 0.97 vs 0.88) and
cohort 84/93 (90%) | wks vs 2 The earlier this appearg neurologic exam; Sen
single centre | neurological the worse is the later | Spec 79,100) vs B)
exam disability
Study Population Exposure/ Outcome Findings Diagnostic properties
Intervention of model
Romed@? < 37 weeks | GMA CP or NDI at | Combining the 2 For single assessmen
2008 AFi dget 24 months methods is more GMA is better
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Study Population Exposure/ Outcome Findings Diagnostic properties
Intervention of model
Italy 903/925 mo v e me 1| (CAT- effective than single predictor of CP
Prospective | (98%) combined to | CLAMS®*quo | assessment in predictil compared to HINE;
cohort born 2000 neurologic tient below 70| outcome particularly fo Sens, Spec (98,94) fo
2004 exam(HINEY | but no CP) discriminating unilatera| GMA vs (96,87) for
single centre | #at 3 months and bilateral CP HINE score < 57
corrected age| CP: Hagberg
Oberg® <33weeksor i Fi dget|CPat24 Absence ofi Fi d g € Sens, Spec, LH+, LH
2015 <1500 gramsmo v e meain| months movement s o |(90,9087,0.1)
Norway 87/173 (50%) |3 monthsn a months corrected age | The NPV 99% & PPV
Prospective | born 2002 routine clinical predict CP & motor 53%
cohort 2010 setting CP: Palisano | outcome at 2 years of
Single centre age
Adde 2016 | 13/30 (43%) (ideo analysis | CP at 5 years| Variability of centroid | Sens, Spe85and71
high risk of GMA at 13 | CP: Palisano | motion at 1015 weeks ,| Specificity increased
Norway infants (2342 (15 weeks (1 with assessment of to 88% when
Prospective | weeks) born [record to asses fidgety movements, combined with
cohort 20022004  fidgety predict CP at 5 years | variables of the
movements) amount of motion
De BocK’ <33weeks | GMA atl& 3| CP or MDI/ Definitely abnormal Definitely abnormal
2017 122/256 months PDI O7(GM at 3 months GM were predictors of
Germany (48%) in a routine 24 months corrected age identified atypical outcome
Prospective | born 2007 clinical all children with CPat 2 | (Sens Spec; 56, 82)
cohort 2009 Single | setting CP: Palisano | years
centre
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Study Population Exposure/ | Outcome Findings Diagnostic properties

Intervention of model
Stahl, 2012 | 15/82 (CP applying CP at 25 Early detection of CP can| Accuracy of 93.7% +/
Norway 18%)infants | computer years be done using SVM 2.1,Sens, Spec of 85 an
Prospective | (preterm or vision-based CP: not machine learning of 3 specificity of 95
observationa| term) with : (optical flow) specified movement patterns for

. movement classification of CRThe

| study 2 vides at

assessment an; simple features (relative

10-18 weeks

corrected age

statistical
pattern

recognition

frequency and absolute motion
distance) comprised a higher
discriminatbn than the feature
based on wavelet decompositio

of the signal.

Combined conventional MRl & GM A

Constantind | <32wks combined CP at 18 All tests NPV 9697%. | for combined MRI &
6 &<15009 MRI at term, | months For Spec & accuracy; | NAPI; Sens, Spec,
2007 102/130 GMA & MRI was superior (91&| PPV, NPV & accuracy
us (78%), born behavioral CP: Palisano, | 84), GM at 52 wks was| (80, 81, &, 97, 80)
Prospective | 19961999 assessment | Amiel- better than at 36wks.
cohort single centre | (NAPI)® Tison'©? Sensitivity increased
with NAPI + MRI

Skoild?2 < 27 weeks | Combined CP and/or Moderatei severe white| Abnormal MRI vs
2013 all 53 infants | MRI at term | abnormal matter injury on MRI abnormal GM; Sens,
Sweden born 2004 age & GMA | motor predicts CP better than| Spec, PPV, NPV,
Prospective | 2007 at 3 months | development | abnormal GMs. When | (100, 98, 80, 100) vs
cohort population at 30 months | combined, increase GM (50, 92, 33, 96).

based study Tests:SCPE® | specificity to 100% but | Combining both; Sens

, Palisano

did not affect
Sensitivity

spec, PPV, NPV
(50,100, 100,96)
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Study Population Exposure/ Outcome Findings Diagnostic properties
Intervention of model
Others
Broitmart’ ELBW(<1000 | Clinical NDI at 1822 | The clinical models Improvement in the
2007 9) model months were better predictors | predictive ability
us 2103/2750 compared to | (CP, than early andate cUs | (AUC) for mental
Retrospectiv | (76%) cUS (arlyat | cognitive, for NDI (AUC 0.68 vs | developmental
e cohort born 28 days &late | blindness, 0.58 and 0.57, index<70(0.72 vs
19982001 at36 weeks) | deafness) & | p<0.001). 0.69) CP(0.78 vs
19centres independently 0.72)and independent
NICHD walk/feed Isolated cUS findings | walking (0.79 vs 0.74)
were poor predictors of| forthecUS3 6 / fi A
Tests: CP. Only PVL at 36 clinical model as
Amiel-Tison | weeks (OR 5.2 (2i8 compared to theUS-
9.6)andVPshunt(OR 28/ AEar |l yo
3.7 (1.87.8)) were model.
predictive of CP
Tyson?® 22-25 weeks | only death or NDI | Each 100 grams The fivefactor model
2008 4165/4446 gestational at 1822 increased birth weight, | provided for death;
us (94%) age for months female sex, antenatal | AUC 0.75 (0.740.77)
Retrospectiv | born1998 providing steroids, singleton werg and
e cohort 2003 intensive care| (CP, each associated
19 centres at the edge of| cognitive, with reductions in risks | for death or NDI;
NICHD viability. To blindness, of death and death/NDI AUC 0.75
develop a deafness) similar to the reductiong (0.73-0.77)
predictive with a I-week increase
model of CP: Palisano | gestation
death, death
with any NDI

or death with
severe NDI

for counseling
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Study Population Exposure/ Outcome Findings Diagnostic properties
Intervention of model
Spittle!* <30 weeks | Combined2 | CP and Although false positive§ Combining both the
2015 97/138 motor tests motor were common, CP was| NSMDA and AIMS
Australia born (AIMS10% impairment | most accurately provided the bst
Prospective | single centre | NSMDA)¥® | at 48 months | predicted by NSMDA a{ accuracy at 4 months,

cohort from

over the first

12 months whereas

although results were

a RCT of a year of life CP: Palisano | AIMS at 4 months similar at 8 and 12
preventive & Movement | provided the best months Combined
care program Assessment | accuracy for motor tests Sens, spec, PPV,
to improve Battery for impairment & NPV for CP (83, 93,
development Children 45, 99) and predictive

(2)7 accuracy of 92 (84, 97
Manuck <32 weeks | neonatal NDI (CP or | models of individual best modefor NDI
2014 1771/1954 diagnoses MDI/PDI< neonatal morbidities hadAUC of 0.68
us prior to initial | 2SD) at 24 were moderately (0.650.71).
Secondary hospital months predictive of NDI after
analysis of discharge controlling for GA, Combinations of 2, 3
RCT of CP: Palisano | maternal education & 4 morbidities did
antenatal matenal race, use of | not improve NDI
magnesium tobacco, alcohol or prediction
sulfate drug, fetal sex,

magnesium &
chorioamnionitis

Morgan et al,| 441 preterm | HINE scores | CP at 24 the pooled analysis AUC 0.99
201909 and term high[ at 3 months+ | months with the 3 predictors 98.74% of children
Italy (3 sites)| risk infants early brain provided the highest were correctly
retrospective| (147 CP, 147 | imaging CP:Palisano | AUC compared to any | classified
case control | mild (MRI or US) individual predictor Sensitivity for
study born disability, + Absent (AUC 0.99 vs 0.85, detecting CP was
between 147 controls) | fidgets on 0.96, 0.96 respectively] 98%, and spcificity
2002- 2016 GMA was 99% (PPV

98.56; NPV 98.8}
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APPENDIX 2

Table S1: Characteristics of Population Dataset

Variable Type Code Definition
Sociodemographic Maternal Variables
Maternal age in years Continuous| matAge maternal age igears
Hollingshead socioeconomic status | Categorical| ses Class Ito V
at birth
Married or common law Binary marriedCL | married or common law vs
single parent
Urban accommodation Binary urban urban vs rural accommodation

Prenatal Variables

Primigravida Binary gravidl primigravida

Multiparity Binary multipara More than one previous deliver

Abortion/miscarriages Binary aborMisc previous abortion/miscarriages

Previous stillbirths Binary prvStb previous stillbirth

Maternal smokingluring pregnancy Binary smk any smoking during pregnancy

Maternal substance use during Binary substUse any substance use (illicit or nor

pregnancy illicit)

Maternal antidepressants* Binary antidepr treatment for anxiety/depressio
duringpregnancy

Maternal psychiatric disorder* Binary psych psychiatric disorder during
pregnancy

Maternal treatment for diabetes* Binary diabAny any treatment for diabetes duri
pregnancy

Maternal hypertension* Binary hyptAny gestational opre-existing
hypertension

Chorioamnionitis /funisitis * Binary chorioFuni | histologic chorioamnionitis or
funisitis

Prelabor premature rupture of Binary pprom prolonged rupture of membrang

membranes >18 hours

Maternal antibiotics* Binary ipAbx maternal intrapartum antibioticg
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Variable Type Code Definition
Mother colonized with group B Binary gbsPos Maternal group B streptococci
streptococci colonization during preghancy
Antepartum hemorrhage* Binary apHemo Any antepartum hemorrhage
Placental abruption Binary abruptio placental abruption
Any tocolytic use* Binary tocolyt any tocolytic
Maternal indomethacin Binary matindo indomethacin for tocolysis
Fetal growth restriction Binary fetlUGR fetal growth restriction by

ultrasound

Fetal distress Binary fetDistr fetal abnormal heart tracing or

fetal acidosis

Perinatal Variables (including intrapartum and the first 6 postnatal hours)

Antenatal steroids Categorical| anSteroid (0, nong,(1,<24 hrs},(2,24
47 hrs}{ 3,48 167 hrs}( 4 ,>=
168 hrs}
Optimal antenatal steroids Binary > 24 hours prior to delivery
Intrapartum magnesium sulfate Binary mgsulf intrapartum magnesium sulfate
Gestational age in weeks# Continuous| ga gestational age in weeks
Extreme low gestational age Binary elgan gestational age < 26 weeks
Birth weight in grams Continuous| bw birth weight in grams
Extreme low birth weight Binary elbw birth weight <1000 grams
z-scores of weight for age Continuous| bwz z scores of birth weight based (¢
Canadian growth curves
(Kramer)
Small for gestational age Binary sga < 10" centile based on Canadia
growth curves (Kramer)
Male sex Binary sexyY male vs female
Outborn delivery Binary outborn outborn vs inborn
Moderate to severe birth depression | Binary modsevAsph| receipt of positive pressure
yX ventilation or resuscitation
1-minute Apgar score Continuous| apgarl Apgar score at 1 minute
5-minute Apgar score Continuous| apgar5 Apgarescore at 5 minutes
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Variable Type Code Definition
Chest compression/epinephrine at Binary resusDel resuscitation at delivery
delivery
Delivery by Caesarean section Binary Ccs Caesarean vs vaginal delivery
Admission temperature (degrees Continuous| admTemp NICU admission temperature
Celsius) (degrees Celsius)
Admission hemoglobin (g/L) Continuous| admHgb NICU admission hemoglobin

(9/L)

Hypotension on admission Binary admBPLow | meanblood pressurtess than

gestational age at birth

Postnatal Variables

Lowesthemoglobin in the first 24 hour] Continuous| lowestbp lowest hemoglobin during the
first 24 hours
Neonatal Insulin therapy Binary neolnsulin | severe hyperglycemia requiring
Insulin
Neonatal hypoglycemia Binary neoHypogly | severe hypoglycemia <1.67
c mmol/L
Neonatal anemia Binary neoAnemia | neonatal anemia
Neonatal thrombocytopenia Binary neoThrombp| thrombocytopenia (<100,000)
en
Cystic white matter lesions” Binary cystWMD cystic PVL or porencephaly
Parenchymal echodense lesions Binary echodens parencyhmal hemorrhage or
WMD ischemia
Severe intraventricular hemorrhage” | Binary ivhGrade34 | grade 3, 4 IVH
Posthemorrhagic hydrocephalus” Binary phhydro hydrocephalus following severg
IVH
Ventriculoperitoneal shunt for Binary phhshunt hydrocephalus requiring shunt
hydrocephalus*
Necrotizing enterocolitis Binary nec NEC2st age2 Bell
Patent ductus arteriosus (PDA) Binary signifPDAp | hemodynamically significant

PDA
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Variable Type Code Definition

Persistent pulmonary hypertension Binary pfcnew pulmonary hypertension of
newborn

Severe Retinopathy of prematurity Binary sevROP severe ROP stage 3

(ROP)

Intervention for ROP Binary ropTx surgery or Bevacizumab
intravitreal injection

Surfactant therapy* Binary surfact surfactant for respiratory distres
syndrome (RDS)

Severe hyaline membrane disease Binary sevHMD severe RDS requiring invasive
mechanical ventilation

Nasal ventilation Binary ncpap nasal continuous positive airwal
pressure (CPAP)

High frequency oscidltory ventilation | Binary hfov High frequency oscillatory
ventilation

Hours on tracheal ventilation Continuous| durETT duration of tracheal (invasive)
mechanical ventilation in hours

Pneumothorax Binary pneutx pneumothorax requiring
drainage

Pulmonary Hemorrhage Binary pulmHemo | pulmonary hemorrhage

Cystic bronchopulmonary dysplasia | Binary cystBPD cystic BPD

Dexamethasone Binary neoDexa systemic steroids for BPD

Oxygen use at discharge from the Binary homeO2 discharge on homaxygen

nursery*

Neonatal septicemia Binary neoSeptic positive blood culture

Clinical (culture negative) sepsis Binary neoClinSepsi infection treated with antibiotics

S > 5 days

Systemic infection Binary noeSystinf | pneumonia, cellulitis,
bacteremiaurinary infection

Any cardiopulmonary resuscitation* | Binary cpr any CPR during hospital stay

Inotropes* Binary inotrop neonatal inotropes

Inhaled Nitric oxide* Binary iINO2 inhaled nitric oxide therapy
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Variable Type Code Definition

Hours on total parenteral nutrition Continuous| durTPN duration ofparenteral nutrition
in hours

Major surgery Binary nepSurgery | major neonatal surgery

Prophylactic indomethacin Binary prphylindo | neonatal prophylactic

indomethacin

Total length of stay (days) Continuous| neoLOS total hospital stay in days in alll

nurseries

Outcome Variables

Corrected age at latest assessment | Continuous| ageseen post term age seen at last

assessment in weeks

Normal at latest assessment Binary normal no neurodevelopmental

impairment (no CP

Cerebral palsy (CP) Binary cp (0no CP} 1, CP}

Cerebral palsy severity Categorical| cpstage CP GMFCS stages 1to 5

*Atlee database code

Abbreviation: BPD (bronchopulmonary dysplasia), CP (cerebral palsy), CPAP (continuous positive
airway pressure), CPR (cardiopulmonary resuscitation), GMFCS (gross motor functional
classification system), NEC (necrotizing enterocolitis), NICU (aal intensive care unit), PDA
(patent ductus arteriosus), PVL (periventricular leukomalacia), RDS (respiratory distress
syndrome)

# Confirmation of gestational age is determined according to the following hierarchical order:

1. Conception dating, if ntber was receiving fertility treatments;
2. The last menstrual period, if it corresponds to ultrasound dating within 10 days;
3. Ultrasound dating, if it was >10 days difference from the last menstrual period or no dates were known;

4. Physical examinatioof the infant at birth, if none of the three preceding estimates were available

A Routine cranial ultrasound screening of all preterm infants is standard of care at the IWK. This includes serial cranial
ultrasound imaging with the initial screening is ddretween & days after birth, then at 2 and 6 weeks after birth

and finally at term equivalent age. If an abnormality is identified, more imaging is performed as clinically indicated.
Brain MRI is done in a selected subgroup of infants with severe abiityridentified on routine cranial ultrasound

as per the discretion of the treating physician. Reporting of abnormal findings on neuroimaging includes the type, site
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(unilateral or bilateral) and the extent of brain injury. However, coding of abnormedimaging in the PFUP

database includes the worst finding (type) and laterality.
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Table S2: Missing Values in Population Dataset

Missing Number of %

Values Observations Missing
Continuous Variables
Apgar score at 1 minute 8 769 1.0
Apgar score at 5 minutes 8 769 1.0
Z scores of birth weight 2 775 0.2
Admission hemoglobin 8 769 1.0
Admission temperature 18 759 2.3
Lowest hemoglobin during first 24 hours 5 772 0.6
Days of parenteral nutrition 14 763 1.8
Hospitalization days 7 770 0.9
Binary/Categorical Variables
Married or common Law 10 767 1.3
Optimal antenatal steroids 1 776 0.1
(>24 hours prior to delivery)
Chest compression /epinephrine 4 773 0.5
Hypotension oradmission 15 762 1.9
Prophylactic indomethacin 1 776 0.1
cystic bronchopulmonary dysplasia 1 776 0.1
Socioeconomic Status 88 689 11.3
Smoking 40 737 51
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Figure S1. Distribution of Continuous Variables in thePopulation Dataset
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Figure S2. Assessment of the Linear Relation Between Continuous Variables and

Logit of CP in the Population Dataset
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Figure S3.a. Classification Tree of the Prenatal Model
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Figure S3.b. Classification Tree of the PrenataPerinatal Model
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Figure S3.c. Classification Tree of the Full Mode
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