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Abstract

Internet of Things (IoT) technology and Software-Defined Networking (SDN) have

become key drivers of innovation for several industry applications. Their integration

into Software-Defined IoT (SD-IoT) creates new opportunities while introducing sig-

nificant security challenges. Given the limited resources of many IoT devices, these

networks are particularly vulnerable to attacks, with Distributed Denial of Service

(DDoS) attacks posing one of the most serious threats to network security and perfor-

mance. An emerging area of research is the detection and mitigation of DDoS attack

on SD-IoT networks.

Many existing DDoS intrusion detection methods rely on outdated datasets, and

most of features in these datasets have trivial contribution to attack detection ac-

cording to the result of feature selection. This thesis presents a framework for DDoS

detection and mitigation in SD-IoT. A novel approach is introduced for extracting

informative features from network traffic and generating datasets based on those fea-

tures. In the detection phase, a simulated SDN environment is used to generate

normal and DDoS traffic through data-plane algorithms. Traffic features are then

extracted to train machine learning models that distinguish between benign and ma-

licious flows. Several classifiers are trained and evaluated based on precision, recall,

accuracy, and F1-score, with the weighted majority vote ensemble model selected for

its superior performance. For mitigation, a strategy combining micro-segmentation

with Attribute-Based Access Control (ABAC) is proposed, enabling effective attack

containment and establishing a robust defense-in-depth framework.

The results from our simulated experiments demonstrate the importance of the

extracted features in training machine learning models for DDoS detection. Addi-

tionally, the weighted majority vote ensemble model shows significant improvements

in DDoS detection. A use case further illustrates the efficiency of the proposed micro-

segmentation method in mitigating DDoS attacks.
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Chapter 1

Introduction

Internet of Things (IoT) has rapidly evolved into a transformative technology, con-

necting billions of devices worldwide. It connects devices such as RFID tags, actua-

tors, wearable equipment, unmanned aerial vehicles and other communication devices

together to create different kinds of smart ecosystems. Some of the application sce-

narios are health automation, first responder monitoring and safety system, smart

homes and buildings, nifty traffic control and management, industrial control and

monitoring system, and so on [62, 74].

The growing complexity and dynamic nature of IoT networks have highlighted

the limitations of traditional network architectures. Traditional networks are hard

to adapt to the increasing demands for scalability, flexibility, and centralized control,

especially when there is a boom growth of connected devices and data generation

in IoT schemes. Software Defined Network (SDN) is considered as the solution to

the limits mentioned above. It can support IoT networks with rapid evolution and

dynamism using programmable planes [62]. In SDN, the control plane is decoupled

from forwarding plane and communication between two planes is done through APIs

e.g. OpenFlow. SDN is basically layered architecture consist of three layers (1). Data

plane, (2). Control plane/controller, and 3). Application layer [8].

1.1 Introduction to SD-IoT and its threats

The integration of Software Defined Networking and the Internet of Things has given

rise to Software Defined Internet of Things (SD-IoT). SD-IoT combines the pro-

grammability and centralized control of SDN with the interconnected nature of IoT

devices, creating a flexible and robust infrastructure for managing IoT networks. This

convergence addresses key challenges in IoT environments, such as dynamic device

connectivity, heterogeneous communication protocols, and security vulnerabilities, by

leveraging the centralized intelligence of SDN controllers.

1
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However, the limited computational resources and battery capacities of IoT de-

vices make SD-IoT more susceptible to certain attacks. Among these, Distributed

Denial of Service (DDoS) attacks are particularly concerning, as IoT devices are of-

ten easier to compromise. And the phenomenon of forming botnets and launching

cyber attacks has become more frequent [34], which underscores the urgent need for

effective detection and mitigation mechanisms in SD-IoT networks.

1.2 Introduction to a framework of dataset generation, DDoS detection

and mitigation

Both Machine Learning (ML)-based and rule-based Intrusion Detection System (IDS)

are security mechanisms that can monitor network traffic or some system activities to

distinguish potential security threats. Rule-based IDS requires predefiend rules that

define patterns of known attack behaviors. In SD-IoT, ML-based IDS provide several

advantages over traditional rule-based approaches. ML-based IDS are more adapt-

able, capable of detecting new and previously unknown attack patterns by learning

from network traffic without requiring manual updates. They can perform dynamic

behavior analysis, handling complex, multi-stage attacks such as DDoS or advanced

persistent threats, which rule-based systems struggle to detect. Additionally, ML

models scale efficiently in large SD-IoT environments, reducing false positives and

negatives by continuously optimizing classification. In contrast, rule-based IDS rely

on static, predefined signatures that are less effective at handling evolving threats

and can result in slower detection and higher resource consumption as network traffic

grows. Overall, ML-based IDS provide more accurate, real-time detection and re-

sponse, making them better suited for the dynamic nature of SD-IoT environments.

Public datasets have been crucial in training machine learning models for DDoS

detection by providing extensive traffic records and features. However, many of these

datasets, such as UNSW-NB15 and KDD-CUP99, are outdated, and research shows

that many of their features offer limited value for effective intrusion detection. Con-

sequently, there is a clear need for a method to generate new data and extract infor-

mative features tailored to modern intrusion detection.

This thesis proposes an Ml-based IDS approach for detecting DDoS attacks in

SD-IoT networks. The method extracts eleven key traffic features to classify network
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flows. In a simulated SDN environment, normal traffic and DDoS attack traffic are

generated using iperf and hping3, respectively. This dataset is used to train and test

9 machine learning classifiers, including Decision Tree (DT), Random Forest (RF),

Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Light Gradient

Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), Artificial

neural networks (ANNs), Naive Bayes (NB), Logistic Regression. Based on four

evaluation metrics—accuracy, precision, recall, and F1 score, A weighted majority

vote ensemble model is selected as the optimal classifier. The trained ensemble model

is then implemented in the control layer of the SDN to monitor the SD-IoT network

for potential attacks.

To mitigate detected DDoS attacks, this thesis introduces a novel approach that

combines micro-segmentation with dynamic Attribute-Based Access Control (ABAC).

By implementing ABAC using Casbin in the controller, the method effectively man-

ages network micro-segments, reducing the attack surface while maintaining robust

control and flexibility.

1.3 Contributions

The main contributions of this thesis are as follows:

1. The generation of a traffic dataset in an SD-IoT environment containing both

normal and attack traffic, with 12 extracted features for classification.

2. The training and evaluation of multiple machine learning classifiers using the

generated dataset, with weighted majority vote ensemble model selected as the best

performer based on four evaluation metrics.

3. A novel methodology that integrating micro-segmentation and ABAC to miti-

gate DDoS attacks in SD-IoT networks, significantly reducing the attack surface while

enhancing control and flexibility.

1.4 Outline of the thesis

The remainder of this thesis is organized as follows: Chapter 2 presents the back-

ground and literature review. Chapter 3 details the proposed dataset generation and
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DDoS detection and their underlying algorithms. Chapter 4 discusses the method-

ology of the mitigation. Finally, Chapter 5 concludes the thesis and highlights its

contributions, and future work to improve the adoptive scalability of this thesis is

outlined.



Chapter 2

Background and Literature Survey

This chapter provides the background and surveys the literature on the research re-

lated to this thesis. It begins with an introduction to Software-Defined Networking

(SDN) and its role in modern IoT networks. Next, it examines the threat of Dis-

tributed Denial of Service (DDoS) attacks and explores the use of machine learning

techniques for detecting such threats.

The chapter then discusses practical mitigation strategies, focusing on micro-

segmentation and attribute-based access control as effective methods against DDoS

attacks. It concludes with a review of recent research from the past seven years,

highlighting developments in dataset creation, detection, and mitigation strategies

for DDoS attacks.

2.1 Software Defined Network (SDN)

Software Defined Networking is a modern architecture that enables centralized net-

work management and programmability by separating the control functions from

the data handling processes. Traditional networks rely on various devices—such as

routers, switches, firewalls, load balancers, and intrusion detection systems—that each

operate with their own protocols and interfaces. This diversity increases complexity

and operational costs, particularly as networks grow in size [19].

In SDN, as shown in Figure 2.1, the control and data functions are distinctly sep-

arated. The application layer implements essential network services like firewall pro-

tection, intrusion detection, routing, and access control. Many controller platforms,

including OpenDaylight, ONOS, and Ryu, provide clear northbound interfaces to fa-

cilitate communication between the application and control layers. The controller

in the control plane collects data from network devices and determines forwarding

rules, while the data plane—comprising devices such as switches, routers, and ac-

cess points—executes these rules based on instructions received through southbound

5
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interfaces. OpenFlow is the primary protocol in southbound interfaces which also

make the standard of communication between control plane and data plane. There

are 3 types of communication supported by OpenFlow, controller-to-switch, asyn-

chronous and symmetric communication. Controllers can send handshakes messages,

switch and flow table configuration to switches in controller-to-switch communica-

tion. The asynchronous communications initialized by OpenFlow-compliant switch

to send packet-in message, port message, flow message to controller. The symmetric

communication can be bidirectional, such as Feature Request/Reply messages [6].

More details of these three communications can be found in table 2.1.

Figure 2.1: Architecture of SDN

2.2 Distributed Denial of Service (DDoS)

Distributed Denial of Service (DDoS) overwhelms the target server with an immense

vlumne of traffic that prevents normal users from accessing the server. [22] It has

been one of the most serious threat for network security. It can cause a massive
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Table 2.1: OpenFlow Message Types

Category Messages

Controller-to-Switch Messages

Handshake

Switch Configuration

Flow Table Configuration

Modify State Messages

Multipart Messages

Queue Configuration Messages

Packet-Out Message

Barrier Message

Role Request Message

Set Asynchronous Configuration Message

Asynchronous Messages

Packet-In Message

Flow Removed Message

Port Status Message

Error Message

Symmetric Messages

Hello

Echo Request

Echo Reply

Experimenter

disruption in any information communication technology infrastructure. [5]

2.3 Machine Learning Models

Several Machine Learning (ML) models are adopted in this thesis to detect DDoS

attackS in SDN. A well-trained ML classifier can distinguish normal traffic and ma-

licious traffic in network. There are many different kinds of ML algorithms which

contribute in classifying abnormal traffic in previous studies. There are 10 ML clas-

sifiers are selected in this thesis and they fall into various categories.

A brief overview of classifiers is presented below.

2.3.1 Decision Tree (DT)

Decision tree is a tree-based ML algorithm. It makes classification by forming recur-

sive subsetting of a target field of data based on the most significant features. This
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process creates partitions and descendant data subsets, which are also called leaves

or nodes. At each level of the tree, the target values within a leaf (or node) become

progressively more similar, while those between different leaves (or nodes) become

increasingly dissimilar.[13] The structure of Decision tree is shown in Figure 2.2.

Figure 2.2: Structure of Decision Tree

2.3.2 Light Gradient Boosting Machine (LightGBM)

LightGBM is an advanced gradient boosting algorithm, which builds trees sequen-

tially, each learning from the errors of the previous tree. With the emergence of big

data, Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling

(EFB) are implemented in Gradient Boosting Decision Tree (GBDT). This novel

GBDT algorithm is called LightGBM.[32]

2.3.3 Extreme Gradient Boosting (XGBoost)

XGBoost is an advanced gradient boosting algorithm based on the Gradient Boosting

Decision Tree framework, similar to LightGBM. It introduces several enhancements

over traditional gradient boosting, including second-order gradient optimization, reg-

ularization techniques, and efficient handling of sparse features. These improvements
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enhance its speed and predictive performance, making it a powerful tool for machine

learning tasks.

2.3.4 Random Forest (RF)

In Random Forest, the dataset is used to independently train multiple decision tree

models. The final prediction is determined by a majority vote among these trees, an

ensemble approach that improves accuracy and reduces the risk of overfitting. [7]

2.3.5 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning method applicable to both

classification and regression tasks. It enhances predictive accuracy while reducing

overfitting. SVM works by identifying the optimal decision boundary that separates

different classes in a high-dimensional feature space. For further details, see [29].

2.3.6 K-Nearest Neighbors (KNN)

KNN is a instance-based learning model which can do both classification and regres-

sion tasks. KNN is also a type of lazy learning technique (no training phase), because

it works by finding k training objects which are closest to the new object, and predict

its label based on the predominance of a particular class in this neighborhood. There

are some key elements which can have major affect on the performance of KNN:

(i) a collection of labeled data points that serve as a reference for classifying new

test instances, (ii) distance metrics, (iii) optimal value of k, and (iv) a classification

method that assigns a label to the target instance based on the class distribution and

distances of its k closest neighbors.[56] Some common distance metrics used in KNN

include:

The Euclidean distance between two points in an n-dimensional space:

d(A,B) =

√√√√ n∑
i=1

(xi − yi)2 (2.1)
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The Manhattan distance (also known as the L1 norm or taxicab distance) is

given by:

d(A,B) = |x2 − x1|+ |y2 − y1| (2.2)

For an n-dimensional space:

d(A,B) =
n∑

i=1

|xi − yi| (2.3)

The Minkowski distance generalizes both Euclidean and Manhattan distances:

d(A,B) =

(
n∑

i=1

|xi − yi|p
) 1

p

(2.4)

- When p = 1, it reduces to the **Manhattan Distance**. - When p = 2, it

becomes the **Euclidean Distance**.

Cosine similarity measures the angle between two vectors:

cos(θ) =
A · B

‖A‖‖B‖ (2.5)

For vectors A and B:

cos(θ) =

∑n
i=1 xiyi√∑n

i=1 x
2
i ·

√∑n
i=1 y

2
i

(2.6)

The corresponding **Cosine Distance** is:

d(A,B) = 1− cos(θ) (2.7)

Definition of Variables:

• A and B are vectors (or points) in an n-dimensional space.

• n denotes the number of dimensions.

• xi and yi are the i-th coordinates of vectors A and B, respectively, for i =

1, 2, . . . , n.

• In Equation (2.2), (x1, y1) and (x2, y2) represent the coordinates of points A

and B in a two-dimensional space.
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• p is a real number parameter in the Minkowski distance that indicates the order

of the norm.

• A · B denotes the dot product of vectors A and B.

• ‖A‖ and ‖B‖ represent the magnitudes (or Euclidean norms) of vectors A and

B, respectively.

• θ is the angle between vectors A and B.

2.3.7 Naive Bayes (NB)

Naive Bayes is a probabilistic classifier based on Bayes’ Theorem. Often referred

to as the “independence Bayes” classifier, it assumes that features are conditionally

independent. Although this assumption may not always reflect real-world data, Naive

Bayes often delivers robust performance.

Despite not being the most accurate classifier in every scenario, its simplicity and

ease of interpretation make it a popular choice. It is straightforward to construct and

easy to understand. Bayes’ Theorem is given by:

P (Y |X) =
P (X|Y )P (Y )

P (X)
(2.8)

where:

• P (Y |X) is the posterior probability, the probability of class Y given the

feature set X.

• P (X|Y ) is the likelihood, the probability of observing X given that the class

is Y .

• P (Y ) is the prior probability, the probability of class Y before observing any

features.

• P (X) is the evidence, the total probability of X across all possible classes.
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2.3.8 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are machine learning models inspired by the struc-

ture and functionality of biological neural networks. They consist of an input layer,

one or more hidden layers, and an output layer, where each layer is composed of in-

terconnected neurons.[16] ANNs processes data through forward propagation, where

weighted inputs are passed through activation functions such as sigmoid, ReLU, and

tanh to introduce non-linearity. The network learns patterns through backpropaga-

tion, which adjusts the weights using gradient descent or more advanced optimizers

like Adam to minimize the loss function.

2.3.9 Logistic Regression

Logistic Regression is a fundamental statistical method used for binary classification

tasks, where the goal is to predict the probability that a given input belongs to a

particular class. Unlike linear regression, which forecasts continuous outcomes, lo-

gistic regression employs the sigmoid function to map a linear combination of input

features into a probability value between 0 and 1. This probability is then used to

classify the input based on a predetermined threshold, typically 0.5.[26]The model

parameters are estimated using maximum likelihood estimation, optimizing a cost

function such as the binary cross-entropy loss through gradient descent techniques.

Additionally, logistic regression can be adapted for multiclass classification problems

via strategies like one-vs-rest or softmax regression. Its simplicity, computational ef-

ficiency, and interpretability have led to widespread applications in various domains,

including network security, medical diagnosis, and finance, despite its inherent as-

sumption of a linear decision boundary which may limit its performance on more

complex, non-linear datasets.

2.4 Micro-segmentation

Micro-segmentation is a network security approach that involves dividing a network

into granular, isolated segments, enabling precise control over traffic and reducing

the risk of lateral movement when attack is happening. This technique is particularly
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relevant in modern, dynamic environments such as data centers and cloud infrastruc-

tures, where traditional perimeter-based security measures are no longer sufficient. By

segmenting the network into smaller, manageable zones, micro-segmentation allows

organizations to implement dynamic security policies for different network segments,

enhancing both security and compliance. Moreover, this approach provides improved

visibility into network interactions and helps contain potential cyber threats, thereby

contributing to a more robust, defense-in-depth security posture. There are four

advantages provided by micro-segmentation [17]:

1)Reduced attack surface: visibility of the whole network is provided by micro-

segmentation and innovation and development would not be slowed at the same time.

2) Enhanced breach containment: Micro-segmentation allows security teams

to enforce preset network policies and continuously monitor traffic, which helps limit

breaches and speeds up their detection, response, and remediation.

3) Robust regulartory compliance: Micro-segmentation enables special poli-

cies for the segments that needs regulation in the network.

4) Streamlined policy management: Micro-segmentation makes the manage-

ment of firewall policies easier.

2.5 Attribute-based Access Control (ABAC)

Attribute-Based Access Control is a dynamic and flexible access control model that

grants or restricts user permissions based on attributes associated with users, re-

sources, actions, and environmental conditions. Unlike traditional access control

models such as Role-Based Access Control (RBAC), which rely on predefined roles,

ABAC enables fine-grained access decisions by evaluating a combination of attributes,

such as user identity, device type, location, time of access, and resource sensitivity.

This approach enhances security by allowing organizations to enforce context-aware

access policies that adapt to changing conditions and minimize unauthorized access

risks. ABAC is widely used in modern computing environments, including cloud

services, software-defined networking, and zero-trust architectures, where dynamic

and scalable access control mechanisms are essential for ensuring data confidentiality,

integrity, and regulatory compliance. The logic flow of ABAC can be described as

below[28]:
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1) Operations are initialized by subject to object

2) A decision is made by evaluating on Policy, which contains the values of a)

Rules, b) Attributes, c) Conditions of Environment.

3) Subject can access to object? Depending on the decision.

Where attributes are information of subjects, objects and environment. Sub-

jects can be users or resources. Objects usually are resources under the management

of ABAC. Operation often includes read, write, edit, delete and so on. Environ-

ment Condition contains the public variables of system, such as current time, date

or security level of system.

2.6 Related work

This section reviews literature on DDoS security published between 2016 and 2024.

It summarizes advancements in dataset generation, detection, and mitigation tech-

niques, with a particular focus on machine learning classifiers for DDoS detection and

whether the training data is public or self-generated.

Polat et al. [45] simulated an SDN network using a POX controller and Open-

VSwitch, employing both hierarchical and star topologies to generate a dataset com-

prising 12 features and 129,000 records. The dataset, which included normal and

attack traffic across TCP, UDP, and ICMP protocols, was refined using sequential

forward floating selection and Lasso algorithms to identify 6 key features. Four clas-

sifiers—Naive Bayes, SVM, KNN, and ANNs—were evaluated, with KNN achieving

the highest performance. Polat et al.[46] also proposed another strategy based on

deep learning. They still chose POX controller in simulated network. The dataset

used to train SSAE+SoftMax 4-layer deep network model contained more features

and less rows (42 features and 17779 rows) compared the dataset in their other work

which is mentioned above.

Ahuja et al. [2] generated a dataset with 104,345 records and 23 features, later

reducing it to 8 significant features through feature extraction. Their network simula-

tion utilized a Ryu controller and Mininet, while Mgen and Hping3 produced normal

and attack traffic. Similarly, Ye et al. [73] employed the Floodlight controller to create

a dataset containing 6 features and 30,000 records, with SVM emerging as the best
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classifier. Myint Oo et al. [41] developed their own dataset—comprising normal traf-

fic, SYN floods, and UDP floods—using an OpenDaylight controller. They extracted

5 features and customized an advanced SVM model that outperformed alternative

classifiers.

Wang et al. [71] secured an SDN against DDoS attacks by employing multiple

controllers. Their simulation used a Ryu controller, with D-ITG and Hping3 gen-

erating both normal and attack traffic, and 4 vector tuples were extracted from the

traffic. The Back Propagation Neural Network (BPNN) delivered the best results,

and their strategy included activating backup controllers when the primary controller

was under attack.

Majd Latah and Levent Toker [35] created a relatively small dataset (8 features

and 960 rows) to train Multi-Layer Perceptron model. POX controller was deployed

in a tree-topology simulated SDN. They used D-ITG and Scapy to collect normal and

attack traffic. Fan et al.[18] proposed a novel machine learning model called RF-SVM-

IL to detect DDoS in SDN. They integrated Random Forest, SVM and Incremental

Learning. Their simulated network used Ryu controller to form a dataset. Wang

et al.[70] utilzed Floodlight controller and mininet to simulate SDN. The controller,

switches and hosts were arranged following hierarchical tree topology. Scapy library

were used to generate normal traffic, SYN flood, UDP flood and ICMP flood. The

dataset contained 6 columns and 35,000 rows. Rahman et al.[48] used Ryu contoller

and Mininet to create SDN. Hping3 were choosen to produce SYN flood, UDP flood,

ICMP flood and Botnet. They created a dataset containing 24 columns and 326232

rows and this dataset was used to train J48 model. Table 2.2 shows the summary of

papers related in dataset generation.
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Table 2.2: Summary of papers in dataset generation

Ref No Source of

dataset

Size of

dataset

(Number of

Columns x

Number of

records

Tools and

Best classi-

fier

Topology Size of net-

work

Method of

feature se-

lection

Type of at-

tack

Polat et al.

(2020)[45]

Self-

generated

12 x 129000

= 1548000

Controller:

Pox - and

hping3 KNN

hierarchical

and star

topologies

Controller(pox):1

Switch (OVS

and vm):3

Host:6

The Relief al-

gorithm

The sequen-

tial forward

floating

selection

algorithm

The Lasso al-

gorithm

DDoS: SYN

flood UDP

flood ICMP

flood

Ahuja et al.

(2021)[2]

Self-

generated

104345x23

= 2399935

(23 are ex-

tracted, 16

are used

to train,

only 8 are

significant)

mgen and

hping3 SVM-

RF

Tree topol-

ogy Emula-

tor: Mininet

Controller

(Ryu):1

Switch(ovs):

9 Hosts: 13-15

None DDoS

Ye et al.

(2018)[73]

Self-

generated

6 x 30000 =

180000

NA and

hping3 SVM

Star topol-

ogy Emula-

tor: Mininet

Controller

(Floodlight): 1

Switch (OFS):5

Hosts:5

None DDoS: SYN

flood UDP

flood ICMP

flood

Myint

Oo et al.

(2019)[41]

Self-

generated

5 x None None and

Scapy cus-

tomized

SVM

hierarchical

SDN topol-

ogy with a

controller

cluster

Emulator:

Mininet

Controller

(ODL):3 Switch

(OFS):4 Host:4

None DDoS: SYN

flood UDP

flood

Wang et al.

(2020)[70]

Self-

generated

6 x 35000 =

210000

Scapy library

CNN-

3C2P2F

hierarchical

tree topology

Emulator:

Mininet

Controller

(Floodlight): 1

Switch (OVS):6

Hosts:8

None DDoS: SYN

flood UDP

flood ICMP

flood

Polat et al.

(2020)[46]

Self-

generated

42 x 17779 =

746718

hping3 SSAE

SoftMax

4-layer deep

network

model

Hierarchical

and Star-

Like Local

Topology

Emulator:

SUMO

Controller(pox):3

Switch (RSU):6

Host:100

None DDoS: SYN

flood UDP

flood ICMP

flood

Latah

and Toker

(2018)[35]

Self-

generated

8 x 960 =

7680

: D-ITG and

Scapy MLP

tree topology

Emulator:

Mininet

Controller(pox):1

Switch (OFS):4

Host:9

None DDoS: SYN

flood UDP

flood ICMP

flood

Fan et al.

(2021)[18]

Self-

generated

5 x None Hping3 RF-

SVM-IL,

hierarchical

SDN topol-

ogy Emula-

tor: Mininet

Controller

(Ryu):1

Switch(ovs):

3 Hosts: 3

None DDoS: SYN

flood UDP

flood ICMP

flood

Wang, et al.

(2019)[71]

Self-

generated

4 x None D-ITG and

Hping3

BPNN

hierarchical

SDN topol-

ogy with a

controller

cluster

Emulator:

Mininet

Controller

(Ryu):5

Switch(ofs):

10 Hosts: 4

None DDoS:

SYN flood

UDP flood

ICMP flood

Low-traffic

novel DDoS

attacks

(targeting

the SDN

controller)
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Ref No Source of

dataset

Size of

dataset

(Number of

Columns x

Number of

records

Tools and

Best classi-

fier

Topology Size of net-

work

Method of

feature se-

lection

Type of at-

tack

Rahman,

et al.

(2019)[48]

Self-

generated

24 x 326232

= 7829568

None and

Hping3 J48

star topology

Emulator:

Mininet

Controller

(Ryu):1

Switch(ofs):

1 Hosts: 5

None DDoS: SYN

flood UDP

flood ICMP

flood Botnet

My pro-

posed work

Self-

generated

12 x 140000

= 1680000

Iperf3 and

hping3

Weighted

Major-

ity Vote

Ensemble

Tree topol-

ogy

Controller

(Ryu):1

Switch(ofs): 6

Hosts: 18

WFI and

RFE

DDoS:

SYN flood

UDP flood

ICMP flood

IP spoofing

FIN flood

Botnet

In addition to self-generated dataset, there are some public datasets related to

SDN which contribute to field of DDoS detection, such as CICDDoS 2019, CICDDoS

2017, KDD99CUP, NSL-KDD, UNSW-NB15, CIC-IDS 2018, CAIDADDOS and so

on. Kareem and Jasim [31] proposed a novel algorithm to detect DDoS. It was a

partial decision tree algorithm called PART. Several classifiers were compared with

PART, such as RT, REPT and RF. PART performed the best and achieved 99.77% of

accuracy. Rehman et al.[67] tested the performance of machine learning algorithms on

detecting reflection DDoS attack and exploitation attack. They had selected a small

part of dateset CICDDoS2019 to train classifiers. The result showed 99.69% accuracy

in detecting reflection attacks and 99.94% accuracy for classifying exploitation using

Gated Recurrent Unit (GRU). In order to overcome the emergence of increasing data

size and growth of data dimensions, Shen et al.[54] proposed an ensemble method

based on Extreme Learning Machine. Bat algorithm was used as an ensemble prun-

ing method. 99.3% of accuarcy was resulted. Shone et al.[55] used Random Forest to

detect DDoS. In order to improve the accuracy and execution time, Non-Symmetric

Deep Auto Encoder was applied to the training dataset to utilize RF. Gao et al.[21]

proposed a strategy of DDoS detection. A voting system and ensemble ML models

were used and DT, RF, KNN, DNN were selected as the basic classifiers. Chen et

al.[10] had tested the performance of multiple classifiers using CUP99 as training

dataset. XGBoost outperformed SVM, GBDT and RF with false-positive rate of

0.008. Perez-Diaz et al.[44] proposed a work to protect SDN controller from DDoS

by indentifying low-rate DDoS attack. Multiple classifiers are tested, such as J48,
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MLP, SVM, RF, REPTree and RT. The result showed a accuracy of 95% in detect-

ing low-rate DDoS attack. A hybrid CNN-ELM model was introduced by Wang and

Wang et al.[69]. The result showed accuracies of 98.92% and 99.91% on CIC-IDS2017

and InSDN dataset receptively. A source-based DDoS detection method was pre-

sented by Priyadarshini and Barik [47]. They integrated two datasets to train LSTM

model, CTU-13 provided malicious traffic and IXCS-2012 provided normal traffic.

The accuracy in their work was 98.99%.

Good use of feature selection can contribute to the performance of classifiers in

DDoS detection. Latah and Toker [35] applied PCA to reduce the number of features

from 41 to 9 for NSL-KDD dataset. Chi-Square test feature selection was applied

on CIC-IDS 2018 by luong et al.[38] They reduce the feature number from 84 to

67. The dataset after feature selection was applied on SVM, NB, DT, RF and Deep

Neural Network. SVM and DNN performed the best. Tayfour and Marsono [61] used

four public datasets to train classifiers (InSDN2020, CICIDS2017, NSL-KDD and

UNSW-NB15). They proposed an ensemble classifier including NB, KNN, DT and

ET to detect DDoS. ET resulted True-Positive Rate of 0.985 and Fasle-Positive Rate

of 0.008. In considerations of the number of features in total of these four datasets,

feature selection methods may have a further contribution to the result.

In addition to the accuracy of classifiers, time effectiveness and power consumption

are also important for DDoS detection. Shafi et al.[52] showed a work of using MLP,

Alternate DT and RNN to detect DDoS attack. The result showed 0 packet delay for

1000 packets compared to cloud network.

Although some datasets used in previous studies—such as DARPA1998 and KDD-

CUP99 from the 1990s—are outdated, they continue to inspire innovative approaches

to DDoS detection using machine learning. Table 2.3 summarizes studies that employ

public datasets to train these models.



19

Table 2.3: Summary of papers using public dataset

Title Dataset
Methodo-

logy
Algorithm Pros Cons Performance

Metrics

Kareem and

Jasim. (2022)

[31]

CICDDOS2019 ML Partial DT High accu-

racy: 99.77%

Network is

low-scaled (2

switches, 10

hosts), com-

pared to only

tree-based

algorithms

Accuracy,

precision,

recall, F1

Rehman, et

al. (2021)[67]

CICDDoS2019 ML GRU, RNN,

SMO, NB

High accu-

racy: 99.69%

Small test

and training

data size

Accuracy,

precision,

recall, F1

Tuan, et al.

(2020) [66]

KDD99CUP,

UNBS-NB 15

ML SVM, ANNs,

NB, DT,

USML

High accu-

racy: 98.08%,

FAR: 1.92%

KDD99CUP

dataset out-

dated

Accuracy,

FAR, sen-

sitivity,

specificity,

FPR, AUC,

MCC

Shen et al.

(2018) [54]

NSL-KDD,

KDDCup99

Ensembled

ML

ELM with

BAT algo-

rithm

Performs well

in an ensem-

ble setting

Datasets are

outdated

Accuracy,

precision,

recall, F1

Shone et al.

(2018) [55]

NSL-KDD,

CICIDS2017

DL RF-based on

SDAE

Lowers model

complexity

Datasets out-

dated

Time, accu-

racy

Gao et al.

(2019) [21]

NSL-KDD Ensembled

ML

DT, RF,

KNN, DNN

with a voting

mechanism

Voting sys-

tem selects

the best

classifier

Dataset out-

dated

Accuracy,

precision,

recall, F1

Chen et al.

(2018) [10]

KDDCUP99 ML XGBoost FPR is low

(0.008); Com-

pared with

SVM, GBDT,

RF

KDDCUP99

dataset out-

dated

Accuracy,

FPR, train-

ing time

Gao et al.

(2018)[20]

DARPAIDS DL Bayesian net-

work

Detects

packet-in

flooding at-

tack with low

overhead

Dataset out-

dated (1999)

CPU usage,

accuracy
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Title Dataset
Methodo-

logy
Algorithm Pros Cons Performance

Metrics

Latah and

Toker (2018)

[35]

NSL-KDD ML DT, ELM,

NB, LDA,

NN, SVM,

RF, KNN,

AdaBoost,

RUSBoost,

LogitBoost,

BaggingTrees

PCA reduces

features from

41 to 9

KDD99CUP

dataset out-

dated

Accuracy,

precision,

recall, F1, ex-

ecution time,

McNemar’s

test

Shafi et al.

(2019) [52]

UNSW-NB15 ML MLP, RNN,

DT

0 packet de-

lay compared

to cloud net-

work

No per-

formance

evaluation for

classifiers

Network de-

lay, through-

put, fairness

Cui et al.

(2019) [12]

CAIDADDoS ML SVM 100% detec-

tion rate, low

FPR

Dataset out-

dated (2007)

Detection

rate, FPR

Tuan et al.

(2019) [65]

CAIDADDoS ML KNN Guarantees

device capac-

ity

Limited to

TCP-SYN

flood

Accuracy,

precision,

recall, F1

Perez-Diaz et

al. (2020) [44]

CICDoS2017 ML J48, MLP,

SVM, RF,

REPTree, RT

Tested multi-

ple classifiers

Only de-

tects low-rate

DDoS, 95%

accuracy

Accuracy,

precision,

recall, F1,

FAR

Luong et al.

(2020) [38]

CIC-IDS2018 ML SVM, NB,

DT, RF,

DNN

ML and DL

classifiers

tested; Chi-

square test

for feature

selection

DT can-

not detect

abnormal

traffic

Accuracy,

precision,

recall, F1

Khedr et al.

(2023) [33]

Edge-IIoTset ML SVM, GNB,

KNN, RF,

DT, Binomial

LR

High accu-

racy (99.79%)

Limited to

TCP flood

Accuracy, re-

call, F1

Revathi et al.

(2021) [49]

KDDCUP99 ML SVM SMCA re-

duces fea-

tures from 41

to 9

KDDCUP99

dataset out-

dated

Accuracy,

precision,

recall, F1

Tayfour and

Marsono

(2021) [61]

InSDN2020,

CICIDS2017,

NSL-KDD,

UNSW-NB15

Ensembled

ML

Ensemble of

NB, KNN,

DT, ET

RSMQ min-

imizes con-

troller load

Outdated

datasets and

Feature se-

lection can

be used on

4 datasets

to improve

performance

Accuracy,

precision,

recall, F1,

TPR, FPR
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Title Dataset
Methodo-

logy
Algorithm Pros Cons Performance

Metrics

Banerjee and

Chakraborty

(2021) [4]

Kaggle

dataset

ML NB, KNN,

K-means,

Linear Re-

gression

Tested multi-

ple classifiers

Lack of per-

formance

metrics

Efficiency

Yungaicela-

Naula et al.

(2021) [75]

CIC-

DoS2017,

CIC-

DDoS2019

ML and DL SVM, KNN,

RF

PCA reduces

features from

76 to 15

Lower ac-

curacy for

application-

layer DDoS

(95%)

Accuracy,

precision,

recall, F1

Xu et al.

(2019) [72]

NSL-KDD ML K-FKNN Combines

KMeans++

and KNN

Outdated

dataset; Long

detection

time

Precision,

Recall, F-

measure,

Detection

time

Zhao et al.

(2021) [76]

DDoSAttack2007ML SOM Fast pro-

cessing time;

High detec-

tion accuracy

Dataset out-

dated

Accuracy,

Processing

time

Deepa et al.

(2019) [14]

CAIDA Ensembled

ML

KNN-SOM,

NB-SOM,

SVM-SOM

SVM-SOM

accuracy:

98.14%

Detection

rate (95%)

could im-

prove with

feature selec-

tion

Accuracy, de-

tection rate,

FAR

Tan et al.

(2020) [60]

NSL-KDD Ensembled

ML

K-Means-

KNN

High preci-

sion (99.03%)

Dataset out-

dated

Accuracy,

precision,

recall, FAR

Swami et al.

(2020) [58]

UNSW-

NB15, CI-

CIDS2017,

NSL-KDD

Ensembled

ML

Voting-CMN,

Voting-RKM,

Voting-CKM

High accu-

racy (99.68%)

No feature

selection

applied

Accuracy,

precision,

recall, F1

Wang and

Wang (2022)

[69]

CIC-

IDS2017,

InSDN

Ensembled

ML

CNN-ELM High accu-

racy (98.92%,

99.91%)

No feature

selection

applied

Accuracy

Haider et al.

(2019) [25]

CICDDoS2017 DL CNN High accu-

racy (99.48%)

No real-

world/simulated

testing

Accuracy,

precision,

recall, F1

Priyadarshini

and Barik

(2019) [47]

CTU-13,

ISCX-2012

DL LSTM Propose

source-based

DDoS detec-

tion

Only one

performance

metric

Accuracy

Liang and

Znati (2019)

[36]

CICIDS2017 DL LSTM High preci-

sion (99%)

No feature

engineering

Precision,

Recall, F-

measure
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Title Dataset
Methodo-

logy
Algorithm Pros Cons Performance

Metrics

Novaes et al.

(2021) [42]

CICDDoS2019 DL Adversarial

Deep Learn-

ing (GAN)

Proposes

detection and

mitigation

strategy

No feature

engineering

Accuracy,

Precision,

Recall, F-

measure

My pro-

posed work

self-

generated

ML RF, DT,

SVM,

KNN, NB,

LR, ANNs,

LGB, XGB

1)High

accuracy

2)Detec-

tion and

mitigation

strategy

3)Various

kinds of

classifiers

are tested.

Performance

is not good

enough for

classifying

multi-class

values

Accuracy,

Precision,

Recall,

F-measure

Despite the use of DDoS detection in network security, the use and contribution of

DDoS mitigation can not be ignored. Shashidhara et al.[53] introduced a mitigation

method called SDN-chain, which was deployed in application layer in SDN. A consen-

sus protocol was used for SDN security and reliability. Additionally, Cryptographic

primitives was used to design a security protocol. This security protocol also was

analyzed by details. The results showed that SDN-Chain possessed characteristics

such as security, efficiency, a reduced tendency to centralize, and compatibility with

wireless environments where resources are limited.

Honeypot is a popular and efficient strategy against DDoS. According to the work

of Sumadi et al.[57], Representational State Transfer API can be used to prevent the

attack by conveying the flow rule modification message. The result showed that, the

mitigation process can be triggered in 31-49 ms once the attack is detected. Tian et

al.[64] proposed a work of integrating dynamic-based honeypot and game model to

protect Industrial Internet of Things (IIoT) from DDoS. They employed the Prelec

weighting function to capture limited rationality and proposed a DBHM to quantify

the interactions between the attacker and defender. They then applied the RDs

criteria to classify and identify stable equilibrium strategies.

Network slicing can be utilized to prevent mobile communications from DDoS

attack by dividing network resources into distinct slices. It also makes the network

management easier. Sattar et al.[51] deployed network slicing in SDN to mitigate
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DDoS. A mathmatical method was introduced by the authors to guarantee the end-

to-end latency in each network slice. Kabdjou et al.[30] emerged mutilple technologies

such as deception, network slicing, SDN, network function virtualization (NFV) and

decision-making system, to build secure and manageable network environment. Ad-

ditionally, the proposed architecture consistently upholds quality of service standards

while integrating a crucial filtering mechanism to mitigate potential security risks.

Thantharate et al.[63] introduced a 5G architecture which can classify and assign

incoming traffic to its proper network slice. The users or resources in the network are

allowed to communicate only after validation and permit. Vishwakarma and Jain [68]

used machine learning detection to construct a honeypot-based strategy. The decoy

system would redirect the malicious traffic as soon as they were detected.

Abou El Houda et al.[1] proposed SDNWisdom to protect OpenFlow switches from

DNS amplification attack. It mapped requests and reponses of DNS to shield victims

and resources. Snort is rule-based system with buzzing alarm of DDoS attack, it was

deployed by Manso et al.[39] In their proposed work, DDoS attack can be mitigated

after 3.07s on average with 0% of packet loss. Ali and Yousaf [3] introduced a three-tier

mitigation approach for resource consumption attack. Their work focused on traffic

load, throughput and failure rate. IoT, packets and queues are validated in Tier 1,

2, 3 respectively. In table 2.4, the papers about attack mitigation are concluded and

listed.

Table 2.4: Summary of papers related to DDoS mitigation

Title Strategy Deployment

Layer

Target Attack Scale of Net-

work

Shashidhara,

et al. 2021 [53]

Blockchain Application

layer

IP spoofing, Mod-

ification attacks,

DDoS attacks,

Insider attacks

Low

Sumadi, et al.

2022 [57]

Honeypot Data layer ICMP flood, TCP

flood

Medium to

large

Tian, et al.

2021 [64]

Honeypot Data layer APT attack Medium to

high

Sattar, et al.

2019 [51]

Network slicing Control layer DDoS attacks and

slicing-initiated at-

tacks

Large
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Title Strategy Deployment

Layer

Target Attack Scale of Net-

work

Kabdjou et al.

2024 [30]

Network slicing Control layer Botnet and DDoS

attacks

Large

Thantharate,

et al. 2020 [63]

Network slicing Control layer Botnet and DDoS

attacks

Large

Vishwakarma

and Jain 2019

[68]

Honeypot Data layer Zero-day DDoS at-

tack and botnet

Medium

Abou El Houda

et al. 2020 [1]

Access control Data layer DNS amplification Medium to

large

Manso et al.

(2019) [39]

Access control Control layer

and data layer

DDoS attacks Medium

Ali and Yousaf.

2020 [3]

Access control All layers Replay attack,

MiMA attack,

forgery attack, and

DDoS attack

Medium to

large

My proposed

work

Hybrid –

network slic-

ing (micro-

segmentation)

and ac-

cess control

(ABAC)

Control layer DDoS attacks

and Botnet

Medium

Table 2.5 provides a summary of the literature reviewed in this chapter, orga-

nized by dataset generation, attack detection, and attack mitigation. Additionally,

it includes an overview of this thesis’s contributions, clearly highlighting its novel

aspects.

Table 2.5: Summary of technologies used in the literature for SDN security againist DDoS

Data gen-

eration

Data gen-

eration

Data gen-

eration

Attack de-

tection

Attack de-

tection

Attack de-

tection

Attack

mitigation

Attack

mitigation

Title Ryu Tree

topology

Multiple

attack

types

Multiple

metrics

Comparison

of classi-

fiers

Self-

generated

dataset

Hybrid

strategy

Multiple

target

attacks

Polat et al.

(2020)

X X � � � � X X

Ahuja et al.

(2021)

� � � � � � X X

Ye et al.

(2018)

X X � � � � X X

Myint Oo et

al. (2019)

X X � � � � X X
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Wang et al.

(2020)

X � � � � � X X

Polat, et al.

(2020)

X X � � � � X X

Latah and

Toker.

(2018)

X � � � � � X X

Fan, et al.

(2021)

� X � � � � X X

Wang, et al.

(2019)

� X � � � � X X

Rahman, et

al. (2019)

� X � � � � X X

Karrem

and Jasim.

(2022)

X X X � X � X X

Rehman, et

al. (2021)

X X X � � � X X

Tuan, et al.

(2020)

X X X � � X X X

Shen et al.

(2018)

X X X � � X X X

Shone et al. X X X � X X X X

Gao et al.

(2019)

X X X � � X X X

Chen et al.

(2018)

X X X � X X X X

Gao et al.

(2018)

X X X � � X X X

Latah and

Toker.

(2018)

X X X � � X X X

Shafi et al.

(2019)

X X X � � X X �

Cui et al.

(2019)

X X X � � X X X

Tuan et al.

(2019)

X X X � � X X �

Perez-Diaz

et al. (2020)

X X X � � X X �

Luong et al.

(2020)

X X X � � X X �

Khedr et al.

(2023)

X X X � � X X �

Revathi et

al. (2021)

X X X � � X X �

Tayfour and

Marsono

(2021)

X X X � � X X �

Banerjee

and

Chakraborty.

(2021)

X X X X � X X �

Yungaicela-

Naula et al.

(2021)

X X X � � X X �

Xu et al.

(2019)

X X X � X X X �



26

Zhao et al.

(2021)

X X X � � X X X

Deepa et al.

(2019)

X X X � � X X X

Tan et al.

(2020)

X X X � X X X X

Swami et al.

(2020)

X X X � � X X X

Wang and

Wang.

(2022)

X X X X � X X �

Haider et al.

(2019)

X X X � � X X X

Priyadarshini

and Barik.

(2019)

X X X X � X X X

Liang and

Znati (2019)

X X X � � X X X

Novaes et al.

(2021)

X X X � � X X �

Shashidhara,

et al. 2021

X X X X X X X �

Sumadi, et

al. 2022

X X X � � X X X

Tian, et al.

2021

X X X � � � X X

Sattar, et al.

2019

X X X X X X X �

Kabdjou et.

al. 2023

X X X � � X X �

Thantharate,

et al. 2020

X X X � � � X �

Vishwakarma

and Jain

2019

X X X � � X X �

Abou El

Houda et al.

2020

X X X � � X X X

Manso et al.

(2019)

X X X � � � X X

Ali and

Yousaf.

2020

X X X X X X X �

My pro-

posed

work

� � � � � � � �



Chapter 3

Dataset generation and DDoS detection

In this chapter, we outline the process for creating the dataset and implementing the

DDoS detection strategy. The key steps are as follows:

1. Build a simulated SDN environment.

2. Generate both normal and attack traffic within this environment.

3. Extract features from the traffic, starting with 17 raw features and deriving 11

informative ones.

4. Create and preprocess the dataset.

5. Train the classifiers introduced in Chapter 2 using the generated dataset.

6. Evaluate classifier performance using metrics such as precision, accuracy, recall,

and F1-score.

7. Enhance classifier performance through techniques like feature selection and a

majority vote ensemble method.

8. Deploy the best-performing classifier into the SDN controller.

Figure 3.1 illustrates these steps.

3.1 Environment of Simulated SDN

The simulated SDN is deployed on a virtual environment running Linux Ubuntu 20.04

on VirtualBox, with an Intel i5-12400KF CPU and 12 GB of RAM. Its architecture

comprises a controller, OpenFlow-compatible switches, and end devices. Mininet is

used as the emulator for its lightweight and flexible design, providing reliable Open-

Flow switch emulation. The controller, also known as the Network Operating System

(NOS), centrally manages the network. Common controllers include NOX [23], POX

[43], Ryu [11], ONOS, OpenDaylight, and Floodlight; Ryu is particularly popular due

to its active developer community and Python-based framework that integrates well

with Mininet. Further details of controllers can be found in [77].

27
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Figure 3.1: Steps of dataset generation and deployment of DDoS detection

Normal and attack traffic are generated within the topology illustrated in Fig-

ure 3.2. The simulated SDN consists of one Ryu controller, six switches (S1–S6), and

18 hosts (h1–h18), with each switch connecting to three hosts and the Ryu controller

linked to all switches.

Figure 3.2: Topology for generating traffic in SDN
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3.2 Traffic generation

Normal and DDoS attack traffic are generated within the simulated network using

Iperf [27] and hping3. Three types of normal traffic—ICMP, TCP, and UDP—are

produced: ICMP traffic is generated using the ping command in Mininet, while TCP

and UDP traffic are created with Iperf across all hosts.

Five types of attack traffic are generated with hping3, including SYN flood, UDP

flood, ICMP flood, botnet-based, and FIN flood attacks. In the simulated attack sce-

nario, one host is compromised to launch a DDoS attack against a randomly selected

victim, with IP spoofing employed to disguise the source. As shown in Table 3.1,

destination IP addresses range from 10.0.0.1 to 10.0.0.18, corresponding to the 18

hosts in the network, while the source IP addresses are spoofed.

Table 3.1: Source and Destination IPs
Src IPs Dest IPs

10.0.0.1 10.0.0.1

10.0.0.16 10.0.0.10

10.0.0.17 10.0.0.11

0.11.224.97 10.0.0.12

10.0.0.18 10.0.0.13

10.0.0.13 10.0.0.14

10.0.0.2 10.0.0.15

10.0.0.3 10.0.0.16

10.0.0.4 10.0.0.17

10.0.0.5 10.0.0.18

... 10.0.0.2

0.131.198.43 10.0.0.3

0.131.44.44 10.0.0.4

35.154.208.22 10.0.0.5

238.195.39.221 10.0.0.6

2.245.100.11 10.0.0.7

172.11.211.34 10.0.0.8

190.68.47.37 10.0.0.9

The traffic generation process is divided into three phases, as illustrated in Fig-

ure 3.3. Initially, normal traffic is generated for a period T1 using Algorithm 1. This
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is followed by an attack phase lasting T2, during which Algorithm 2 is used to pro-

duce attack traffic. Finally, normal traffic resumes for a period T3. This approach

is necessary because the traffic features used to identify malicious activity are based

on the flow table statistics of each switch. After a DDoS attack, flow tables continue

to record attack flows until these entries expire according to the ‘idle timeout’ or

‘hard timeout’ settings. Consequently, while T1 and T2 can be variable, T3 must be

longer than the ‘idle timeout’ and ‘hard timeout’—set at 20 and 120 seconds, respec-

tively—to ensure that the attack has fully cleared. ‘Idle timeout’ refers to the number

of seconds a flow entry can stay in the flow table without matching any packets. And

‘hard timeout’ means the maxium number of seconds a flow entry is allowed to stay

in the flow table regardless of hits or miss.

Figure 3.3: Process of traffic generation
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Algorithm 1: Traffic Generation Algorithm

Input: h1, h2, ..., hn: List of hosts in the network

w, W : Range of waiting time

Output: Normal traffic generation

1 while True do

2 Hosts ← [h1, h2, ..., hn]

3 Total wait time ← 0

4 foreach host h in Hosts do

5 Wait time ← randint(w, W )

6 Total wait time += Wait time

7 Dst host ← choice(Hosts)

8 while Dst host == h do

9 Dst host ← choice(Hosts)

10 Protocol ← choice([ICMP, TCP, UDP])

11 if Protocol == ICMP then

12 h.cmd(“ping {Dst host} -c 100 &”)

13 else if Protocol == TCP then

14 h.cmd(“iperf -p 5050 -t {Wait time} -c {Dst host}”)
15 else if Protocol == UDP then

16 h.cmd(“iperf -p 5051 -t {Wait time} -u -c {Dst host}”)

17 sleep(Total wait time)
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Algorithm 2: Attack Traffic Generation

Input: h1, h2, ..., hn: List of hosts in the network

Attack types : List of different types of DDoS

w, W: Range of waiting time

Output: Attack traffic generation

1 while True do

2 Hosts ← [h1, h2, ..., hn]

3 Wait time ← randint(w, W )

4 Src, Dst ← sample(Hosts, 2)

5 Attack ← choice(Attack types)

6 if Attack == “icmp” then

7 Src.cmd(“timeout 20s hping3 -1 -V -d 120 -w 64 -p 80 –rand-source

–flood {Dst}”)
8 sleep(Wait time)

9 else if Attack == “udp” then

10 Src.cmd(“timeout 20s hping3 -2 -V -d 120 -w 64 –rand-source –flood

{Dst}”)
11 sleep(Wait time)

12 else if Attack ==“syn” then

13 Src.cmd(“timeout 20s hping3 -S -V -d 120 -w 64 –rand-source –flood

{Dst}”)
14 sleep(Wait time)

15 else if Attack == “botnet” then

16 Src.cmd(“timeout 20s hping3 -1 -V -d 120 -w 64 –flood -a {Dst}
{Dst}”)

17 sleep(Wait time)

18 else if Attack == “Fin” then

19 Src.cmd(“timeout 20s hping3 -F -V -d 120 -w 64 –flood {Dst}”)
20 sleep(Wait time)
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3.3 Feature extraction and derivation

A Python script integrated into the Ryu controller collects traffic statistics from both

normal and attack scenarios using 17 predefined metrics via Ryu’s APIs [50]. Table 3.2

details these statistics along with their descriptions and examples.

Table 3.2: Traffic Statistics
Name Description Example

timestamp Time of flow 1589932746

datapath id ID of Datapath (Open-
FlowSwitch)

“1”

flow id ID of flow 10.0.0.104380410.0.0.1450501

ip src Source IP of flow 10.0.0.1

tp src Source port number of flow 5050

ip dst Destination IP of flow 10.0.0.14

tp dst Destination port number of
flow

5051

ip proto Protocol 1

icmp code ICMP code 5

icmp type ICMP type 6

flow duration sec Time flow has been alive in
seconds

4

flow duration nsec Time flow has been alive
in nanoseconds beyond dura-
tion sec

480000000

idle timeout Number of seconds idle before
expiration

20

hard timeout Number of seconds before ex-
piration

120

flags Bitmap of OFPFF * flags 1

packet count Number of packets in flow 50776

byte count Number of bytes in flow 3351216

lookup count How many times packets
looked up in table

8

Since raw statistics—such as source and destination IP addresses—can lead to

data leakage and bias, they cannot be directly used for training classifiers. Therefore,

we derived 11 informative features from the collected data for classifier training and
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testing. The names and derivation formulas for these features are provided below:

1. Num of Source IP :

Num of Source IP =
n∑

i=1

δ(Source IPi) (3.1)

where:

• Source IPsi represents the i-th source IP address in the collection.

• δ(Source IPsi) is a function that counts each occurrence of a source IP address

in the collection.

• n is the total number of flow entries in the flow table collected.

This is the total number of unique source IPs in every collection

2. Num of Port :

Num of Source Port =
n∑

i=1

δ(Source Portsi) (3.2)

where:

• Source Portsi represents the i-th source port in the collection.

• δ(Source Portsi) is a function that counts each occurrence of a source port in

the collection.

• n is the total number of flow entries in the flow table collected.

This is the total number of unique source ports in every collection.

3.Paired IP to Num of Flow :

Ratio of Paired Flow =
ΔFlow Pair Count

ΔFlow Count
(3.3)

where:

• ΔFlow Pair Count represents the difference in the number of flow pairs (IPs

recorded as both source and destination) between the current collection and

the previous collection:

ΔFlow Pair Count = Flow Pair Countcurrent − Flow Pair Countprevious
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• ΔFlow Count represents the difference in the total number of flows between the

current collection and the previous collection:

ΔFlow Count = Flow Countcurrent − Flow Countprevious

This metric calculates the ratio of the change in the number of paired flows to the

change in the total number of flows over consecutive collections. It provides insight

into how the paired flow count evolves relative to the overall flow count.

4. Change in Number of Incoming Packets:

Change in Num of Incoming Packets = ΔTotal Packets (3.4)

where:

• ΔTotal Packets represents the difference in the total number of packets across

all flows between the current collection and the previous collection:

ΔTotal Packets = Total Packetscurrent − Total Packetsprevious

• Total Packets is calculated as the sum of packets across all flows in a collection:

Total Packets =
n∑

i=1

Packetsi

where:

– Packetsi is the total number of packets in the i-th flow.

– n is the total number of flows in the collection.

This feature measures the change in packet activity by computing the difference

in the total number of packets observed between consecutive collections. The total

number of packets for a collection is derived by summing the number of packets in

each individual flow within that collection.

5.Change in Number of Lookup:

Change in Num of Lookup = ΔLookup Count (3.5)

where:
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• ΔLookup Count represents the change in the number of lookup counts between

the current collection and the previous collection:

ΔLookup Count = Lookup Countcurrent − Lookup Countprevious

• Lookup Countcurrent: The total lookup counts in the current collection.

• Lookup Countprevious: The total lookup counts in the previous collection.

This feature measures the difference in the number of lookup operations performed

between two consecutive collections. It provides insights into changes in lookup ac-

tivity, which could indicate shifts in network traffic behavior or table usage patterns.

6.Average Packets per Flow :

Average Packets per Flow =
Total Packets

Total Flows
(3.6)

where:

• Total Packets is the total number of packets in all flows for the collection:

Total Packets =
n∑

i=1

Packetsi

where:

– Packetsi is the number of packets in the i-th flow.

– n is the total number of flows in the collection.

• Total Flows is the total number of flows in the collection.

This feature calculates the average number of packets sent per flow in the collec-

tion, providing an insight into the flow’s traffic intensity.

7. Average Bytes per Flow :

Average Bytes per Flow =
Total Bytes

Total Flows
(3.7)

where:

• Total Bytes is the total number of bytes in all flows for the collection:

Total Bytes =
n∑

i=1

Bytesi

where:
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– Bytesi is the number of bytes in the i-th flow.

– n is the total number of flows in the collection.

• Total Flows is the total number of flows in the collection.

This feature calculates the average number of bytes transmitted per flow in the

collection, providing insight into the data volume handled by each flow.

8. Standard Deviation of Packets:

Std Dev of Packets =

√√√√ 1

n

n∑
i=1

(Packetsi − μ)2 (3.8)

where:

• n is the total number of flows in the collection.

• Packetsi is the number of packets in the i-th flow.

• μ is the mean number of packets per flow, calculated as:

μ =
1

n

n∑
i=1

Packetsi

This feature computes the dispersion or variability in the number of packets across

all flows in the collection, providing insight into traffic distribution consistency.

9. Standard Deviation of Bytes:

Std Dev of Bytes =

√√√√ 1

n

n∑
i=1

(Bytesi − μ)2 (3.9)

where:

• n is the total number of flows in the collection.

• Bytesi is the number of bytes in the i-th flow.

• μ is the mean number of bytes per flow, calculated as:

μ =
1

n

n∑
i=1

Bytesi
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This feature computes the dispersion or variability in the number of bytes across

all flows in the collection, providing insight into how data volume is distributed among

the flows.

10. Average Duration per Flow :

Average Duration per Flow =
Total Duration

Total Flows
(3.10)

where:

• Total Duration is the sum of the duration of all flows in the collection:

Total Duration =
n∑

i=1

Durationi

where:

– Durationi is the duration of the i-th flow.

– n is the total number of flows in the collection.

• Total Flows is the total number of flows in the collection.

This feature calculates the average time that each flow lasts within the collection,

providing insight into the flow duration characteristics.

11. Protocol : This feature represents the protocol of collected traffic. In this

work, there are 3 possible values of it, 1 for ICMP, 6 for TCP and 17 for UDP.

Algorithm 3 outlines the feature extraction process. The Ryu controller sends OF-

PFlowStatsRequest and OFPTableStatsRequest messages to the data plane, prompt-

ing switches to reply with OFPFlowStatsReply and OFPTableStatsReply messages

that contain the raw traffic statistics. The OFPFlowStatsReply includes flow-related

details like IP addresses, port numbers, and packet counts, while the OFPTableStat-

sReply provides statistics on flow table lookups. These statistics are then processed

to generate the 11 derived features, which are saved in a CSV file for subsequent

training and testing.
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Algorithm 3: Feature Extraction for Network Traffic
Input: Traffic in the network

Output: Dataset with 11 extracted features

1 foreach datapath p in {datapath list} do

2 OFPFlowStatsRequest(datapath) ; // Request flow stats from switches

3 OFPTableStatsRequest(datapath) ; // Request table stats from switches

4 lookup count ← 0

5 src ip list, dst ip list, src port list ← {}
6 previous stats ← {“packet count”: 0, “lookup count”: 0, “pair count”: 0, “flow count”: 0}
7 packet count, byte count, src port, ip proto, duration ← 0

8 flow packets, flow bytes ← [ ]

9 lookup count ← TableStatsReplyHandler.lookup count

10 foreach stat in en.msg.body do

11 packet count + = stat.packet count

12 byte count + = stat.byte count

13 duration + = stat.duration sec + stat.duration nsec / 1e9

14 ip proto ← stat.match[‘ip proto’]

15 src ip list.add(stat.match[‘ipv4 src’])

16 dst ip list.add(stat.match[‘ipv4 dst’])

17 src port list.add(stat.match[‘ports’])

18 flow packets.append(stat.packet count)

19 flow bytes.append(stat.byte count)

// Compute derived features

20 average packet count ← packet count / flow count

21 average byte count ← byte count / flow count

22 packet count diff ← |packet count− previous stats[“packet count”]|
23 lookup count diff ← |lookup count− previous stats[“lookup count”]|
24 pair count ← src ip list× dst ip list

25 pair count diff ← |pair count− previous stats[“pair count”]|
26 flow count diff ← |flow count− previous stats[“flow count”]|
27 if flow count > 0 then

28 dur per flow ← duration / flow count

29 else

30 dur per flow ← 0

31 if flow count diff > 0 then

32 pair count ratio ← pair count diff / flow count diff

33 else

34 pair count ratio ← 0

35 if flow packets not empty then

36 packet std dev ← std(flow packets)

37 else

38 packet std dev ← 0

39 if flow bytes not empty then

40 byte std dev ← std(flow bytes)

41 else

42 byte std dev ← 0

43 WriteInFile(src ip count, src port count, pair count ratio, packet count diff,

44 lookup count diff, ip proto, average packet count, average byte count,

45 packet std dev, byte std dev, dur per flow)
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3.4 Feature analysis

To analyze feature behavior under both normal and attack conditions, a small dataset

was generated using the process outlined in Figure 3.3. This dataset includes 10 se-

lected features and 90 records, excluding the ‘Protocol’ feature since its value remains

constant regardless of traffic conditions. The dataset comprises 30 records of normal

traffic, followed by 30 records of attack traffic, and concludes with an additional 30

records of normal traffic.

Figure 3.4 illustrates how each feature exhibits distinct changes during an at-

tack, indicating their usefulness in identifying malicious traffic. For example, the

‘Count of Source IP’ feature does not immediately return to normal levels after an

attack because the corresponding attack flows persist in the flow table until they

expire after the idle timeout period.

3.5 Dataset preprocessing

Since all the features in generated dataset are numeric, there is no need to encode

any of them. We noticed that there is huge gap between the values of features,

MinMax normalization is adapted to preprocess the dataset. Formula of MinMax

normalization is provided below.

xnorm =
x−min(x)

max(x)−min(x)
(3.11)

3.6 Evaluation of classifiers

Two datasets were created for training and testing the classifiers—one for binary

classification and another for multi-class classification. Both datasets include 12 fea-

tures (11 derived features plus a label). The binary dataset contains 140,000 records,

evenly split between normal and attack traffic. The multi-class dataset comprises

60,000 records, with 10,000 normal records and 10,000 records for each attack type

(SYN flood, UDP flood, ICMP flood, botnet-based, and FIN flood). Each dataset was

divided into 80% training and 20% unseen testing sets, and a 10-fold cross-validation

was applied during model evaluation.
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Figure 3.4: Behavior of features during normal and attack

Performance was measured using four metrics: accuracy, precision, recall, F1 score

and training time. Classifier outcomes are categorized as follows:

• True Positives (TP): An attack traffic is predicted as an attack by the model.
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• True Negatives (TN): A normal traffic is predicted as normal by the model.

• False Positives (FP): A normal traffic is incorrectly predicted as attack. This

is referred to as a Type I error.

• False Negatives (FN): An attack traffic is incorrectly predicted as normal.

This is referred to as a Type II error.

The four metrics are calculated based on these four conditions. The explanations and

equations of them are provided below.

• Accuracy: This measures the overall correctness of a classifier by calculating

the ratio of correct predictions to the total number of cases. This metric provides

a general measure of performance; however, it may not be sufficient in cases of

imbalanced datasets. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.12)

• Precision: Precision, also known as the positive predictive value, quantifies

the accuracy of positive predictions. High precision indicates a low proportion

of false positive predictions among the positive predictions made by the model.

It is given by:

Precision =
TP

TP + FP
(3.13)

• Recall: Recall, also referred to as sensitivity or the true positive rate, mea-

sures the ability of a classifier to identify all relevant positive cases. A high

recall indicates that the model successfully captures most of the actual positive

instances. It is defined as:

Recall =
TP

TP + FN
(3.14)

• F1 score: The F1 score is the harmonic mean of precision and recall, providing

a single metric that balances both aspects. This measure is particularly useful

when the class distribution is imbalanced, as it accounts for both false positives

and false negatives. It is computed as:

F1 Score = 2 · Precision× Recall

Precision + Recall
(3.15)
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Table 3.3 and Table 3.4 compare the performance of 9 classifiers in binary classifica-

tion and multi-class classification using four metrics. In binary classification, Random

Forest achieves the top accuracy (98.74%) and F1 (98.76%) in 136 seconds of train-

ing, while XGB matches closely (98.69% accuracy, 98.71% F1) in only 3 seconds, and

LightGBM likewise combines high accuracy (98.65%) with a brief 11 secpnds training

time. These methods also exhibited high recall values, indicating robust capability

in correctly identifying positive instances. By contrast, Naive Bayes, although the

fastest to train (0.6 seconds), exhibits the poorest predictive metrics (93.11% accu-

racy, 93.55% F1), highlighting its limited suitability for this dataset. The remain-

ing classifiers (SVM, ANNs, KNN, Logistic Regression, and Decision Tree) displayed

competitive performance, with accuracies ranging between approximately 97.55% and

98.39%. Support Vector Machines and the Artificial Neural Network also exceed 98%

accuracy, but incur very long training times (3 838 seconds and 4 391 seconds, re-

spectively), making them less efficient for large-scale deployment.

In the multi-class setting, gradient-boosting algorithms deliver the best trade-

off between accuracy and efficiency: XGB achieves 95.51% accuracy and a 95.39%

F1 score in just 5 seconds of training, while LightGBM follows closely with 95.48%

accuracy and a 95.35% F1 score in 9 seconds. Random Forest remains a robust alter-

native, attaining 94.36% accuracy and 94.23% F1 in 75 seconds. In contrast, SVM

and ANNs exceed 92% accuracy (92.64% and 93.34%, respectively) but incur sub-

stantial computational costs (431 seconds and 2 129 seconds), which may limit their

practicality. Simpler models such as Decision Tree, KNN, Logistic Regression, and

Naive Bayes train in under 32 seconds but achieve lower accuracy (89.85%–92.30%)

and F1 scores (88.70%–92.24%), underscoring the inherent trade-off between model

complexity, predictive performance, and training time.

3.7 Strategies to optimize performance

3.7.1 Feature selection

To enhance model performance in both binary and multi-class classification, feature

selection is applied. Since not all features contribute equally to predictive power and

irrelevant features may introduce noise, focusing on the most informative aspects of
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Table 3.3: Binary classification performance of nine classifiers.
Classifier Accuracy Precision Recall F1 Score Training Time (seconds)

Decision Tree 97.85% 97.84% 97.91% 97.88% 4

Random Forest 98.74% 97.95% 99.58% 98.76% 136

LightGBM 98.65% 97.80% 99.55% 98.67% 11

SVM 98.08% 97.60% 98.62% 98.11% 3838

ANNs 98.39% 97.61% 99.23% 98.41% 4391

Naive Bayes 93.11% 88.73% 98.92% 93.55% 0.6

Logistic Regression 97.55% 97.62% 97.53% 97.58% 2

KNN 98.28% 97.71% 98.90% 98.30% 177

XGB 98.69% 97.85% 99.58% 98.71% 3

Table 3.4: Multi-class classification performance of nine classifiers.
Classifier Accuracy Precision Recall F1 Score Training Time (seconds)

Decision Tree 92.24% 92.24% 92.24% 92.24% 2

Random Forest 94.36% 94.45% 94.36% 94.23% 75

LightGBM 95.48% 95.65% 95.48% 95.35% 9

SVM 92.64% 93.24% 92.64% 92.36% 431

ANNs 93.34% 94.00% 93.34% 93.11% 2129

Naive Bayes 89.85% 91.01% 89.85% 88.70% 0.5

Logistic Regression 91.93% 92.37% 91.93% 91.62% 4

KNN 92.30% 92.26% 92.30% 92.21% 32

XGB 95.51% 95.70% 95.51% 95.39% 5



45

the data is essential to reduce overfitting and improve generalization.

First, Weighted Feature Importance (WFI) scores are obtained for the top-performing

classifiers—Random Forest (RF) and XGBoost (XGB)—in both classification set-

tings. These scores, presented in Tables 3.5 and 3.6, indicate each feature’s contribu-

tion to the model’s prediction.

Table 3.5: WFI scores for Random Forest (binary classification).

Feature Importance

Count of Source IP 0.283648

Average Packet Count 0.282949

Packet Std Dev 0.116003

Duration per Flow 0.069137

Lookup Count Diff 0.068215

Packet Count Diff 0.066524

Byte Std Dev 0.044001

Average Byte Count 0.029721

Pair Count Ratio 0.022178

Port Count 0.011120

Protocol 0.006504

Recursive Feature Elimination (RFE) is a method of feature selection, it itera-

tively train the model, eliminate the lowest ranking features until the optimal subset

of features is found [24]. In this work, Recursive Feature Elimination is used to

iteratively remove the feature with the lowest WFI score, while monitoring model

performance with accuracy and F1 score. As illustrated in Figure 3.5, both RF and

XGB perform best when all 11 features are retained, indicating that each feature is

informative enough.

3.7.2 Weighted Majority Vote Ensemble method

Ensemble learning involves merging several individual classifiers and determining the

final class label by taking a majority vote. However, since not all classifiers perform
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Table 3.6: WFI scores for XGB (multi-class classification).

Feature Importance

Duration per Flow 0.199222

Lookup Count Diff 0.156889

Packet Count Diff 0.156000

Average Packet Count 0.098167

Count of Source IP 0.088667

Port Count 0.065167

Packet Std Dev 0.060444

Average Byte Count 0.060389

Pair Count Ratio 0.047333

Byte Std Dev 0.038889

Protocol 0.028833

equally well, it’s advantageous to assign them different weights to boost overall clas-

sification accuracy [15]. In this work, a Genetic Algorithm (GA) [40] is employed

to optimize the weights assigned to individual classifiers in a weighted majority vote

ensemble. The implementation leverages the DEAP library to define a fitness func-

tion that measures the ensemble’s accuracy on a validation dataset. Each candidate

solution is represented as a chromosome—a vector of weights corresponding to the

classifiers—and an initial population of these weight vectors is randomly generated.

The GA uses several key genetic operators to explore the search space:

• Crossover (Mate): A blend crossover operator (cxBlend) is applied to com-

bine portions of two parent individuals, allowing offspring to inherit character-

istics from both parents.

• Mutation: Gaussian mutation (mutGaussian) introduces small random per-

turbations to individual weights, maintaining genetic diversity and helping to

avoid local optima.

• Selection: Tournament selection (selTournament) is used to choose the fittest

individuals based on the accuracy evaluation, ensuring that better-performing
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Figure 3.5: Evaluation of feature subsets using RFE

weight vectors have a higher chance of propagating to subsequent generations.

Over successive generations—each defined by iterative application of these opera-

tors—the GA progressively refines the population. The process ultimately converges

on an optimal or near-optimal set of weights that, when normalized to sum to one,

maximizes the ensemble’s predictive performance. The optimal weight sets of binary

and multi-class prediction are shown in Table 3.7.

After applying weighed majority vote ensemble method, there was an improve-

ment in the performance for both binary and multi-class classification in terms of all

metrics in this work. The result is shown in Table 3.8. The majority vote classi-

fier, optimized via a genetic algorithm, exhibits a consistent performance advantage

over individual ensemble methods in both binary and multi-class classification tasks.

Specifically, In the binary task, the majority vote ensemble attains 98.78% accuracy

and a 98.79 % F1 score—improvements of 0.04% and 0.03%, respectively, compared
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Table 3.7: Optimized Classifier Weights for Binary and Multi-class Classification

Classifier Binary Weight Multi-class Weight

ANNs 0.04337 -0.08076

KNN 0.00560 -0.20395

XGB 0.47038 0.48565

DT 0.43642 -0.00648

NB -0.35001 0.04383

LGB 0.03878 0.52982

LR -0.14712 0.15286

RF 0.60582 0.04341

SVM -0.10324 0.03563

with Random Forest—alongside a precision increase to 97.99 % (+0.04%) and re-

call to 99.60% (+0.02%). These gains require 245 seconds of training, versus 136

seconds for Random Forest. In the multi-class scenario, the majority vote approach

achieves higher accuracy (95.57% vs. 95.51%) and F1 score (95.45% vs. 95.39%) than

XGB, reflecting its robust capability to handle more complex label distributions at a

training time of 156 seconds compared with XGB’s 5 seconds. Although the perfor-

mance gains are modest, they underscore the efficacy of combining multiple classifiers

through majority voting, particularly when further optimized by genetic algorithms.

This ensemble-based strategy leverages the diversity of base models, leading to im-

provements in predictive power over any single best-performing classifier, albeit with

increased computational overhead.

Table 3.8: Performance metrics for majority vote ensemble learning in binary and
multi-class classification.
Classifier Accuracy Precision Recall F1 Score Training Time (seconds)

Majority vote (Binary) 98.78% 97.99% 99.60% 98.79% 245

Random Forest (Binary) 98.74% 97.95% 99.58% 98.76% 136

Majority vote (Multi-class) 95.57% 95.77% 95.57% 95.45% 156

XGB (Multi-class) 95.51% 95.70% 95.51% 95.39% 5



Chapter 4

DDoS Mitigation

This chapter details how micro-segmentation and Attribute-Based Access Control

(ABAC) are implemented in SDNs to mitigate DDoS attacks. First, the deployment

of micro-segmentation according to the proposed methodology is described. Next,

the use of ABAC to manage communication within and between micro-segments is

explained. A use case is then presented to demonstrate the benefits of this mitigation

strategy.

Figure 4.1 illustrates the architecture of the proposed micro-segmentation. Several

functions have been integrated into the Ryu controller to enhance SDN security,

with proposed ML-based IDS already discussed in Chapter 3. ABAC automates

network management by interacting with the ML-based IDS function. For example,

when an attacker is detected by IDS in controller, controller will configure ABAC

policies and apply them to corresponding micro-segments to mitigate the effect of the

attacker. The micro-segmentation topology and ABAC attributes are predefined and

implemented within the controller.

4.1 Micro-segmentation

Micro-segmentation is a fundamental strategy in DDoS mitigation that involves di-

viding the network into smaller, isolated segments. This approach limits the lateral

movement of an attacker and minimizes the impact of a potential breach. The life

cycle of micro-segmentation is shown in Figure 4.2.

The first step to deploy micro-segmentation to a network is resource and require-

ments identification. This step involves systematically identifying all network re-

sources, such as servers, databases, applications and endpoints. Each assets should

be evaluated based on its criticality and sensitivity to security events and daily use.

This would provide a comprehensive inventory that forms the basis for targeted se-

curity control. All the following processes should stick to this inventory to have a

49
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Figure 4.1: Architecture of proposed micro-segmentation
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Figure 4.2: Life cycle of micro-segmentation

satisfied result.

After that, some strategies and technologies of micro-segmentation should be

adopted. In this phase, how the resources should be grouped in network micro-

segments should be determined. And the security strategies for each micro-segments

should be clearly defined, followed by customized security polices. The policies may

includes acceptable traffic, access controls and monitoring requirements. The tech-

nologies to do so need to be selected in this phase as well. People should decide

what technologies should be adopted in order to secure and manage the network. For

example, SDN is utilized to realize the micro-segmentation and ABAC for the access

control in this work. Also, technology selection really depends on the strategies.

Micro-segmentation starts by answering how the network resources should be

grouped. A great answer here would be a topology of micro-segmentation which shows
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access control between protected resources. Topology design for micro-segmentation

can be either automated or manual. Machine learning models or mathematical al-

gorithms are usually applied to automate micro-segmentation topology. Automated

topology is a good choice when the scale of network is large. Because when there

are more resources and requirements, it is more complicated to find optimal topology.

And the network is more vulnerable when there is an error in configuration. However,

manual topology design can be a better option for medium or small network since

there is no worry of complexity.

After establishing the topology, the next step is choosing the deployment technol-

ogy. Options include VLANs, cloud-based segmentation tools, and SDN. SDN offers

significant advantages due to its manageability, scalability, and simplified configu-

ration for both topology deployment and access control management. Especially in

IoT environment, in addition to NFV, software defined attributes of SDN can also be

useful for micro-segmentation [59].

After all, the network should be secured by micro-segmentation. But this does

not bring the end of micro-segmentation. Micro-segmentation is an ongoing process

that requires continuous management and maintenance. As new resources join the

network or as security requirements evolve, the micro-segmentation framework must

be updated to ensure sustained protection. The whole process of micro-segmentation

can be also seen as a function which takes origin network as input and segmented

network as output. Any changes to the input may have effects on the output.

4.2 Attribute Based Access Control (ABAC)

Since micro-segmentation is deployed in SDN, controller needs to manage micro-

segments by controlling the traffic between them. Prerequisites of access control

should be established when topology of micro-segmentation is designed. There are

different access control technologies based on the technologies of topology deploy-

ment. For example, you can use firewalls in VLANs if the environment supports it.

Or DPI engines can be used in cloud-based platform. In this work, SDN supports

various access control techonologies such as ACLs, dynamic firewalls, Role Based Ac-

cess Control, ABAC and so on. ABAC is adopted in this work in consideration of

dyanmic access control decisions are required. And by using well-defined attributes
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that apply to both subjects and objects, authentication and authorization processes

can be carried out and managed within the same infrastructure or across different

systems, all while ensuring adequate security levels are upheld.

In this work, Casbin is used to implement ABAC in Ryu controller. Casbin is

an open-source, lightweight, and highly flexible access control library that supports

multiple authorization models including Access Control Lists (ACL), Role-Based Ac-

cess Control, and Attribute-Based Access Control. Originally written in Go and now

available for multiple programming languages, it lets developers define and enforce

security policies via customizable model and policy files, making it easy to integrate

into diverse applications and distributed systems.

For ABAC, Casbin leverages what’s known as its PERM model—a framework

that evaluates access decisions based on dynamic attributes of the subject (user),

object (resource), and the requested action [37]. In this model, instead of relying

solely on static roles or permissions, you can define policy rules that incorporate

various attributes and conditions. At runtime, when a request is made, Casbin’s

enforcer evaluates these attributes using built-in or custom functions, allowing for

fine-grained, context-sensitive access control decisions that adapt to complex business

logic and changing environments. More details of PERM model can be accessed in

[9].

The PERM model has four foundations: Policy, Effect, Request and Matcher [9]:

• Request: It defines the request parameters. A basic request is a tuple object,

requiring at least a subject (accessed entity), object (accessed resource), and

action (access method).

• Policy: It defines the model for the access strategy. It specifies the name and

order of the fields in the Policy rule document.

• Matcher: It defines the matching rules for Request and Policy.

• Effect: It performs a logical combination judgment on the matching results of

Matchers.
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4.3 Use Case

This section illustrates the proposed DDoS mitigation method using a practical ex-

ample. In this scenario, a company operates an SD-IoT network for internal pur-

poses, with no external access. The company plans to implement the proposed micro-

segmentation strategy to secure their network.

The network inventory is created by identifying key resources and their require-

ments:

• A major database contains the data log of industry, which is very sensitive.

Only chief operator can access to the data in it.

• IoT devices, such as sensors, cameras, can upload data to the major database.

• A database and a server are for HR. Only two supervisors can access to them.

According to the inventory for micro-segmentation, a topology has been designed

for the network. The network is illustrated in Figure 4.3 after topology realization.

Access controls between the micro-segments are managed using Attribute-Based

Access Control. The Ryu controller oversees the network and enforces policies. The

resources are grouped as follows:

• All IoT devices are grouped in micro-segment 1

• The major database in micro-segment 2, the cheif operator in micro-segment 3

• HR database in micro-segment 4, HR server in micro-segment 5, two supervisor

are put in micro-segment 6 and 7 respectively.

ABAC policies, based on the inventory, govern access between these segments:

• Micro-segment 1 (IoT) and micro-segment 2 (major database).

• Micro-segment 3 (chief operator) and micro-segment 2 (major database).

• Micro-segment 4 (HR database) and both micro-segment 6, 7 (supervisors).

• Micro-segment 5 (HR server) and both micro-segment 6, 7 (supervisors).
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Figure 4.3: Example of micro-segmentation

Given that IoT devices are resource-constrained and less capable of implementing

security mechanisms, they are particularly vulnerable to attacks. If an attacker com-

promises IoT devices, turning them into botnets to launch a DDoS attack against

the major database, it could result in significant damage to the company. ABAC,

configured within the controller, helps prevent such incidents. The configuration of

ABAC is shown in Table 4.1.

Table 4.1: Configuration of ABAC

Name Configuration

request definition r = sub, obj, act

policy definition p = attack ip, attack segment, act, eft

policy effect e = !some(where (p.eft == deny))

matchers m = r.sub.ip == p.attack ip ||

r.sub.micro segment == p.attack segment ||

r.obj.ip == p.attack ip || r.obj.micro segment

== p.attack segment && r.act == p.act



56

In this configuration, two attributes—IP address and micro-segment—are defined.

For each access request, the controller checks the attributes of both the subject and

object. If no matching policies are found with an effect of “deny”, the request is

permitted.

If an IoT device is compromised and used to launch an attack on the major

database, the controller detects the attack immediately, updates the ABAC poli-

cies with the attacker’s IP address and micro-segment, and blocks the compromised

micro-segment. Additionally, other IoT devices in the same segment may also be

compromised, resulting in the entire segment being blocked to prevent further dam-

age.

This approach offers two significant benefits in this case: it mitigates the impact

of DDoS attacks through effective micro-segmentation combined with ABAC, and it

establishes a defense-in-depth strategy that enhances overall network resilience.



Chapter 5

Conclusion

This thesis makes significant contributions to both the detection and mitigation of

DDoS attacks in SD-IoT networks.

Proposed algorithms were used to generate traffic and compile two datasets in

CSV format within a simulated SDN. The generated traffic spans multiple protocols,

including ICMP, UDP, and TCP, and covers various attack types such as SYN flood,

UDP flood, ICMP flood, botnet-based, and FIN flood. From the collected data, 17

raw traffic statistics were extracted and processed to derive 11 informative features,

with analysis confirming their strong indication of DDoS activity.

Two datasets were created for binary and multi-class classification, respectively.

The preprocessed data was then used to train various machine learning classifiers,

including Decision Tree, LightGBM, XGBoost, Random Forest, SVM, KNN, Naive

Bayes, Artificial Neural Network, and Logistic Regression. Evaluation using accuracy,

precision, recall, and F1 score revealed that Random Forest and XGBoost achieved

the highest performance, with Random Forest reaching 98.74% accuracy for binary

classification and XGBoost attaining 95.51% accuracy for multi-class classification.

To further enhance detection performance, feature selection was applied to re-

duce noise. Recursive Feature Elimination based on Weighted Feature Importance

confirmed that all 11 features were essential. In addition, a weighted majority vote

ensemble method was implemented, with classifier weights optimized using genetic

algorithms applied to the best-performing models (RF and XGB). This ensemble

approach led to improvements across all evaluation metrics.

Finally, a DDoS mitigation methodology is proposed that integrates micro-segmentation

with Attribute-Based Access Control in SDNs. The deployment strategy for micro-

segmentation is detailed, and the Casbin tool is introduced to implement ABAC. A

use case demonstrates that this approach not only mitigates the impact of DDoS

attacks but also establishes a robust defense-in-depth framework.

57
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While this thesis provides valuable contributions to dataset generation, DDoS

detection, and mitigation, several limitations remain that could be addressed in future

work.

In SDN architecture, a single point of failure can occur if the controller is attacked.

To prevent this, it is crucial to monitor the communication between switches and the

controller. The use of distributed controllers offers a promising solution to mitigate

this risk, as they can provide redundancy and resilience.

Leveraging distributed controllers in SDN can also enhance attack mitigation

strategies. Each controller can be assigned to monitor and manage its own micro-

segments, allowing DDoS attacks to be addressed more efficiently. For instance, cer-

tain micro-segments may occasionally experience high traffic volumes, and the IDS

deployed on that controller could quickly identify DDoS attacks based on the specific

characteristics of that traffic.

As SDN scales, manually designing micro-segmentation topologies becomes in-

creasingly inefficient. Machine learning algorithms with high performance can be

integrated into the controller to optimize the micro-segmentation topology automat-

ically. This approach not only improves efficiency but also reduces the potential for

human error, which can have significant consequences in large-scale networks.

In conclusion, this thesis introduces a comprehensive framework for detecting

and mitigating DDoS attacks. The proposed feature extraction and dataset gen-

eration methods offer practical applications, while the DDoS mitigation strategy

demonstrates the potential of micro-segmentation and Attribute-Based Access Con-

trol (ABAC) in enhancing SD-IoT security.
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